JPH05212236A - Method for recovering hydrogen sulfide of low concentration - Google Patents

Method for recovering hydrogen sulfide of low concentration

Info

Publication number
JPH05212236A
JPH05212236A JP4017678A JP1767892A JPH05212236A JP H05212236 A JPH05212236 A JP H05212236A JP 4017678 A JP4017678 A JP 4017678A JP 1767892 A JP1767892 A JP 1767892A JP H05212236 A JPH05212236 A JP H05212236A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
gas
adsorption
stage
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4017678A
Other languages
Japanese (ja)
Other versions
JP2999050B2 (en
Inventor
Jun Izumi
順 泉
Takashi Morimoto
敬 森本
Hiroyuki Tsutaya
博之 蔦谷
Koichi Araki
公一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4017678A priority Critical patent/JP2999050B2/en
Publication of JPH05212236A publication Critical patent/JPH05212236A/en
Application granted granted Critical
Publication of JP2999050B2 publication Critical patent/JP2999050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To recover with high recovery rate the gas of high concentration using gas contg. hydrogen sulfide of low concentration as a raw material by returning outgoing gas in an adsorption process of the 2nd stage adsorber to the 1st stage adsorption process and returning outgoing gas in a concurrent purge process of the 2nd adsorber to an adsorption process of the 2nd stage adsorber. CONSTITUTION:Two adsorbers 6a, 6b at the 1st stage are each packed with a hydrogen sulfide adsorbent 5 and four adsorbers 16a-16d at the 2nd stage are each packed with tje hydrogen sulfide adsorbent 5. Gas recovered in the 1st stage vacuum countercurrent purge process is conducted from a passage 13 to a blower 14 to compress it. And, gas flowing from an adsorption process of the 2nd stage adsorbers 16a-16d is returned to an adsorption process of the 1st stage adsorbers 6a, 6b and gas flowing from a concurrent purge process of the 2nd stage adsorbers 16a-16d is returned to the adsorption process of the 2nd stage adsorbers 16a-16d. Further, if necessary, the gas is returned to a countercurrent pressure restoring process of the 2nd stage adsorbers 16a-16d. Thereby hydrogen sulfide of high concentration is obtained with high recovery rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学工業において触媒
前処理用ガス、若しくは、硫黄原料、硫酸原料、有機ラ
ジカル反応停止剤として用いられた後の低濃度硫化水素
含有ガスから圧力スィング吸着法(以下、PSA法とい
う)を用いて高濃度硫化水素ガスを回収する方法に関す
る。
TECHNICAL FIELD The present invention relates to a pressure swing adsorption method from a catalyst pretreatment gas in the chemical industry, or a low concentration hydrogen sulfide-containing gas after being used as a sulfur raw material, a sulfuric acid raw material, or an organic radical reaction terminator. The present invention relates to a method for recovering high-concentration hydrogen sulfide gas by using (hereinafter referred to as PSA method).

【0002】[0002]

【従来の技術】図12は、従来の2塔式の圧力スィング
吸着法(以下、PSA−I法という)により硫化水素を
濃縮する装置のフローシートである。吸着塔36には硫
化水素吸着剤35を充填し、吸着工程にある吸着塔36
aのバルブ34a及び37aを開放する。硫化水素含有
ガス31は、ブロア32で3atmに昇圧し、流路3
3、バルブ34aを経て吸着塔36aに導入され、硫化
水素を吸着して難吸着性成分ガスをバルブ37a、流路
38を介して系外に流出する。(吸着工程) 硫化水素の吸着帯が塔の出口付近まで移動して吸着工程
を終了した吸着塔36bは、バルブ39bを開放して真
空ポンプ40により塔内を所定の減圧にし、次いでバル
ブ42bを開放することにより、上記吸着工程で流路3
8から流出する難吸着性成分ガスの一部を、減圧弁4
1、バルブ42bを介して吸着塔36bに導入して向流
パージを行い、吸着剤35から硫化水素を脱着して回収
する。(減圧向流パージ工程)
2. Description of the Related Art FIG. 12 is a flow sheet of an apparatus for concentrating hydrogen sulfide by a conventional two-column pressure swing adsorption method (hereinafter referred to as PSA-I method). The adsorption tower 36 is filled with the hydrogen sulfide adsorbent 35, and the adsorption tower 36 in the adsorption step is
The valves 34a and 37a of a are opened. The hydrogen sulfide-containing gas 31 is pressurized to 3 atm by the blower 32, and the flow path 3
3, the gas is introduced into the adsorption tower 36a through the valve 34a, adsorbs hydrogen sulfide, and the hardly adsorbed component gas flows out of the system through the valve 37a and the flow path 38. (Adsorption step) In the adsorption tower 36b which has completed the adsorption step by moving the adsorption zone of hydrogen sulfide to the vicinity of the outlet of the tower, the valve 39b is opened to reduce the pressure inside the tower by the vacuum pump 40, and then the valve 42b is turned on. By opening the flow path 3 in the adsorption step
A part of the hardly adsorbed component gas flowing out from the pressure reducing valve 4
1. Introduced into the adsorption tower 36b via the valve 42b, countercurrent purge is performed, and hydrogen sulfide is desorbed from the adsorbent 35 and recovered. (Decompression countercurrent purge process)

【0003】減圧向流パージ工程で回収されるガスの硫
化水素濃度C2 は、吸着される硫化水素ガス量を
H2S 、吸着塔に残留する難吸着性成分ガス量をG
COADS 、向流パージガス量をGpとすると、次式で表さ
れる。 C2 =GH2S /(GH2S +GCOADS +Gp) ・・・ 又、Gpの必要量は、Skarstrom則によると、
次式で表される。 Gp=α(Pd/Pa)Go(但し、α≧1.2) ・・・ 又、吸着される硫化水素ガス量GH2S と吸着塔に残留す
る難吸着性成分ガス量GCOADS との比率を選択性βとす
ると、次式で表される。 β=GH2S /GCOADS ・・・ そして、原料ガス中の硫化水素濃度をC0 とすると、回
収ガス中の硫化水素濃度C2 は、上記〜式より次式
として求めることができる。 C2 =1/〔1+(1/β)+(αPd/C0 Pa)〕 ・・・ この式から明らかなように、硫化水素は、選択性β、吸
着圧力Paが大きいほど、又、再生圧力Pdが小さいほ
ど、高い濃縮率で回収される。
The hydrogen sulfide concentration C 2 of the gas recovered in the reduced pressure countercurrent purging step is determined by the amount of adsorbed hydrogen sulfide gas being G H2S and the amount of hardly adsorbed component gas remaining in the adsorption tower being G 2
COADS and countercurrent purge gas amount are Gp, they are expressed by the following equation. C 2 = G H2S / (G H2S + G COADS + Gp) ... Also, the required amount of Gp is according to the Skarstrom law,
It is expressed by the following equation. Gp = α (Pd / Pa) Go (however, α ≧ 1.2) ... Further , the ratio between the adsorbed hydrogen sulfide gas amount G H2S and the hardly adsorbed component gas amount G COADS remaining in the adsorption tower is calculated. Assuming selectivity β, it is expressed by the following equation. β = G H2S / G COADS ··· When the concentration of hydrogen sulfide in the feed gas and C 0, hydrogen sulfide concentration C 2 in the recovered gas can be determined as the following formula from the above-equation. C 2 = 1 / [1+ (1 / β) + (αPd / C 0 Pa)] As is clear from this equation, hydrogen sulfide is regenerated as the selectivity β and the adsorption pressure Pa increase. The smaller the pressure Pd, the higher the recovery rate.

【0004】図12の方法(PSA−I法)において、
硫化水素吸着剤として重合リン酸含有活性アルミナを使
用するときには、C0 を3vol%とし、β=10、P
a=1.05atm、Pd=0.03atmとすると、
2 は45vol%程度である。この方法は硫化水素の
回収率を100%近くに設定すると、処理に適した原料
ガスの硫化水素濃度は40vol%以下の比較的低濃度
ガスとなる。
In the method of FIG. 12 (PSA-I method),
When polymerized phosphoric acid-containing activated alumina is used as the hydrogen sulfide adsorbent, C 0 is set to 3 vol% and β = 10, P
If a = 1.05 atm and Pd = 0.03 atm,
C 2 is about 45 vol%. In this method, when the hydrogen sulfide recovery rate is set to near 100%, the hydrogen sulfide concentration of the raw material gas suitable for the treatment becomes a relatively low concentration gas of 40 vol% or less.

【0005】原料ガスの硫化水素濃度が40vol%を
越える、高濃度ガスの処理に適した方法としては、図1
3に示す4塔式の圧力スィング吸着法(以下、PSA−
II法という)がある。4つの吸着塔56には重合リン酸
含有アルミナ等の硫化水素吸着剤55が充填されてお
り、吸着工程にある吸着塔56aは、バルブ54aとバ
ルブ57aを開放して、高濃度の硫化水素を含有する原
料ガス51は、ブロア52で1atmから3atmに圧
縮され、流路53、バルブ54aを介して吸着塔56a
に供給され、硫化水素を吸着して難吸着性成分ガスをバ
ルブ57a、流路58を介して系外に放出する。硫化水
素の吸着帯が塔の後方まで移動した状態で吸着工程を終
了する。
As a method suitable for treating a high-concentration gas in which the hydrogen sulfide concentration of the source gas exceeds 40 vol%, a method shown in FIG.
4 tower type pressure swing adsorption method (hereinafter referred to as PSA-
II method). The four adsorption towers 56 are filled with a hydrogen sulfide adsorbent 55 such as polymerized phosphoric acid-containing alumina. The adsorption tower 56a in the adsorption step opens the valve 54a and the valve 57a to release a high concentration of hydrogen sulfide. The raw material gas 51 contained therein is compressed by the blower 52 from 1 atm to 3 atm, and is passed through the flow path 53 and the valve 54 a to the adsorption tower 56 a.
And adsorbs hydrogen sulfide to release the hardly adsorbed component gas to the outside of the system via the valve 57a and the flow path 58. The adsorption process is terminated with the hydrogen sulfide adsorption zone moving to the rear of the column.

【0006】吸着工程を終了した吸着塔56bは、バル
ブ60b、バルブ62bを開放し、次の減圧回収工程で
回収した高濃度の硫化水素含有ガスを製品ホルダ66か
ら流路59、バルブ60bを介して吸着塔56bに導入
し、塔内に残留する難吸着性成分を並流パージし、バル
ブ62b、流路63から系外に放出される。並流パージ
工程終了後の吸着塔56cは、バルブ64cを開放して
真空ポンプ65により塔内を0.01〜0.3atmに
減圧し、吸着剤55から硫化水素を脱着し、高濃度の硫
化水素含有ガスを製品ホルダ66に貯蔵する。そして、
その一部を製品ガスとして流路67から採取する。減圧
回収工程で吸着剤55の再生を終えた吸着塔56dは、
最大の真空度に達しており、バルブ69dを開放するこ
とにより、原料ガス51を流路68、バルブ69dを介
して吸着塔56dに導入し、大気圧に戻す。
In the adsorption tower 56b which has completed the adsorption process, the valves 60b and 62b are opened, and the high-concentration hydrogen sulfide-containing gas recovered in the next reduced pressure recovery process is passed from the product holder 66 through the flow path 59 and the valve 60b. Is introduced into the adsorption tower 56b, the hardly adsorbed component remaining in the tower is cocurrently purged, and is discharged from the system through the valve 62b and the flow passage 63. In the adsorption tower 56c after completion of the co-current purging step, the valve 64c is opened and the inside of the tower is depressurized to 0.01 to 0.3 atm by the vacuum pump 65 to desorb hydrogen sulfide from the adsorbent 55 and to remove high-concentration sulfide. The hydrogen-containing gas is stored in the product holder 66. And
A part of the product gas is collected from the flow channel 67 as a product gas. The adsorption tower 56d, which has completed the regeneration of the adsorbent 55 in the reduced pressure recovery step,
When the maximum degree of vacuum is reached and the valve 69d is opened, the source gas 51 is introduced into the adsorption tower 56d through the flow path 68 and the valve 69d, and returned to atmospheric pressure.

【0007】ここで、真空ポンプで回収されるガス量を
Go、並流パージ工程に使用されるガス量をGpとする
と、パージ率R(%)は次のように定義される。 R=(Gp/Go)×100 仮に、原料ガスの硫化水素濃度を55vol%ととし、
パージ率を55%、65%、80%の3つの場合を想定
すると、製品ガスの硫化水素濃度は95vol%、99
vol%、99.9vol%に達する。このように、P
SA−II法は、製品濃度が最大99.9vol%に達す
る極めて濃縮率の高い方法である。しかし、回収率は4
0〜70%に止まり、入口ガスの硫化水素濃度が40v
ol%を下回ると、Skarstrom形の向流パージ
を行わないためにPSA性能を維持することができなく
なる。上記のPSA−I法とPSA−II法を比較評価す
ると表1のようになる。
Here, when the amount of gas collected by the vacuum pump is Go and the amount of gas used in the co-current purging step is Gp, the purge rate R (%) is defined as follows. R = (Gp / Go) × 100 If the hydrogen sulfide concentration of the source gas is 55 vol%,
Assuming three cases of purge rates of 55%, 65%, and 80%, the hydrogen sulfide concentration of the product gas is 95 vol%, 99%.
and reach 99.9 vol%. Thus, P
The SA-II method is an extremely high concentration method in which the product concentration reaches a maximum of 99.9 vol%. However, the recovery rate is 4
0 to 70%, the hydrogen sulfide concentration of the inlet gas is 40v
When it is less than ol%, PSA performance cannot be maintained because Skarstrom type countercurrent purging is not performed. Table 1 shows a comparative evaluation of the PSA-I method and the PSA-II method.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【発明が解決しようとする問題点】上記のPSA−I法
は、低濃度域で非常に高い回収率が得られるが、製品濃
度が低く、また高濃度側で実施する場合は脱着ガス量が
多くなり、最高真空度に到達するのに時間を要し、か
つ、この操作で脱着が十分になされるため向流パージの
効果を挙げることができない。他方、PSA−II法は、
高濃度域で非常に高い製品濃度を得ることができるが、
回収率が低く、また低濃度側で実施する場合は向流パー
ジを採用していないために再生率が低く、多大な吸着剤
を必要とする。そして、並流パージに必要とする製品ガ
ス量を用意できなくなる。このように、PSA−I法や
PSA−II法を採用しても、40vol%以下の低濃度
の硫化水素含有ガスから90vol%以上の高濃度ガス
を高い回収率で得ることは困難であった。そこで、本発
明は、上記欠点を解消し、40vol%以下の低濃度の
硫化水素含有ガスを原料として90vol%以上の高濃
度ガスを高い回収率で得ることのできるPSA法を使用
した硫化水素の回収方法を提供しようとするものであ
る。
The above-mentioned PSA-I method can obtain a very high recovery rate in a low concentration range, but the product concentration is low, and when it is carried out on the high concentration side, the amount of desorption gas is small. However, it takes a long time to reach the maximum degree of vacuum, and since desorption is sufficiently performed by this operation, the effect of countercurrent purging cannot be achieved. On the other hand, the PSA-II method is
Very high product concentration can be obtained in the high concentration range,
The recovery rate is low, and when it is carried out on the low concentration side, since the countercurrent purge is not adopted, the regeneration rate is low and a large amount of adsorbent is required. Then, the amount of product gas required for the cocurrent purge cannot be prepared. As described above, even if the PSA-I method or the PSA-II method is adopted, it is difficult to obtain a high-concentration gas of 90 vol% or more from a low-concentration hydrogen sulfide-containing gas of 40 vol% or less with a high recovery rate. .. Therefore, the present invention solves the above-mentioned drawbacks and uses a low concentration hydrogen sulfide containing gas of 40 vol% or less as a raw material to obtain a high concentration gas of 90 vol% or more with a high recovery rate. It is intended to provide a recovery method.

【0010】[0010]

【問題点を解決するための手段】本発明は、硫化水素吸
着剤を充填した吸着塔を2段に使用して、40vol%
以下の低濃度硫化水素含有ガスから硫化水素を回収する
方法において、第1段吸着塔では(1)上記ガスを相対
的に低温、高圧で供給して硫化水素を吸着させ、随伴す
る難吸着性ガスを塔の後方部より回収する吸着工程と、
(2)吸着工程終了後の吸着塔前方部から減圧し、次い
で上記難吸着性ガスの一部を向流に導入して硫化水素濃
度を40vol%以上に減容濃縮して回収する工程と
を、交互に切り換えて連続的に硫化水素を回収し、次い
で、第2段吸着塔では(3)上記減容濃縮された硫化水
素含有ガスを相対的に低温、高圧で供給して硫化水素を
吸着させ、随伴する難吸着性ガスを塔の後方部より回収
する吸着工程と、(4)吸着工程終了後の第2吸着塔の
前方部から高度に濃縮された硫化水素含有ガスを並流に
流過して塔内に残留する難吸着性ガスを塔外に放出する
並流パージ工程と、(5)並流パージ工程終了後の第2
段吸着塔の前方部から減圧して高度に濃縮された硫化水
素含有ガスを回収する減圧回収工程と、(6)減圧回収
工程終了後の吸着塔に向流にガスを流して復圧する工程
とを、交互に切り換えて連続的に高濃度の硫化水素ガス
を回収するとともに、第2段吸着塔の上記(3)の吸着
工程から流過するガスを、第1段吸着塔の上記(1)の
吸着工程に戻し、かつ、第2段吸着塔の上記(4)の並
流パージ工程から流過するガスを第2段吸着塔の上記
(3)の吸着工程に戻すことを特徴とする圧力スィング
吸着法による硫化水素の回収方法である。なお、上記方
法において、第2段吸着塔の上記(4)の並流パージ工
程から流過するガスを上記(6)の向流復圧工程の戻す
復圧ガスとして使用することもできる。
According to the present invention, an adsorption column filled with a hydrogen sulfide adsorbent is used in two stages, and 40 vol%
In the following method for recovering hydrogen sulfide from a low-concentration hydrogen sulfide-containing gas, in the first-stage adsorption tower, (1) the above gas is supplied at a relatively low temperature and high pressure to adsorb hydrogen sulfide, and the accompanying difficulty adsorption An adsorption step for collecting gas from the rear part of the tower,
(2) A step of decompressing from the front part of the adsorption tower after the end of the adsorption step, then introducing a part of the above-mentioned difficult-to-adsorb gas into a countercurrent to reduce the concentration of hydrogen sulfide to 40 vol% or more, and concentrate and recover. , And the hydrogen sulfide is continuously recovered by switching alternately, and then, in the second-stage adsorption tower, (3) the hydrogen sulfide-containing gas concentrated and reduced in volume is supplied at a relatively low temperature and high pressure to adsorb hydrogen sulfide. And the adsorbing step for collecting the accompanying hardly adsorbing gas from the rear part of the tower, and (4) flowing the highly concentrated hydrogen sulfide-containing gas in parallel flow from the front part of the second adsorption tower after the end of the adsorbing step. The co-current purging step of discharging the hardly adsorbed gas remaining in the tower to the outside of the tower, and (5) the second step after the co-current purging step is completed.
A reduced pressure recovery step of recovering the highly concentrated hydrogen sulfide-containing gas by depressurizing it from the front part of the stage adsorption tower; and (6) a step of flowing gas countercurrently to the adsorption tower after completion of the reduced pressure recovery step to restore pressure. Are alternately switched over to continuously collect a high-concentration hydrogen sulfide gas, and the gas flowing from the adsorption step (3) of the second-stage adsorption tower is passed through the above-mentioned (1) of the first-stage adsorption tower. And the gas flowing from the co-current purging step (4) of the second stage adsorption tower is returned to the adsorption step (3) of the second stage adsorption tower. This is a method for recovering hydrogen sulfide by the swing adsorption method. In the above method, the gas flowing from the cocurrent flow purging step (4) of the second stage adsorption tower may be used as the recompression gas to be returned in the countercurrent recompression step (6).

【0011】[0011]

【作用】本発明は、上記のPSA−I法とPSA−II法
を2段階に有機的に組み合わせることにより、40vo
l%以下の低濃度硫化水素含有ガスから高い回収率で高
濃度硫化水素含有ガスを回収することを可能にしたもの
である。即ち、第2段目のPSA−II法の吸着工程から
流過するガスを第1段目のPSA−I法の吸着工程に戻
し、かつ、第2段目のPSA−II法の並流パージ工程か
ら流過するガスを第2段目の吸着工程、必要に応じて向
流復圧工程にも戻すことにより、従来のPSA−II法の
欠点である低回収率を改善することを可能にしたもので
ある。
The present invention organically combines the above-mentioned PSA-I method and PSA-II method in two steps to obtain 40 vo
It is possible to recover a high-concentration hydrogen sulfide-containing gas at a high recovery rate from a low-concentration hydrogen sulfide-containing gas of 1% or less. That is, the gas flowing from the adsorption step of the second-stage PSA-II method is returned to the adsorption step of the first-stage PSA-I method, and the co-current purge of the second-stage PSA-II method is performed. It is possible to improve the low recovery rate, which is a drawback of the conventional PSA-II method, by returning the gas flowing from the process to the second adsorption process and, if necessary, the countercurrent recompression process. It was done.

【0012】本発明の吸着分離に使用される吸着剤とし
ては、活性アルミナ、シリカライト、Na−X型ゼオラ
イト(シリカ/アルミナ比が例えば2.7のもの)を挙
げることができる。但し、吸着温度が40℃以上で雰囲
気中に酸素が存在する場合は、クラウス類似反応を起こ
し易く、生成する硫黄が吸着剤表面に析出して吸着性能
を低下させる恐れがあるので、0.1〜2重量%、特
に、0.5〜1重量%の範囲で重合リン酸を含有させた
活性アルミナを使用することが好ましい。上記の範囲で
重合リン酸を含有させて酸度を上げることにより、クラ
ウス類似反応の回避に有効であることを確認した。重合
リン酸の含有量が0.1重量%を下回ると硫黄の析出量
が多くなり、活性アルミナのポアを閉塞して吸着性能を
低下させる恐れがあり、2重量%を上回ると当初の設計
吸着量を低下させることになり好ましくない。
Examples of the adsorbent used in the adsorption separation of the present invention include activated alumina, silicalite, and Na-X type zeolite (having a silica / alumina ratio of 2.7). However, when the adsorption temperature is 40 ° C. or higher and oxygen is present in the atmosphere, a Claus-like reaction is likely to occur, and the generated sulfur may be deposited on the surface of the adsorbent to lower the adsorption performance. It is preferable to use activated alumina containing polymerized phosphoric acid in the range of ˜2% by weight, particularly 0.5 to 1% by weight. It was confirmed that increasing the acidity by adding polymerized phosphoric acid in the above range is effective in avoiding the Claus-like reaction. If the content of polymerized phosphoric acid is less than 0.1% by weight, the amount of sulfur deposited will increase, which may block the pores of activated alumina and reduce the adsorption performance. It is not preferable because the amount is reduced.

【0013】[0013]

【実施例】図1に記載のPSA装置を用いて、硫化水素
3vol%及び窒素97vol%を含有する原料ガスか
ら硫化水素を99vol%まで濃縮した。第1段の2つ
の吸着塔6には、それぞれ500kgの硫化水素吸着剤
5を充填し、吸着工程にある吸着塔6aのバルブ4a及
び7aを開放し、上記原料ガス1をブロア2で1〜5a
tmに圧縮し、流路3、バルブ4aを経て吸着塔6aに
導入して硫化水素を吸着し、バルブ7a、流路8を経て
難吸着性の窒素ガスを回収した。そして、硫化水素吸着
帯が吸着塔6aの後方部に移動した段階で吸着工程を終
了した。
EXAMPLES Using the PSA apparatus shown in FIG. 1, hydrogen sulfide was concentrated to 99 vol% from a raw material gas containing 3 vol% hydrogen sulfide and 97 vol% nitrogen. The two first-stage adsorption towers 6 are each filled with 500 kg of hydrogen sulfide adsorbent 5, the valves 4a and 7a of the adsorption tower 6a in the adsorption step are opened, and the raw material gas 1 is blower 1 to 5a
After being compressed to tm, it was introduced into the adsorption tower 6a through the flow path 3 and the valve 4a to adsorb hydrogen sulfide, and the hardly adsorbed nitrogen gas was recovered through the valve 7a and the flow path 8. Then, the adsorption step was completed at the stage when the hydrogen sulfide adsorption zone moved to the rear part of the adsorption tower 6a.

【0014】吸着工程を終了した吸着塔6bは、バルブ
9b、バルブ12bを開放して真空ポンプ10に連通
し、5〜230Torrまで減圧する間に、吸着工程で
回収した窒素ガスの一部を流路8、減圧弁11、バルブ
12bを介して吸着塔6bに導入し、向流パージして吸
着剤5から硫化水素を脱着させ、バルブ9b、真空ポン
プ10、流路13から回収した。回収ガス中の硫化水素
濃度は40vol%以上になるように設定した。向流パ
ージ工程を終了した吸着塔6bは、バルブ4bのみを開
放して原料ガスを導入し、大気圧に戻した。
In the adsorption tower 6b which has completed the adsorption process, the valves 9b and 12b are opened to communicate with the vacuum pump 10 and a part of the nitrogen gas recovered in the adsorption process is flowed while the pressure is reduced to 5 to 230 Torr. It was introduced into the adsorption tower 6b through the passage 8, the pressure reducing valve 11, and the valve 12b, and was subjected to countercurrent purging to desorb hydrogen sulfide from the adsorbent 5, and was recovered from the valve 9b, the vacuum pump 10, and the passage 13. The concentration of hydrogen sulfide in the recovered gas was set to be 40 vol% or more. In the adsorption tower 6b having completed the countercurrent purging step, only the valve 4b was opened to introduce the raw material gas, and the atmospheric pressure was restored.

【0015】第2段の4つの吸着塔16には、それぞれ
250kgの硫化水素吸着剤5を充填し、第1段の減圧
向流パージ工程で回収されたガスを流路13からブロア
14に導いて圧縮する。吸着工程にある吸着塔16aの
バルブ15a及び17aを開放し、上記回収ガスをバル
ブ15aを経て吸着塔16aに導入して硫化水素を吸着
し、バルブ17a、流路18を経て難吸着性の窒素ガス
を回収した。この回収ガスは、第1段の吸着工程から流
過するガスと比べて硫化水素濃度が高いため、大気中に
そのまま放出することができない。そこで、この回収ガ
スは流路18を経てブロア2の直前に戻して第1段の吸
着工程にある吸着塔6aに導入することにより、硫化水
素を吸着分離して硫化水素濃度を極めて低い状態にして
窒素ガスを流路8から回収し、第1段の向流パージに使
用する分を除いて大気中に放出した。
The four adsorption towers 16 of the second stage are each filled with 250 kg of the hydrogen sulfide adsorbent 5, and the gas recovered in the depressurizing countercurrent purging step of the first stage is introduced from the flow passage 13 to the blower 14. To compress. The valves 15a and 17a of the adsorption tower 16a in the adsorption step are opened, the above-mentioned recovered gas is introduced into the adsorption tower 16a through the valve 15a to adsorb hydrogen sulfide, and the hardly adsorbed nitrogen is admitted through the valve 17a and the flow path 18. The gas was recovered. Since this recovered gas has a higher hydrogen sulfide concentration than the gas flowing from the first-stage adsorption step, it cannot be released into the atmosphere as it is. Therefore, this recovered gas is returned immediately before the blower 2 via the flow path 18 and introduced into the adsorption tower 6a in the first-stage adsorption step, whereby hydrogen sulfide is adsorbed and separated to make the hydrogen sulfide concentration extremely low. Nitrogen gas was recovered from the flow path 8 and discharged into the atmosphere except for the amount used for the countercurrent purging in the first stage.

【0016】硫化水素吸着帯が吸着塔の後方部に移動
し、吸着工程を終了した吸着塔16bは、バルブ20b
及びバルブ21bを開放することにより並流パージ工程
に移行し、製品ホルダ27から高度に濃縮された硫化水
素を流路19、バルブ20bを経て吸着塔16bに並流
に流過することにより、塔内に滞留する窒素ガスをパー
ジしてバルブ21b、流路22を経て塔外に放出され
る。この放出ガスは硫化水素濃度が相当に高いので、ブ
ロア14の直前に戻して第2段の吸着工程にある吸着塔
16aに導入して硫化水素を回収した。
The hydrogen sulfide adsorption zone moves to the rear part of the adsorption tower, and the adsorption tower 16b, which has completed the adsorption process, has a valve 20b.
And the valve 21b is opened to shift to the cocurrent flow purging step, and the highly concentrated hydrogen sulfide from the product holder 27 is cocurrently flowed to the adsorption tower 16b through the flow path 19 and the valve 20b. The nitrogen gas staying inside is purged and discharged to the outside of the tower through the valve 21b and the flow path 22. Since this released gas has a considerably high hydrogen sulfide concentration, it was returned immediately before the blower 14 and introduced into the adsorption tower 16a in the second stage adsorption step to recover hydrogen sulfide.

【0017】並流パージ工程を終了した吸着塔16c
は、バルブ25cを開放することにより減圧回収工程に
移行し、真空ポンプ26で再生圧力の高真空まで吸引し
て吸着剤5に吸着されている硫化水素を脱着して回収
し、製品ホルダ27に貯蔵した。貯蔵された硫化水素の
一部は、流路28から系外に製品として取り出すととも
に、一部は上記の並流パージ工程の吸着塔16cに戻し
てパージ用に使用した。
Adsorption tower 16c which has completed the co-current purging process
Opens the valve 25c and shifts to the reduced pressure recovery step, and the vacuum pump 26 sucks up to a high vacuum of the regeneration pressure to desorb and recover the hydrogen sulfide adsorbed on the adsorbent 5, and the product holder 27 Stored. Part of the stored hydrogen sulfide was taken out of the system as a product from the flow path 28, and part of the stored hydrogen sulfide was returned to the adsorption tower 16c in the above-mentioned parallel flow purging step and used for purging.

【0018】減圧回収工程を終了した吸着塔16dは、
バルブ24dを開放することにより向流復圧工程に移行
し、並流パージ工程の吸着塔16bから放出されたガス
の一部を流路22、流量制御バルブ23を介して吸着塔
16dに導入して復圧し、次の吸着工程に備えた。この
間の第1段の吸着塔のシーケンスは図2のとおりであ
り、第2段の吸着塔のシーケンスは図3のとおりであっ
た。なお、各ステップの所要時間の単位は秒である。
The adsorption tower 16d which has completed the reduced pressure recovery step is
By opening the valve 24d, the countercurrent decompression process is started, and a part of the gas released from the adsorption tower 16b in the cocurrent purge step is introduced into the adsorption tower 16d through the flow path 22 and the flow control valve 23. Then, the pressure was restored to prepare for the next adsorption step. The sequence of the first-stage adsorption tower during this period was as shown in FIG. 2, and the sequence of the second-stage adsorption tower was as shown in FIG. The unit of time required for each step is seconds.

【0019】最適な吸着剤を選定するために、表2及び
表3に記載の硫化水素吸着剤を用い、硫化水素濃度3v
ol%、窒素97%のガスを原料とし、第1段の吸着塔
の吸着圧力を1.05atm、吸着温度を25℃、再生
圧力を0.03atm、パージ率αを120%、サイク
ルタイム5分、吸着工程の出口ガス中の硫化水素濃度を
150ppmとして第1段の吸着操作を行い、回収ガス
の硫化水素濃度(vol%)と1Tonの吸着剤に換算
した原料ガスの処理能力(Nm3 /Ton)を表2に記
載した。また、第2段の吸着塔の吸着圧力を1.05a
tm、吸着温度を25℃、再生圧力を0.02atm、
パージ率αを75%、サイクルタイム4分、として第2
段の吸着操作を行い、回収ガスの硫化水素濃度(vol
%)と1Tonの吸着剤に換算した原料ガスの処理能力
(Nm3 /Ton)を表3に記載した。表2及び表3か
ら明らかなように、0.5〜1wt%の重合リン酸を含
有する活性アルミナ、活性アルミナ、シリカライトが、
優れていることが分かる。但し、活性アルミナは、吸着
温度が40℃以上で雰囲気中に酸素が存在するとクラウ
ス反応を起こすので注意を要する。
In order to select the optimum adsorbent, the hydrogen sulfide adsorbents shown in Tables 2 and 3 were used, and the hydrogen sulfide concentration was 3 v.
Using a gas of ol% and 97% nitrogen as the raw material, the adsorption pressure of the first stage adsorption tower is 1.05 atm, the adsorption temperature is 25 ° C., the regeneration pressure is 0.03 atm, the purge rate α is 120%, and the cycle time is 5 minutes. The concentration of hydrogen sulfide in the outlet gas of the adsorption step was set to 150 ppm, and the first-stage adsorption operation was performed, and the concentration of hydrogen sulfide in the recovered gas (vol%) and the processing capacity of the raw material gas (Nm 3 / Ton) is shown in Table 2. In addition, the adsorption pressure of the second stage adsorption tower is 1.05a.
tm, adsorption temperature 25 ° C., regeneration pressure 0.02 atm,
Second with a purge rate α of 75% and a cycle time of 4 minutes
The adsorption operation of the stage is performed, and the hydrogen sulfide concentration (vol
%) And the treatment capacity (Nm 3 / Ton) of the raw material gas converted into an adsorbent of 1 Ton are shown in Table 3. As is clear from Table 2 and Table 3, activated alumina containing 0.5 to 1 wt% of polymerized phosphoric acid, activated alumina, and silicalite are
It turns out to be excellent. However, it should be noted that activated alumina causes a Claus reaction when the adsorption temperature is 40 ° C. or higher and oxygen is present in the atmosphere.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】第1段の吸着塔について、上記の条件のう
ち吸着温度を変化させて第1段の回収ガス中の硫化水素
濃度(vol%)を測定し、吸着温度と硫化水素濃度の
関係を図4に示した。重合リン酸0.5wt%含有する
活性アルミナは0〜300℃という広い吸着温度範囲で
高い硫化水素濃度が得られたが、シリカライトは0〜1
50℃と比較的低温域においてのみ適用可能であること
が分かる。
Regarding the first-stage adsorption tower, the hydrogen sulfide concentration (vol%) in the first-stage recovered gas was measured by changing the adsorption temperature among the above conditions, and the relationship between the adsorption temperature and the hydrogen sulfide concentration was measured. It is shown in FIG. Activated alumina containing 0.5 wt% of polymerized phosphoric acid gave a high hydrogen sulfide concentration in a wide adsorption temperature range of 0 to 300 ° C, while silicalite contained 0-1.
It can be seen that the method is applicable only in a relatively low temperature range of 50 ° C.

【0023】第1段の吸着塔について、上記の条件のう
ち第1段の入口ガス中の硫化水素濃度を変化させるとき
の、第1段の回収ガス中の硫化水素濃度を測定して対比
したのが図5である。硫化水素濃度が2vol%の入口
ガスを使用するときに、第1段の回収ガス中の硫化水素
濃度は40vol%に達し、40vol%の入口ガスを
使用するときには、第1段の回収ガス中の硫化水素濃度
は90vol%に達した。
Regarding the first-stage adsorption tower, the hydrogen sulfide concentration in the recovered gas of the first stage when the concentration of hydrogen sulfide in the inlet gas of the first stage was changed among the above conditions was measured and compared. Is shown in FIG. When the inlet gas having a hydrogen sulfide concentration of 2 vol% is used, the hydrogen sulfide concentration in the recovered gas of the first stage reaches 40 vol%, and when the inlet gas of 40 vol% is used, the recovered gas of the first stage is The hydrogen sulfide concentration reached 90 vol%.

【0024】第1段の吸着塔について、上記の条件のう
ち第1段の再生圧力を変化させ、第1段の回収ガス中の
硫化水素濃度を測定して対比したのが図6である。真空
到達圧力が高真空になるほど、パージガス量を低減する
ことができ、理論的には1Torr以下でのパージも考
えられるが、真空ポンプの効率、バルブのリークを考慮
すると、10Torr程度が下限である。
With respect to the first-stage adsorption tower, the regeneration pressure of the first-stage among the above conditions was changed, and the concentration of hydrogen sulfide in the recovered gas of the first-stage was measured and compared. As the ultimate vacuum pressure becomes higher, the amount of purge gas can be reduced, and theoretically purging at 1 Torr or less can be considered. However, considering the efficiency of the vacuum pump and the leak of the valve, the lower limit is about 10 Torr. ..

【0025】第1段の吸着塔について、上記の条件のう
ち第1段の吸着圧力を変化させ、第1段の回収ガス中の
硫化水素濃度を測定して対比したのが図7である。吸着
圧力の上昇に伴い、パージガス量を低減させ、回収濃度
を向上させることができるが、硫化水素の分圧が1at
mを越えると吸着量が飽和傾向に向かうため3atmが
上限である。省エネルギーを計るためには、吸着塔圧損
を見合う吸着圧力1.05〜1.1atm程度で操作す
るのが好ましい。
With respect to the first-stage adsorption tower, the adsorption pressure of the first-stage of the above conditions was changed, and the concentration of hydrogen sulfide in the recovered gas of the first-stage was measured and compared. The amount of purge gas can be reduced and the recovery concentration can be improved as the adsorption pressure increases, but the partial pressure of hydrogen sulfide is 1 atm.
If it exceeds m, the adsorption amount tends to be saturated, so 3 atm is the upper limit. In order to save energy, it is preferable to operate at an adsorption pressure of 1.05 to 1.1 atm, which corresponds to the pressure loss of the adsorption tower.

【0026】第2段の吸着塔について、吸着圧力を1.
2atm、再生圧力を0.2atm、第2段入口の硫化
水素濃度を55vol%、吸着温度を25℃とし、上記
と同様に第2段の吸着分離を行うと、パージ率と第2段
の回収ガスの硫化水素濃度との関係は図8のとおりであ
り、重合リン酸を0.5%含有させた活性アルミナを使
用して、パージ率55%、65%、80%で、第2段の
回収ガスの硫化水素濃度は95vol%、99vol
%、99.9vol%と達した。また、シリカライトを
使用すると、パージ率60%、70%、85%で、第2
段の回収ガスの硫化水素濃度は95vol%、99vo
l%、99.9vol%と達した。
With respect to the second stage adsorption tower, the adsorption pressure was 1.
2 atm, regeneration pressure 0.2 atm, hydrogen sulfide concentration at the inlet of the second stage was 55 vol%, adsorption temperature was 25 ° C., and the adsorption rate of the second stage was the same as above, the purge rate and recovery of the second stage The relationship with the hydrogen sulfide concentration of the gas is as shown in FIG. 8, and the activated alumina containing 0.5% of polymerized phosphoric acid was used, and the purge rates were 55%, 65%, and 80%. Hydrogen sulfide concentration of the recovered gas is 95vol%, 99vol
% And 99.9 vol%. In addition, when silicalite is used, the purging rate is 60%, 70%, and 85%, and
The hydrogen sulfide concentration of the recovered gas in the stage is 95 vol%, 99 vo
It reached 1% and 99.9 vol%.

【0027】第2段の吸着塔について、上記の条件のう
ちパージ率を65%に固定し、第2段入口の硫化水素濃
度を変化させ、第2段の回収ガスの硫化水素濃度を測定
したところ、図9のとおりであり、第2段入口の硫化水
素濃度が40vol%を越えると、第2段の回収ガスの
硫化水素濃度も90vol%を越えることが分かる。
Regarding the second-stage adsorption tower, the purge rate was fixed at 65% among the above conditions, the hydrogen sulfide concentration at the inlet of the second stage was changed, and the hydrogen sulfide concentration of the recovered gas of the second stage was measured. However, as shown in FIG. 9, it can be seen that when the hydrogen sulfide concentration at the inlet of the second stage exceeds 40 vol%, the hydrogen sulfide concentration of the recovered gas at the second stage also exceeds 90 vol%.

【0028】第2段の吸着塔について、上記の条件のう
ちパージ率を65%に固定し、第2段入口の硫化水素濃
度を55vol%にし、再生圧力を変化させ、第2段の
回収ガスの硫化水素濃度を測定したところ、図10のと
おりであり、再生圧力が高真空になるほど、第2段の回
収ガスの硫化水素濃度は上昇するが、0.05atm以
下では濃度上昇は鈍化し、また、真空ポンプの容量も大
きくなるので経済的でない。
Regarding the second-stage adsorption tower, the purge rate is fixed at 65% among the above conditions, the hydrogen sulfide concentration at the second-stage inlet is set to 55 vol%, the regeneration pressure is changed, and the recovery gas of the second stage is changed. As shown in FIG. 10, the hydrogen sulfide concentration of the second stage recovered gas increased as the regeneration pressure became higher, but the concentration increased at 0.05 atm or less. In addition, the capacity of the vacuum pump increases, which is not economical.

【0029】第2段の吸着塔について、上記の条件のう
ちパージ率を65%に固定し、第2段入口の硫化水素濃
度を55vol%にし、吸着圧力を変化させ、第2段の
回収ガスの硫化水素濃度を測定したところ、図11のと
おりであり、吸着圧力が高くなるほど、第2段の回収ガ
スの硫化水素濃度は上昇するが、3atmを越えると鈍
化し、また、ブロアの消費電力からも経済的でない。
Regarding the second-stage adsorption tower, the purge rate is fixed to 65% among the above conditions, the hydrogen sulfide concentration at the second-stage inlet is set to 55 vol%, the adsorption pressure is changed, and the recovered gas of the second stage is changed. The hydrogen sulfide concentration was measured as shown in Fig. 11. The hydrogen sulfide concentration of the recovered gas in the second stage increased as the adsorption pressure increased, but it slowed down when it exceeded 3 atm, and the power consumption of the blower also increased. It is not economical.

【0030】(実施例1)以上の傾向を把握した上で下
記の操作条件で硫化水素の回収を行い、第2段吸着塔の
回収ガスの硫化水素濃度と硫化水素の回収率を比較し
た。なお、ケースIでは、第2段吸着塔の吸着工程から
の流出ガスは、第1段吸着塔のブロアの前段に戻して原
料ガスとともに吸着工程に導入し、第2段の並流パージ
工程の流出ガスは、第2段吸着塔の減圧回収工程を終了
した吸着塔に向流で供給して復圧した。ケースIIでは、
第2段吸着塔の吸着工程からの流出ガス、及び、第2段
の並流パージ工程の流出ガスは、直接系外に放出した。
(Example 1) After grasping the above tendency, hydrogen sulfide was recovered under the following operating conditions, and the hydrogen sulfide concentration of the recovered gas of the second stage adsorption tower and the hydrogen sulfide recovery rate were compared. In case I, the outflow gas from the adsorption step of the second-stage adsorption tower is returned to the previous stage of the blower of the first-stage adsorption tower and introduced into the adsorption step together with the raw material gas in the second-stage co-current purging step. The effluent gas was countercurrently supplied to the adsorption tower after the decompression recovery process of the second-stage adsorption tower was completed to restore the pressure. In case II,
The effluent gas from the adsorption step of the second stage adsorption tower and the effluent gas of the second stage co-current purging step were directly discharged to the outside of the system.

【0031】 第1段吸着塔 吸着剤 重合リン酸0.5wt%含有活性アルミナ 吸着圧力 1.05atm 再生圧力 0.03atm 向流パージ率 120% 吸着温度 25℃ 入口ガスの硫化水素濃度 3vol% 出口ガスの硫化水素濃度 44vol% 第2段吸着塔 吸着剤 重合リン酸0.5wt%含有活性アルミナ 吸着圧力 1.2atm 再生圧力 0.2atm 並流パージ率 75% 吸着温度 25℃ 入口ガスの硫化水素濃度 44vol% 出口ガスの硫化水素濃度 99vol% 出口ガスの硫化水素濃度は、ケースI、ケースIIとも
に、99vol%であるが、総合的な硫化水素の回収率
は、ケースIが95%であるのに対し、ケースIIは60
%であり、ケースIが極めて有効であることが分かる。
First-stage adsorption tower Adsorbent Adsorbent: 0.5 wt% polymerized phosphoric acid activated alumina Adsorption pressure 1.05 atm Regeneration pressure 0.03 atm Countercurrent purge rate 120% Adsorption temperature 25 ° C. Hydrogen sulfide concentration in inlet gas 3 vol% Outlet gas Hydrogen sulfide concentration of 44 vol% 2nd stage adsorption tower adsorbent polymerized phosphoric acid 0.5 wt% activated alumina containing adsorption pressure 1.2 atm regeneration pressure 0.2 atm cocurrent purge rate 75% adsorption temperature 25 ° C hydrogen sulfide concentration of inlet gas 44 vol % Hydrogen sulfide concentration of outlet gas 99 vol% Hydrogen sulfide concentration of outlet gas is 99 vol% in both Case I and Case II, but the overall hydrogen sulfide recovery rate is 95% in Case I. , Case II is 60
%, Indicating that Case I is extremely effective.

【0032】(実施例2)実施例1の条件で硫化水素の
回収を行い、ケースIでは、第2段吸着塔の吸着工程か
らの流出ガスを、第1段吸着塔のブロアの前段に戻して
原料ガスとともに吸着工程に導入し、第2段吸着塔の並
流パージ工程からの流出ガスを、第2段吸着塔のブロア
の前段に戻して第2段の吸着工程に導入した。ケースII
では、第2段吸着塔の吸着工程からの流出ガス、及び、
第2段の並流パージ工程の流出ガスは、直接系外に放出
した。出口ガスの硫化水素濃度は、ケースIで98vo
l%であり、ケースIIでは99vol%であるが、総合
的な硫化水素の回収率は、ケースIが95%であるのに
対し、ケースIIは60%であり、ケースIが極めて有効
であることが分かる。
(Example 2) Hydrogen sulfide was recovered under the conditions of Example 1, and in case I, the outflow gas from the adsorption step of the second stage adsorption tower was returned to the stage before the blower of the first stage adsorption tower. Was introduced into the adsorption step together with the raw material gas, and the outflow gas from the co-current purging step of the second-stage adsorption tower was returned to the front stage of the blower of the second-stage adsorption tower and introduced into the second-stage adsorption step. Case II
Then, the outflow gas from the adsorption step of the second stage adsorption tower, and
The effluent gas from the second stage co-current purging step was directly discharged to the outside of the system. The hydrogen sulfide concentration of the outlet gas is 98 vo in case I
The total hydrogen sulfide recovery rate is 95% in Case I, whereas it is 60% in Case II, and Case I is extremely effective. I understand.

【0033】[0033]

【発明の効果】本発明は、吸着塔を2段で使用し、第2
段吸着塔の吸着工程の流出ガスを第1段の吸着工程に戻
し、第2段吸着塔の並流パージ工程の流出ガスを第2段
吸着塔の吸着工程に戻し、必要に応じて向流復圧工程に
戻すことにより、従来の向流パージ法と並流パージ法の
利点を兼ね備えた、高濃度の硫化水素を高い回収率で回
収することを可能とした。
The present invention uses the adsorption tower in two stages,
The effluent gas from the adsorption step of the two-stage adsorption tower is returned to the first-stage adsorption step, and the effluent gas from the co-current purging step of the second-stage adsorption tower is returned to the adsorption step of the second-stage adsorption tower, and countercurrent as necessary. By returning to the re-pressurization step, it became possible to recover high-concentration hydrogen sulfide with a high recovery rate, which has the advantages of the conventional countercurrent purge method and the parallel flow purge method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のPSA法を実施するための装置のフロ
ーシートである。
FIG. 1 is a flow sheet of an apparatus for carrying out the PSA method of the present invention.

【図2】実施例における第1段吸着塔のシーケンスを図
示したものである。
FIG. 2 is a diagram showing a sequence of a first-stage adsorption tower in an example.

【図3】実施例における第2段吸着塔のシーケンスを図
示したものである。
FIG. 3 is a diagram showing the sequence of the second-stage adsorption tower in the examples.

【図4】実施例において、吸着温度と、第1段吸着塔の
回収ガスの硫化水素濃度との関係を示したグラフであ
る。
FIG. 4 is a graph showing the relationship between the adsorption temperature and the hydrogen sulfide concentration of the recovered gas in the first stage adsorption tower in the examples.

【図5】実施例において、第1段吸着塔の入口ガスの硫
化水素濃度と、第1段吸着塔の回収ガスの硫化水素濃度
との関係を示したグラフである。
FIG. 5 is a graph showing the relationship between the hydrogen sulfide concentration of the inlet gas of the first-stage adsorption tower and the hydrogen sulfide concentration of the recovered gas of the first-stage adsorption tower in the examples.

【図6】実施例において、第1段吸着塔の再生圧力と、
第1段吸着塔の回収ガスの硫化水素濃度との関係を示し
たグラフである。
FIG. 6 shows the regeneration pressure of the first-stage adsorption tower in Examples,
It is the graph which showed the relationship with the hydrogen sulfide concentration of the recovery gas of the 1st stage adsorption tower.

【図7】実施例において、第1段吸着塔の吸着圧力と、
第1段吸着塔の回収ガスの硫化水素濃度との関係を示し
たグラフである。
FIG. 7 shows the adsorption pressure of the first-stage adsorption tower in the example,
It is the graph which showed the relationship with the hydrogen sulfide concentration of the recovery gas of the 1st stage adsorption tower.

【図8】実施例において、第2段吸着塔のパージ率と、
第2段吸着塔の回収ガスの硫化水素濃度との関係を示し
たグラフである。
FIG. 8 shows the purge rate of the second-stage adsorption tower in Examples,
It is the graph which showed the relationship with the hydrogen sulfide concentration of the recovery gas of the 2nd stage adsorption tower.

【図9】実施例において、第2段吸着塔の入口ガスの硫
化水素濃度と、第2段吸着塔の回収ガスの硫化水素濃度
との関係を示したグラフである。
FIG. 9 is a graph showing the relationship between the hydrogen sulfide concentration of the inlet gas of the second-stage adsorption tower and the hydrogen sulfide concentration of the recovered gas of the second-stage adsorption tower in the examples.

【図10】実施例において、第2段吸着塔の再生圧力
と、第2段吸着塔の回収ガスの硫化水素濃度との関係を
示したグラフである。
FIG. 10 is a graph showing the relationship between the regeneration pressure of the second-stage adsorption tower and the hydrogen sulfide concentration of the recovered gas of the second-stage adsorption tower in the examples.

【図11】実施例において、第2段吸着塔の吸着圧力
と、第2段吸着塔の回収ガスの硫化水素濃度との関係を
示したグラフである。
FIG. 11 is a graph showing the relationship between the adsorption pressure of the second-stage adsorption tower and the hydrogen sulfide concentration of the recovered gas of the second-stage adsorption tower in the examples.

【図12】従来の向流パージ法を実施するための装置の
フローシートである。
FIG. 12 is a flow sheet of an apparatus for performing a conventional countercurrent purging method.

【図13】従来の並流パージ法を実施するための装置の
フローシートである。
FIG. 13 is a flow sheet of an apparatus for performing a conventional co-current purging method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 公一 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Araki 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Co., Ltd. Nagasaki Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫化水素吸着剤を充填した吸着塔を2段
に使用して、40vol%以下の低濃度硫化水素含有ガ
スから硫化水素を回収する方法において、第1段吸着塔
では(1)上記ガスを相対的に低温、高圧で供給して硫
化水素を吸着させ、随伴する難吸着性ガスを塔の後方部
より回収する吸着工程と、(2)吸着工程終了後の吸着
塔前方部から減圧し、次いで上記難吸着性ガスの一部を
向流に導入して硫化水素濃度を40vol%以上に減容
濃縮して回収する工程とを、交互に切り換えて連続的に
硫化水素を回収し、次いで、第2段吸着塔では(3)上
記減容濃縮された硫化水素含有ガスを相対的に低温、高
圧で供給して硫化水素を吸着させ、随伴する難吸着性ガ
スを塔の後方部より回収する吸着工程と、(4)吸着工
程終了後の第2吸着塔の前方部から高度に濃縮された硫
化水素含有ガスを並流に流過して塔内に残留する難吸着
性ガスを塔外に放出する並流パージ工程と、(5)並流
パージ工程終了後の第2段吸着塔の前方部から減圧して
高度に濃縮された硫化水素含有ガスを回収する減圧回収
工程と、(6)減圧回収工程終了後の吸着塔に向流にガ
スを流して復圧する工程とを、交互に切り換えて連続的
に高濃度の硫化水素ガスを回収するとともに、第2段吸
着塔の上記(3)の吸着工程から流過するガスを、第1
段吸着塔の上記(1)の吸着工程に戻し、かつ、第2段
吸着塔の上記(4)の並流パージ工程から流過するガス
を上記(3)の吸着工程に戻すことを特徴とする圧力ス
ィング吸着法による硫化水素の回収方法。
1. A method for recovering hydrogen sulfide from a low-concentration hydrogen sulfide-containing gas of 40 vol% or less by using an adsorption tower filled with a hydrogen sulfide adsorbent in two stages, wherein the first-stage adsorption tower comprises (1) An adsorption step in which the above gas is supplied at a relatively low temperature and a high pressure to adsorb hydrogen sulfide and the accompanying hardly adsorbed gas is recovered from the rear part of the tower, and (2) from the front part of the adsorption tower after the adsorption step is completed. The pressure is reduced, and then a part of the hardly adsorbed gas is introduced in a counterflow to reduce the concentration of hydrogen sulfide to 40 vol% or more for concentration and recovery, and are alternately switched to continuously recover hydrogen sulfide. Then, in the second-stage adsorption tower, (3) the reduced volume concentrated hydrogen sulfide-containing gas is supplied at a relatively low temperature and high pressure to adsorb hydrogen sulfide, and the accompanying hardly adsorbed gas is adsorbed to the rear part of the tower. Adsorption process to collect more, and (4) second adsorption after the adsorption process A co-current purging step of flowing a highly concentrated hydrogen sulfide-containing gas in co-current from the front part of the tower to discharge the hardly adsorbed gas remaining in the tower to the outside of the tower, and (5) co-current purging step. After the end, the decompression recovery step of decompressing from the front part of the second-stage adsorption tower to recover the highly concentrated hydrogen sulfide-containing gas, and (6) flowing the gas countercurrently into the adsorption tower after the completion of the decompression recovery step And the step of recovering pressure is alternately switched to continuously collect high-concentration hydrogen sulfide gas, and the gas flowing through from the adsorption step (3) of the second stage adsorption tower
It is characterized by returning to the adsorption step (1) of the two-stage adsorption tower and returning the gas flowing from the parallel flow purging step (4) of the second adsorption tower to the adsorption step (3). Method for recovering hydrogen sulfide by pressure swing adsorption method.
JP4017678A 1992-02-03 1992-02-03 Recovery method of low concentration hydrogen sulfide Expired - Fee Related JP2999050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017678A JP2999050B2 (en) 1992-02-03 1992-02-03 Recovery method of low concentration hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017678A JP2999050B2 (en) 1992-02-03 1992-02-03 Recovery method of low concentration hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPH05212236A true JPH05212236A (en) 1993-08-24
JP2999050B2 JP2999050B2 (en) 2000-01-17

Family

ID=11950514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017678A Expired - Fee Related JP2999050B2 (en) 1992-02-03 1992-02-03 Recovery method of low concentration hydrogen sulfide

Country Status (1)

Country Link
JP (1) JP2999050B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947624A (en) * 1995-08-04 1997-02-18 Mitsubishi Heavy Ind Ltd Method for adsorption and separation of gas
WO2014021062A1 (en) * 2012-07-31 2014-02-06 住友金属鉱山株式会社 Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
JP2014141408A (en) * 2014-02-27 2014-08-07 Sumitomo Metal Mining Co Ltd Hydrogen sulfide gas production plant system and method for recovering and using a hydrogen sulfide gas
CN108392948A (en) * 2018-03-21 2018-08-14 山东京博石油化工有限公司 A kind of purifying technique and device of hydrogen sulfide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947624A (en) * 1995-08-04 1997-02-18 Mitsubishi Heavy Ind Ltd Method for adsorption and separation of gas
WO2014021062A1 (en) * 2012-07-31 2014-02-06 住友金属鉱山株式会社 Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
JP2014028724A (en) * 2012-07-31 2014-02-13 Sumitomo Metal Mining Co Ltd Plant system for producing hydrogen sulfide gas, and method for recovering and using hydrogen sulfide gas
AU2013297751B2 (en) * 2012-07-31 2015-10-01 Sumitomo Metal Mining Co., Ltd. Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
US9321646B2 (en) 2012-07-31 2016-04-26 Sumitomo Metal Mining Co., Ltd. Hydrogen sulfide gas production plant system and method for recovering and using hydrogen sulfide gas
JP2014141408A (en) * 2014-02-27 2014-08-07 Sumitomo Metal Mining Co Ltd Hydrogen sulfide gas production plant system and method for recovering and using a hydrogen sulfide gas
CN108392948A (en) * 2018-03-21 2018-08-14 山东京博石油化工有限公司 A kind of purifying technique and device of hydrogen sulfide

Also Published As

Publication number Publication date
JP2999050B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
US6245127B1 (en) Pressure swing adsorption process and apparatus
US6524370B2 (en) Oxygen production
US4539020A (en) Methods for obtaining high-purity carbon monoxide
JPH0250041B2 (en)
US5415682A (en) Process for the removal of volatile organic compounds from a fluid stream
JP3073917B2 (en) Simultaneous pressure change adsorption method
JPH0244569B2 (en)
JPS6137968B2 (en)
WO2009073928A1 (en) A plant and process for recovering carbon dioxide
CA2462308C (en) Psa process for co-producing nitrogen and oxygen
CA1238868A (en) Method for obtaining high-purity carbon monoxide
US5512082A (en) Process for the removal of volatile organic compounds from a fluid stream
EP0219103A2 (en) Oxidation of carbonaceous material
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JP2994843B2 (en) Recovery method of low concentration carbon dioxide
JP2999050B2 (en) Recovery method of low concentration hydrogen sulfide
US5503658A (en) Process for the removal of volatile organic compounds from a fluid stream
JP2948402B2 (en) Recovery method of low concentration sulfur dioxide
CN1224046A (en) Pressure swing adsorption process for concentration and purification of carbon monooxide in blast furnace gas
JPH04227018A (en) Manufacture of inert gas of high purity
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
JP3026103B2 (en) Argon recovery method
JPH0112529B2 (en)
KR20200018042A (en) Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen or Air

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991005

LAPS Cancellation because of no payment of annual fees