JP7087601B2 - Sulfide removal method and nickel oxide ore hydrometallurgy method - Google Patents

Sulfide removal method and nickel oxide ore hydrometallurgy method Download PDF

Info

Publication number
JP7087601B2
JP7087601B2 JP2018073533A JP2018073533A JP7087601B2 JP 7087601 B2 JP7087601 B2 JP 7087601B2 JP 2018073533 A JP2018073533 A JP 2018073533A JP 2018073533 A JP2018073533 A JP 2018073533A JP 7087601 B2 JP7087601 B2 JP 7087601B2
Authority
JP
Japan
Prior art keywords
liquid
sulfide
leaching
leachate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018073533A
Other languages
Japanese (ja)
Other versions
JP2019181349A (en
Inventor
真 杉之原
道 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018073533A priority Critical patent/JP7087601B2/en
Publication of JP2019181349A publication Critical patent/JP2019181349A/en
Application granted granted Critical
Publication of JP7087601B2 publication Critical patent/JP7087601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ニッケル酸化鉱石の湿式製錬プロセスの硫化処理を経て得られた硫化後液中の硫化水素等の硫化剤を除去する硫化剤の除去方法及びそれを用いたニッケル酸化鉱石の湿式製錬方法に関する。 The present invention is a method for removing a sulfurizing agent for removing a sulfurizing agent such as hydrogen sulfide in a post-sulfurized liquid obtained through a sulfurization treatment in a wet smelting process for nickel oxide ore, and a wet production of nickel oxide ore using the same. Regarding the smelting method.

ニッケル酸化鉱石の湿式製錬方法(ニッケル酸化鉱石の湿式製錬プロセス)として、硫酸を用いた高圧酸浸出法がある。この方法は、従来の一般的なニッケル酸化鉱石の製錬方法である乾式製錬方法と異なり、還元及び乾燥工程を含まず、一貫した湿式工程からなるので、エネルギー的及びコスト的に有利であることとともに、ニッケル品位を50質量%程度まで上昇したニッケルを含む硫化物(以下「ニッケル硫化物」ともいう)を得ることができるという利点を有している。 As a hydrometallurgy method for nickel oxide ore (wet hydrometallurgy process for nickel oxide ore), there is a high-pressure acid leaching method using sulfuric acid. This method is advantageous in terms of energy and cost because it does not include a reduction and drying step and consists of a consistent wet step, unlike the dry smelting method which is a conventional general method for smelting nickel oxide ore. At the same time, it has an advantage that a sulfide containing nickel (hereinafter, also referred to as "nickel sulfide") having a nickel grade increased to about 50% by mass can be obtained.

高圧酸浸出法に基づくニッケル酸化鉱石の湿式製錬方法は、例えば、下記工程を含む。
(a)ニッケル酸化鉱石のスラリーに硫酸を添加し、高温高圧下で浸出し、得られた浸出スラリーから浸出残渣スラリーを固液分離して、ニッケルとともにコバルト等の金属元素を含む浸出液を得る、浸出工程及び固液分離工程
(b)浸出液に中和剤を添加して、不純物元素を含む中和澱物スラリーとニッケルを含む中和終液とを得る中和工程
(c)中和終液に対し、硫化水素ガスにより硫化処理を施してニッケル硫化物と硫化後液とを得る硫化工程
(d)ニッケル硫化物の分離後の硫化後液に中和処理を施して無害化する排水処理工程
The hydrometallurgical method for nickel oxide ore based on the high-pressure acid leaching method includes, for example, the following steps.
(A) Sulfide is added to a slurry of nickel oxide ore and leached under high temperature and high pressure, and the leaching residue slurry is solid-liquid separated from the obtained leaching slurry to obtain a leaching solution containing a metal element such as cobalt together with nickel. Leaching step and solid-liquid separation step (b) Neutralization step of adding a neutralizing agent to the leachate to obtain a neutralizing starch slurry containing an impurity element and a neutralizing final solution containing nickel (c) Neutralizing final solution On the other hand, a sulfurization step of obtaining a nickel sulfide and a post-sulfide liquid by sulfurizing with hydrogen sulfide gas (d) a wastewater treatment step of neutralizing the post-sulfide liquid after separation of nickel sulfide to make it harmless.

ニッケル硫化物分離後の硫化後液には硫化水素が溶存する。そこで、該硫化水素を除去するために、ニッケル硫化物分離後の硫化後液に、3価の鉄、例えば特許文献1に記載されるように、浸出スラリーを固液分離して得られた浸出液に中和処理及び硫化処理を施して得られた硫化後液を排水処理工程(中和処理工程)で無害化して得られる水酸化鉄(III)、又は、ヘマタイト(酸化鉄(III))と、硫酸とを添加する。これにより、水酸化鉄(III)又は酸化鉄(III)と、硫化後液に溶存する硫化水素とを反応させることで、硫化水素を除去することができる。水酸化鉄(III)による硫化水素の除去反応を下記式(1)に示す。また、酸化鉄(III)による硫化水素の除去反応を下記式(2)及び(3)に示す。
Fe(OH)+1/2HS+HSO
→FeSO+1/2S+3HO (1)
Fe+3HSO→Fe(SO+3HO (2)
Fe(SO+HS→2FeSO+HSO+S (3)
Hydrogen sulfide is dissolved in the post-sulfide liquid after separation of nickel sulfide. Therefore, in order to remove the hydrogen sulfide, a leachate obtained by solid-liquid separation of trivalent iron, for example, a leachate slurry as described in Patent Document 1, in the post-sulfide liquid after separation of nickel sulfide. With iron hydroxide (III) or hematite (iron oxide (III)) obtained by detoxifying the post-sulfidation liquid obtained by neutralizing and sulfurizing the wastewater in the wastewater treatment step (neutralization step). , With sulfuric acid. Thereby, hydrogen sulfide can be removed by reacting iron (III) hydroxide or iron (III) oxide with hydrogen sulfide dissolved in the post-sulfurized liquid. The reaction for removing hydrogen sulfide with iron (III) hydroxide is shown in the following formula (1). Further, the reaction for removing hydrogen sulfide by iron (III) oxide is shown in the following formulas (2) and (3).
Fe (OH) 3 + 1 / 2H 2 S + H 2 SO 4
→ FeSO 4 + 1 / 2S 0 + 3H 2 O (1)
Fe 2 O 3 + 3H 2 SO 4 → Fe 2 (SO 4 ) 3 + 3H 2 O (2)
Fe 2 (SO 4 ) 3 + H 2 S → 2 FeSO 4 + H 2 SO 4 + S 0 (3)

なお、このように硫化後液の溶存硫化水素を除去する際には、例えば特許文献2のように、曝気槽での撹拌と同時に、エアレーションを行うことで、溶存硫化水素ガスの除去を促進することが一般的である。 When removing the dissolved hydrogen sulfide in the post-sulfidation liquid in this way, for example, as in Patent Document 2, the removal of the dissolved hydrogen sulfide gas is promoted by performing aeration at the same time as stirring in the aeration tank. Is common.

硫化工程では、ニッケルの回収ロスを減らすために、硫化水素ガス添加量を増やしてニッケル硫化物の生成量を増やし硫化後液のニッケル濃度を下げることが望ましい。しかし、硫化水素ガスの添加量を増やすことによって硫化工程後の硫化後液に溶存する硫化水素ガス量が増加すると、硫化水素を除去しきれず、系外に排出する排ガス中の硫化水素ガス濃度が上昇してしまうという問題が生じる。したがって、硫化工程のニッケルの回収ロスを減らすこと及び排ガス中の硫化水素ガス濃度を低くすることを両立するために、硫化水素を効果的に低減できる方法が求められている。 In the sulfurization step, in order to reduce the recovery loss of nickel, it is desirable to increase the amount of hydrogen sulfide gas added to increase the amount of nickel sulfide produced and reduce the nickel concentration of the post-sulfide solution. However, if the amount of hydrogen sulfide gas dissolved in the post-sulfurized liquid after the sulfide process increases by increasing the amount of hydrogen sulfide gas added, hydrogen sulfide cannot be completely removed and the concentration of hydrogen sulfide gas in the exhaust gas discharged to the outside of the system increases. The problem of rising occurs. Therefore, in order to reduce the recovery loss of nickel in the sulfurization step and to reduce the concentration of hydrogen sulfide gas in the exhaust gas, there is a demand for a method capable of effectively reducing hydrogen sulfide.

特開2004-089915公報Japanese Unexamined Patent Publication No. 2004-089915 特開2015-127053公報JP 2015-127053

本発明は、このような実情に鑑みてなされたものであり、ニッケル酸化鉱石の湿式製錬プロセスにて生じる硫化後液から硫化水素等の硫化剤を除去する硫化剤の除去方法であって、硫化剤を効果的に低減できる硫化剤の除去方法及びそれを用いたニッケル酸化鉱石の湿式製錬方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a method for removing a sulfurizing agent, which is a method for removing a sulfurizing agent such as hydrogen sulfide from a post-sulfurized liquid generated in a wet smelting process of nickel oxide ore. It is an object of the present invention to provide a method for removing a sulfurizing agent capable of effectively reducing the sulfurizing agent and a method for wet smelting of nickel oxide ore using the same.

本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、硫化後液の溶存硫化水素等の硫化剤を除去する際に、ニッケル酸化鉱石の湿式製錬プロセスにおいて、酸浸出で得られる浸出スラリーのFe3+濃度を2.9g/L以上にし、該浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得て、該水酸化鉄(III)を含む浸出スラリーを固液分離処理して得られる水酸化鉄(III)を含む浸出残渣を用いて硫化水素等の硫化剤を固定化することで、硫化後液に含まれる硫化剤を効果的に低減することができることを知見し、さらに検討を重ね、本発明を完成させた。すなわち、本発明は、以下のものを提供する。 The present inventors have made extensive studies to solve the above-mentioned problems. As a result, when removing the sulfurizing agent such as dissolved hydrogen sulfide in the post-sulfurization liquid, the Fe 3+ concentration of the leachate slurry obtained by acid leaching is set to 2.9 g / L or more in the wet smelting process of nickel oxide ore. The leachate slurry is neutralized to generate iron (III) hydroxide to obtain a leachate slurry containing iron (III) hydroxide, and the leachate slurry containing the iron (III) hydroxide is subjected to solid-liquid separation treatment. It was found that the sulfurizing agent contained in the post-sulfidation liquid can be effectively reduced by immobilizing a sulfurizing agent such as hydrogen sulfide using the leachate residue containing iron (III) hydroxide thus obtained. After further studies, the present invention was completed. That is, the present invention provides the following.

(1)本発明の第1の発明は、ニッケル酸化鉱石を硫酸により高温高圧下で酸浸出して得られる浸出スラリーを固液分離してニッケルを含む浸出液と浸出残渣とを得て、該浸出液に対し硫化剤により硫化処理を施してニッケルの硫化物と硫化後液とを生成させる湿式製錬プロセスにおいて、該ニッケルの硫化物を分離して得られた硫化後液中に溶存する硫化剤を除去する硫化剤の除去方法であって、前記酸浸出では、得られる浸出スラリー中のFe3+濃度を2.9g/L以上にし、前記固液分離では、前記浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得た後、該水酸化鉄(III)を含む浸出スラリーを固液分離処理してニッケルを含む浸出液と水酸化鉄(III)を含む浸出残渣とを得、前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣を添加することにより、該硫化後液に含まれる硫化剤を固定化し除去する硫化剤の除去方法である。 (1) In the first invention of the present invention, a leachate slurry obtained by leaching nickel oxide ore with sulfuric acid under high temperature and high pressure is solid-liquid separated to obtain a leachate containing nickel and a leachate residue, and the leachate is obtained. On the other hand, in a wet smelting process in which a sulfide treatment is performed with a sulfide agent to produce nickel sulfide and a post-sulfurized liquid, the sulfide agent dissolved in the post-sulfurized liquid obtained by separating the nickel sulfide is used. In the method for removing the sulfide to be removed, in the acid leaching, the Fe 3+ concentration in the obtained leached slurry is 2.9 g / L or more, and in the solid-liquid separation, the leached slurry is neutralized. After iron (III) hydroxide is generated to obtain a leachate slurry containing iron (III) hydroxide, the leachate slurry containing iron (III) hydroxide is subjected to solid-liquid separation treatment to hydroxylate the leachate containing nickel. A leaching residue containing iron (III) is obtained, and the sulfide agent contained in the post-sulfurized liquid is immobilized and removed by adding the leaching residue containing the iron (III) hydroxide to the post-sulfurized liquid. It is a method of removing the sulfide agent.

(2)本発明の第2の発明は、前記浸出スラリーに対する固液分離により得られた前記水酸化鉄(III)を含む浸出残渣を、前記湿式製錬プロセスにおける、前記硫化後液に対して中和処理を施すことで無害化する排水処理に供し、前記硫化後液に対して、前記排水処理後の前記水酸化鉄(III)を含む浸出残渣を添加する第1の発明に記載の硫化剤の除去方法である。 (2) In the second invention of the present invention, the leaching residue containing the iron hydroxide (III) obtained by solid-liquid separation with respect to the leaching slurry is subjected to the sulphurized liquid in the wet smelting process. The sulphurization according to the first invention, which is subjected to wastewater treatment to be detoxified by subjecting to neutralization treatment, and a leachate residue containing the iron (III) hydroxide after the wastewater treatment is added to the post-sulfurized liquid. It is a method of removing the agent.

(3)本発明の第3の発明は、前記浸出スラリーに対する中和処理では、前記浸出スラリーのpHを2.5~3.2にする第1又は第2の発明に記載の硫化剤の除去方法である。 (3) In the third aspect of the present invention, in the neutralization treatment for the leached slurry, the removal of the sulfurizing agent according to the first or second invention, which makes the pH of the leached slurry 2.5 to 3.2. The method.

(4)本発明の第4の発明は、前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣とともに硫酸を添加する第1~第3の発明のいずれかに記載の硫化剤の除去方法である。 (4) The fourth invention of the present invention is the sulfurization according to any one of the first to third inventions, wherein sulfuric acid is added to the post-sulfidation liquid together with the leachate residue containing the iron (III) hydroxide. It is a method of removing the agent.

(5)本発明の第5の発明は、前記硫化後液は、ニッケルイオン濃度が0.02~0.10g/Lであり、鉄、マンガン、マグネシウム、アルミニウム及びクロムから選択される少なくとも一種を含む硫酸酸性溶液である第1~第4の発明のいずれかに記載の硫化剤の除去方法である。 (5) In the fifth aspect of the present invention, the post-sulfuric acid solution has a nickel ion concentration of 0.02 to 0.10 g / L and contains at least one selected from iron, manganese, magnesium, aluminum and chromium. The method for removing a sulfide agent according to any one of the first to fourth inventions, which is an acidic solution containing sulfuric acid.

(6)本発明の第6の発明は、前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣を添加するとともに、エアレーションを行う第1~第5の発明のいずれかに記載の硫化剤の除去方法である。 (6) The sixth invention of the present invention is one of the first to fifth inventions in which the leachate residue containing the iron (III) hydroxide is added to the post-sulfurized liquid and aeration is performed. The method for removing a sulfide agent according to the above.

(7)本発明の第7の発明は、ニッケル酸化鉱石を硫酸により高温高圧下で酸浸出して浸出スラリーを得る浸出工程と、浸出工程で得られた前記浸出スラリーを固液分離してニッケルを含む浸出液と浸出残渣とを得る固液分離工程と、固液分離工程で得られた前記浸出液に中和剤を添加してニッケルを含む中和終液と不純物元素を含む中和澱物とを得る中和工程と、中和工程で得られた前記中和終液に対し硫化剤により硫化処理を施してニッケルの硫化物と硫化後液とを得る硫化工程と、前記ニッケルの硫化物を分離して得られた前記硫化後液に含まれる硫化剤を固定化し除去する硫化剤除去工程と、を有するニッケル酸化鉱石の湿式製錬方法であって、前記固液分離工程は、前記浸出工程で得られた前記浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得る予備中和工程、及び、該予備中和工程で得られた前記水酸化鉄(III)を含む浸出スラリーを固液分離処理して浸出液と水酸化鉄(III)を含む浸出残渣とを得る分離工程を有し、前記浸出工程では、前記浸出スラリー中のFe3+濃度を2.9g/L以上にし、前記硫化剤除去工程では、前記ニッケルの硫化物を分離して得られた前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣を添加することにより、前記硫化後液に含まれる硫化剤を固定化し除去するニッケル酸化鉱石の湿式製錬方法にある。 (7) The seventh invention of the present invention is a leaching step of leaching nickel oxide ore with sulfuric acid under high temperature and high pressure to obtain a leaching slurry, and a solid-liquid separation of the leaching slurry obtained in the leaching step to nickel. A solid-liquid separation step for obtaining a leachate containing a leachate and a leachate residue, and a neutralized final liquid containing nickel and a neutralized starch containing an impurity element by adding a neutralizing agent to the leachate obtained in the solid-liquid separation step. A sulfide step of obtaining a nickel sulfide and a post-sulfurized liquid by subjecting the neutralized final solution obtained in the neutralization step to a sulfide treatment with a sulfide agent, and the nickel sulfide. It is a wet smelting method for nickel oxide ore having a sulfide agent removing step of fixing and removing the sulfide agent contained in the post-sulfurized liquid obtained by separation, and the solid-liquid separation step is the leaching step. The leached slurry obtained in the above step is subjected to a neutralization treatment to generate iron hydroxide (III) to obtain a leached slurry containing iron (III) hydroxide, and the pre-neutralization step is obtained. The leaching slurry containing the iron (III) hydroxide is subjected to solid-liquid separation treatment to obtain a leaching solution and a leaching residue containing iron (III) hydroxide. In the leaching step, the leaching slurry is contained. Fe 3+ concentration of 2.9 g / L or more, and in the sulfide removing step, the post-sulfurized liquid obtained by separating the sulfide of nickel is leached containing the iron (III) hydroxide. It is a wet smelting method of nickel oxide ore that immobilizes and removes a sulfide agent contained in the post-sulfurization liquid by adding a residue.

本発明の硫化剤の除去方法によれば、ニッケル酸化鉱石の湿式製錬プロセスにて生じる硫化後液から硫化水素等の硫化剤を効果的に低減させることができ、硫化後液から硫化水素等の硫化剤を十分に除去することができる。 According to the method for removing a sulfurizing agent of the present invention, a sulfurizing agent such as hydrogen sulfide can be effectively reduced from the post-sulfurized liquid generated in the wet smelting process of nickel oxide ore, and hydrogen sulfide or the like can be effectively reduced from the post-sulfurized liquid. The sulfurizing agent can be sufficiently removed.

このように本発明によれば、硫化後液中の硫化剤を効果的に低減することができるため、ニッケルを回収するための硫化剤を多量に添加することができる。したがって、本発明は、ニッケル酸化鉱の湿式製錬プロセスにおいて、ニッケルロスの低減及び硫化剤の除去不良発生の抑制による環境面や安全面の改善ができることから、その工業的価値はきわめて高い。 As described above, according to the present invention, since the sulfurizing agent in the post-sulfidation liquid can be effectively reduced, a large amount of the sulfurizing agent for recovering nickel can be added. Therefore, the present invention has extremely high industrial value because it can improve the environment and safety by reducing nickel loss and suppressing the occurrence of sulfide removal defects in the hydrometallurgical process of nickel oxide ore.

本実施の形態におけるニッケル酸化鉱石の湿式製錬方法の流れの一例を示す工程図である。It is a process drawing which shows an example of the flow of the wet smelting method of nickel oxide ore in this embodiment. 浸出スラリー中のFe3+濃度と遊離硫酸濃度との関係を示す図である。It is a figure which shows the relationship between Fe 3+ concentration and free sulfuric acid concentration in a leachate slurry. 浸出スラリー中のFe3+濃度と排ガス中の硫化水素濃度との関係を示す図である。It is a figure which shows the relationship between the Fe 3+ concentration in a leaching slurry and the hydrogen sulfide concentration in an exhaust gas.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention. Further, in the present specification, the notation "X to Y" (X and Y are arbitrary numerical values) means "X or more and Y or less".

≪1.概要≫
本実施の形態に係る硫化剤の除去方法は、ニッケル酸化鉱石を硫酸により高温高圧下で酸浸出して得られる浸出スラリーを固液分離してニッケルを含む浸出液と浸出残渣とを得て、浸出液に対し硫化剤により硫化処理を施してニッケルの硫化物と硫化後液とを生成させることで、ニッケル硫化物を得るニッケル酸化鉱石の湿式製錬プロセス(以下、単に「湿式製錬プロセス」ともいう)において生じる硫化後液から溶存する硫化水素等の硫化剤を除去する方法である。なお、本明細書において、除去対象である「硫化剤」には、硫化工程で用いた硫化水素、硫化ナトリウム、水素化硫化ナトリウム等の硫化剤自体の他、硫化剤から生じた硫化水素も含む。また、ニッケル硫化物とは、ニッケルを含む硫化物をいい、コバルト等の他の金属とニッケルとの混合硫化物をも含む。
≪1. Overview ≫
In the method for removing the sulfide agent according to the present embodiment, the leachate slurry obtained by acid leaching nickel oxide ore with sulfuric acid under high temperature and high pressure is solid-liquid separated to obtain a leachate containing nickel and a leachate residue, and the leachate is obtained. On the other hand, a wet smelting process of nickel oxide ore to obtain nickel sulfide by subjecting it to sulfurization treatment with a sulfurizing agent to generate a sulfur sulfide of nickel and a post-sulfurization liquid (hereinafter, also simply referred to as "wet smelting process"). ) Is a method for removing a sulfurizing agent such as hydrogen sulfide dissolved from the after-sulfurized liquid. In the present specification, the "sulfurizing agent" to be removed includes hydrogen sulfide generated from the sulfurizing agent in addition to the sulfurizing agent itself such as hydrogen sulfide, sodium sulfide, and sodium hydride sulfide used in the sulfurizing step. .. Further, the nickel sulfide refers to a sulfide containing nickel, and also includes a mixed sulfide of nickel and another metal such as cobalt.

本実施の形態に係る硫化剤の除去方法は、具体的には、湿式製錬プロセスにおいて、酸浸出で得られる浸出スラリーのFe3+濃度を2.9g/L以上にし、該浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得て、該水酸化鉄(III)を含む浸出スラリーを固液分離処理して得られる水酸化鉄(III)を含む浸出残渣を3価の鉄イオン源として用いて、硫化後液に添加する。これにより、詳しくは後述するが、浸出残渣中に含まれる水酸化鉄(III)によって、硫化後液中に溶存する硫化水素等の硫化剤を固定して除去(回収)する。なお、ここでいう「固定」とは、化合物を安定な形態に変換することであり、本実施の形態に係る硫化剤の除去方法では、硫化後液中に溶存する硫化水素等の硫化剤が、水酸化鉄(III)との反応によって単体の硫黄(S)として安定した形態に変換され、この単体の硫黄が沈殿生成して除去される。 Specifically, the method for removing the sulfide agent according to the present embodiment is to set the Fe 3+ concentration of the leached slurry obtained by acid leaching to 2.9 g / L or more in the wet smelting process and neutralize the leached slurry. Treatment is performed to generate iron (III) hydroxide to obtain a leachate slurry containing iron (III) hydroxide, and the leachate slurry containing the iron (III) hydroxide is subjected to solid-liquid separation treatment to obtain hydroxylation. The leachate residue containing iron (III) is used as a trivalent iron ion source and added to the post-sulfurized solution. As a result, as will be described in detail later, the sulfurizing agent such as hydrogen sulfide dissolved in the post-sulfurized liquid is fixed and removed (recovered) by the iron (III) hydroxide contained in the leachate residue. In addition, "fixing" here means converting a compound into a stable form, and in the method for removing a sulfurizing agent according to the present embodiment, a sulfurizing agent such as hydrogen sulfide dissolved in a post-sulfurized liquid is used. , It is converted into a stable form as elemental sulfur (S 0 ) by reaction with iron (III) hydroxide, and this elemental sulfur is precipitated and removed.

≪2.ニッケル酸化鉱石の湿式製錬プロセス≫
先ず、硫化剤の除去方法のより具体的な説明に先立ち、本実施の形態におけるニッケル酸化鉱石の湿式製錬方法の流れを示す工程図である図1を用いて、ニッケル酸化鉱石の湿式製錬プロセス全体について説明する。
≪2. Wet smelting process of nickel oxide ore ≫
First, prior to a more specific explanation of the method for removing the sulfide ore, the wet smelting of nickel oxide ore is used with reference to FIG. 1, which is a process diagram showing the flow of the wet smelting method of nickel oxide ore in the present embodiment. The entire process will be described.

図1に示すようにこの湿式製錬プロセスは、原料のニッケル酸化鉱石に硫酸を用いて高温高圧下で酸浸出して浸出スラリーを得る浸出工程S11と、浸出スラリーを必要に応じて多段洗浄しながらニッケルを含む浸出液と浸出残渣とを得る固液分離工程S12と、浸出液に中和剤を添加して不純物を含む中和澱物スラリーとニッケルを含む中和終液とを得る中和工程S13と、中和終液に対し硫化剤により硫化処理を施してニッケル硫化物と硫化後液とを得る硫化工程S14とを有する。本実施の形態においては、さらに、硫化工程S14で分離された硫化後液に対し中和処理を施して無害化する排水処理工程S20を有する。 As shown in FIG. 1, this wet smelting process includes a leaching step S11 in which nickel oxide ore as a raw material is acid-leached under high temperature and high pressure to obtain a leaching slurry, and the leaching slurry is washed in multiple stages as necessary. A solid-liquid separation step S12 for obtaining a leachate containing nickel and a leachate residue, and a neutralization step S13 for obtaining a neutralized starch slurry containing impurities and a neutralizing final solution containing nickel by adding a neutralizing agent to the leachate. It also has a sulphurization step S14 in which a nickel sulfide and a post-sulfuric acid liquid are obtained by subjecting the neutralized final liquid to a sulphurization treatment with a sulphurizing agent. The present embodiment further includes a wastewater treatment step S20 for neutralizing the post-sulfidated liquid separated in the sulfurization step S14 to make it harmless.

本実施の形態に係る硫化剤の除去方法は、このニッケル酸化鉱石の湿式製錬プロセスにより得られる硫化後液を処理対象とし、その硫化後液に溶存する硫化剤を除去する。 In the method for removing a sulfurizing agent according to the present embodiment, the post-sulfurized liquid obtained by the hydrometallurgical process of nickel oxide ore is treated, and the sulfurizing agent dissolved in the post-sulfurized liquid is removed.

(1)浸出工程
浸出工程S11は、原料のニッケル酸化鉱石に硫酸を用いて高温高圧下で酸浸出して浸出スラリーを得る工程である。例えば高温加圧容器(オートクレーブ)等を用いて、ニッケル酸化鉱石のスラリーに硫酸を添加して220℃~280℃の温度下で、加圧しながら撹拌処理を施し、ニッケルを含有する浸出液と浸出残渣とからなる浸出スラリーを生成させる。本実施の形態においては、詳しくは後述するが、浸出工程S11において、酸浸出で得られる浸出スラリー中のFe3+濃度が2.9g/L以上になるようにする。
(1) Leaching Step The leaching step S11 is a step of leaching the nickel oxide ore as a raw material with sulfuric acid under high temperature and high pressure to obtain a leaching slurry. For example, using a high-temperature pressure vessel (autoclave) or the like, sulfuric acid is added to a slurry of nickel oxide ore, and the mixture is stirred while being pressurized at a temperature of 220 ° C to 280 ° C. A leachate slurry consisting of In this embodiment, which will be described in detail later, in the leaching step S11, the Fe 3+ concentration in the leaching slurry obtained by acid leaching is set to 2.9 g / L or more.

ここで、ニッケル酸化鉱石としては、主としてリモナイト鉱及びサプロライト鉱等のいわゆるラテライト鉱が挙げられる。ラテライト鉱のニッケル含有量は、通常、0.8~2.5重量%であり、水酸化物又はケイ苦土(ケイ酸マグネシウム)鉱物として含有される。 Here, examples of the nickel oxide ore include so-called laterite ores such as limonite ore and saprolite ore. The nickel content of the laterite ore is usually 0.8 to 2.5% by weight, and is contained as a hydroxide or a siliceous earth (magnesium silicate) mineral.

(2)固液分離工程
固液分離工程S12は、浸出工程S11で得られた浸出スラリーを、ニッケルやコバルト等の有価金属を含む浸出液と浸出残渣とに固液分離する工程である。本実施の形態においては、詳しくは後述するが、固液分離工程S12は、浸出工程S11で得られた浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得る予備中和工程S121と、予備中和工程S121で得られた水酸化鉄(III)を含む浸出スラリーを固液分離処理して浸出液と水酸化鉄(III)を含む浸出残渣とを得る分離工程S122とを有する。
(2) Solid-Liquid Separation Step The solid-liquid separation step S12 is a step of solid-liquid separating the leachate slurry obtained in the leachation step S11 into a leachate containing a valuable metal such as nickel or cobalt and a leachate residue. In the present embodiment, which will be described in detail later, in the solid-liquid separation step S12, the leached slurry obtained in the leaching step S11 is subjected to neutralization treatment to generate iron (III) hydroxide to generate iron hydroxide (III). Pre-neutralization step S121 to obtain leachate slurry containing III) and leachate slurry containing iron hydroxide (III) obtained in pre-neutralization step S121 are solid-liquid separated to separate leachate and iron (III) hydroxide. It has a separation step S122 to obtain a leachate residue containing.

予備中和工程S121では、浸出スラリーに中和剤を添加して、pHを上昇させる(例えばpH2.5~3.2にする)中和処理を施す。これにより、浸出スラリーに含まれる余剰の硫酸(以下、「遊離硫酸」ともいう)が中和されるとともに、浸出スラリー中のFe3+の一部又は全部が水酸化鉄(III)になる。 In the pre-neutralization step S121, a neutralizing agent is added to the leachate slurry to perform a neutralization treatment for raising the pH (for example, making the pH 2.5 to 3.2). As a result, excess sulfuric acid (hereinafter, also referred to as “free sulfuric acid”) contained in the leached slurry is neutralized, and a part or all of Fe 3+ in the leached slurry becomes iron (III) hydroxide.

予備中和工程S121の中和剤としては、従来公知のもの使用することができ、例えば、消石灰(水酸化カルシウム)、炭酸カルシウム、水酸化ナトリウム等の塩基性化合物が挙げられる。 As the neutralizing agent in the preliminary neutralization step S121, conventionally known ones can be used, and examples thereof include basic compounds such as slaked lime (calcium hydroxide), calcium carbonate, and sodium hydroxide.

分離工程S122では、例えば、予備中和工程S121後の浸出スラリーを洗浄液と混合した後、凝集剤供給設備等から供給される凝集剤を用いて、シックナー等の固液分離設備により固液分離処理を施す。具体的には、先ず、浸出スラリーが洗浄液により希釈され、次に、浸出スラリー中の浸出残渣がシックナーの沈降物として濃縮される。浸出スラリーを洗浄する洗浄液は、特に限定されないが、例えば、後段の硫化剤除去工程S30後の硫化後液(処理後硫化後液)等を用いることができる。なお、固液分離工程S12で得られる浸出残渣は、鉄化合物として、水酸化鉄(III)の他、酸化鉄(III)や硫酸鉄(III)を含む。 In the separation step S122, for example, after mixing the leached slurry after the preliminary neutralization step S121 with the cleaning liquid, a solid-liquid separation process is performed by a solid-liquid separation facility such as a thickener using a flocculant supplied from a coagulant supply facility or the like. To give. Specifically, first, the leachate slurry is diluted with a washing liquid, and then the leachate residue in the leachate slurry is concentrated as a sediment of thickener. The cleaning liquid for cleaning the leachate slurry is not particularly limited, but for example, a post-sulfurization liquid (post-treatment sulfurization liquid) after the sulfurizing agent removing step S30 in the subsequent stage can be used. The leachate residue obtained in the solid-liquid separation step S12 contains iron (III) hydroxide, iron (III) oxide, and iron (III) sulfate as iron compounds.

分離工程S122で分離された浸出液は、中和工程S13に移送され、一方で、浸出残渣は、シックナーの底部から回収される。浸出残渣には、ニッケルやコバルト等の有価金属が一部含まれる場合があるため、浸出残渣を洗浄して得られたニッケルやコバルト等の有価金属を含有する液も、中和工程S13に移送するようにしてもよい。 The leachate separated in the separation step S122 is transferred to the neutralization step S13, while the leachate residue is recovered from the bottom of the thickener. Since the leaching residue may contain a part of valuable metals such as nickel and cobalt, the liquid containing the valuable metals such as nickel and cobalt obtained by washing the leaching residue is also transferred to the neutralization step S13. You may try to do it.

(2)中和工程
中和工程S13は、固液分離工程S12により得られた浸出液に中和剤を添加して不純物を含む中和澱物スラリーとニッケルを含む中和終液とを得る工程である。固液分離工程S12により得られた浸出液に、中和剤を添加してpHを調整し、不純物元素を含む中和澱物スラリーと中和終液とを得る。この中和工程S13における中和処理により、ニッケルやコバルト等の有価金属は中和終液に含まれるようになり、鉄の大部分が中和澱物スラリーとなる。中和殿物スラリーの沈降速度を促進するために、凝結剤を添加してもよい。
(2) Neutralization Step The neutralization step S13 is a step of adding a neutralizing agent to the leachate obtained in the solid-liquid separation step S12 to obtain a neutralized starch slurry containing impurities and a neutralized final liquid containing nickel. Is. A neutralizing agent is added to the leachate obtained in the solid-liquid separation step S12 to adjust the pH, and a neutralized starch slurry containing an impurity element and a neutralized final liquid are obtained. By the neutralization treatment in this neutralization step S13, valuable metals such as nickel and cobalt are contained in the neutralization final solution, and most of the iron becomes a neutralized starch slurry. A coagulant may be added to accelerate the settling rate of the neutralized slurry.

中和剤としては、従来公知のもの使用することができ、例えば、消石灰(水酸化カルシウム)、炭酸カルシウム、水酸化ナトリウム等が挙げられる。 As the neutralizing agent, conventionally known ones can be used, and examples thereof include slaked lime (calcium hydroxide), calcium carbonate, sodium hydroxide and the like.

中和工程S13における中和処理では、浸出液の酸化を抑制しながら、pHを1~4の範囲に調整することが好ましく、2.5~3.5の範囲に調整することがより好ましい。pHが1未満であると、中和が不十分となり中和澱物スラリーと中和終液とに分離できない可能性があり、また、pHが2.5未満であると、後段の硫化工程S14の脱亜鉛工程やニッケル回収工程で硫化反応が進行しない可能性がある。一方で、pHが4を超えると、アルミニウム等の不純物のみならず、ニッケルやコバルト等の有価金属も中和澱物スラリーに含まれる可能性がある。中和工程S13で得られた中和殿物スラリーがニッケルやコバルト等の有価金属を含む場合は、中和殿物スラリーを固液分離工程S12に供給するようにしてもよい。 In the neutralization treatment in the neutralization step S13, it is preferable to adjust the pH to the range of 1 to 4, and more preferably to the range of 2.5 to 3.5 while suppressing the oxidation of the leachate. If the pH is less than 1, neutralization may be insufficient and the neutralized starch slurry and the neutralized final solution may not be separated, and if the pH is less than 2.5, the subsequent sulfide step S14 There is a possibility that the sulfide reaction does not proceed in the dezincification step and the nickel recovery step. On the other hand, when the pH exceeds 4, not only impurities such as aluminum but also valuable metals such as nickel and cobalt may be contained in the neutralized starch slurry. When the neutralization slurry obtained in the neutralization step S13 contains a valuable metal such as nickel or cobalt, the neutralization slurry may be supplied to the solid-liquid separation step S12.

(3)硫化工程
硫化工程S14は、中和工程S13により得られた中和終液に硫化剤により硫化処理を施してニッケル硫化物と硫化後液とを得る工程である。この硫化工程S14における硫化処理により、ニッケル、コバルト、亜鉛等は硫化物となり、その他は硫化後液に含まれることになる。
(3) Sulfurization Step The sulfurization step S14 is a step of subjecting the neutralization final liquid obtained in the neutralization step S13 to a sulfurization treatment with a sulfurizing agent to obtain nickel sulfide and a post-sulfide liquid. By the sulfurization treatment in this sulfurization step S14, nickel, cobalt, zinc and the like become sulfurized, and the others are contained in the post-sulfurized liquid.

具体的には、硫化工程S14では、得られた中和終液に対して硫化剤を添加し、中和終液に含まれるニッケルやコバルトを硫化物の形態にする硫化反応を生じさせる。これにより、不純物成分の少ないニッケルの硫化物と、ニッケル濃度を低い水準で安定させた硫化後液とを生成させる。なお、中和終液中に亜鉛が含まれる場合には、硫化剤を添加してニッケル硫化物を生成するに先立って、硫化剤を用いて亜鉛を硫化物として選択的に分離することができる(脱亜鉛工程)。すなわち、中和工程S13により得られた中和終液に硫化剤を添加することにより亜鉛硫化物を形成し該亜鉛硫化物を分離してニッケルを含むニッケル回収用母液を得る脱亜鉛工程と、ニッケル回収用母液に硫化剤を添加することによりニッケル硫化物を形成するニッケル回収工程とを有する、硫化工程S14としてもよい。 Specifically, in the sulfurization step S14, a sulfurizing agent is added to the obtained neutralized final liquid to cause a sulfurization reaction in which nickel or cobalt contained in the neutralized final liquid is formed into a sulfide form. As a result, nickel sulfide having a small amount of impurity components and a post-sulfurization liquid in which the nickel concentration is stabilized at a low level are produced. When zinc is contained in the neutralization final solution, zinc can be selectively separated as sulfide by using a sulfide agent prior to adding a sulfide agent to generate nickel sulfide. (Dezincification process). That is, a dezincination step of forming a zinc sulfide by adding a sulfide agent to the neutralization final solution obtained in the neutralization step S13 and separating the zinc sulfide to obtain a nickel-containing mother liquor for recovering nickel. The sulfurization step S14 may include a nickel recovery step of forming a nickel sulfide by adding a sulfurizing agent to the nickel recovery mother liquor.

硫化剤としては、例えば、硫化水素、硫化ナトリウム、水素化硫化ナトリウム等を用いることができるが、その中でも、硫化水素ガスを用いることが、取扱い容易さやコスト等の点で特に好ましい。 As the sulfurizing agent, for example, hydrogen sulfide, sodium sulfide, sodium sulfide and the like can be used, and among them, hydrogen sulfide gas is particularly preferable in terms of ease of handling and cost.

この硫化処理では、ニッケル硫化物のスラリーをシックナー等の沈降分離装置を用いて沈降分離処理して硫化物をシックナーの底部より分離回収する一方で、水溶液成分である硫化後液はオーバーフローさせて回収する。 In this sulfurization treatment, the nickel sulfide slurry is settled and separated using a sedimentation separation device such as a thickener to separate and recover the sulfide from the bottom of the thickener, while the after-sulfidation liquid, which is an aqueous solution component, overflows and recovers. do.

本実施の形態に係る硫化剤の除去方法においては、硫化工程S14における硫化処理により得られた硫化後液、すなわち、硫化処理後のスラリーに対して固液分離処理を施して得られた硫化後液を処理対象とする。そして、本実施形態に係る硫化剤の除去方法は、実施例等に示すように硫化剤を効果的に低減できるため、前段の硫化工程S14で添加する硫化剤量を多くすることができ、ニッケル硫化物を十分生成することができるため、ニッケルの回収ロスを低減することができる。 In the method for removing a sulfurizing agent according to the present embodiment, the post-sulfidation liquid obtained by the sulfurization treatment in the sulfurization step S14, that is, the post-sulfurization obtained by subjecting the slurry after the sulfurization treatment to a solid-liquid separation treatment. The liquid is treated. Since the sulfurizing agent removing method according to the present embodiment can effectively reduce the sulfurizing agent as shown in Examples and the like, the amount of the sulfurizing agent added in the sulfurizing step S14 in the previous stage can be increased, and nickel can be used. Since sulfide can be sufficiently produced, the recovery loss of nickel can be reduced.

(4)排水処理工程(中和処理工程)
排水処理工程S20では、硫化工程S14にて生成した硫化後液、すなわち、鉄、マグネシウム、マンガン等の不純物元素を含む硫化後液に対して、排出基準を満たす所定のpH範囲に調整する中和処理を施して無害化する排水処理を行う。これにより、鉄、マグネシウム、マンガン等の成分が除去される。
(4) Wastewater treatment process (neutralization treatment process)
In the wastewater treatment step S20, the post-sulfurized liquid produced in the sulphurizing step S14, that is, the post-sulfurized liquid containing impurity elements such as iron, magnesium and manganese, is neutralized to adjust to a predetermined pH range that satisfies the discharge standard. Wastewater is treated to make it harmless. As a result, components such as iron, magnesium, and manganese are removed.

本実施の形態においては、詳しくは後述する硫化後液に対する硫化剤の除去処理である硫化剤除去工程S30を経て、溶存する硫化水素等の硫化剤が除去された硫化後液に対して、排水処理工程S20で排水処理を行う。 In the present embodiment, the post-sulfidation liquid from which the dissolved sulfurizing agent such as hydrogen sulfide has been removed is discharged through the sulfurizing agent removing step S30, which is a treatment for removing the sulfurizing agent from the post-sulfurizing liquid, which will be described in detail later. Wastewater treatment is performed in the treatment step S20.

排水処理工程S20における中和処理による無害化の方法、すなわちpHの調整方法としては、特に限定されないが、例えば炭酸カルシウム(石灰石)スラリーや水酸化カルシウム(消石灰)スラリー、水酸化ナトリウム等の中和剤を添加することによって所定の範囲に調整することができる。 The method of detoxifying by neutralization treatment in the wastewater treatment step S20, that is, the method of adjusting pH is not particularly limited, but for example, neutralization of calcium carbonate (limestone) slurry, calcium hydroxide (slaked lime) slurry, sodium hydroxide and the like. It can be adjusted to a predetermined range by adding an agent.

また、排水処理工程S20における中和処理では、石灰石を中和剤として用いた第1段階の中和処理(第1の工程)と、消石灰を中和剤として用いた第2段階の中和処理(第2の工程)とからなる段階的な処理を行うことができる。このように段階的な中和処理を行うことで、効率的にかつ効果的な中和処理を行うことができる。 Further, in the neutralization treatment in the wastewater treatment step S20, a first-stage neutralization treatment using limestone as a neutralizing agent (first step) and a second-stage neutralization treatment using slaked lime as a neutralizing agent. A stepwise process consisting of (second step) can be performed. By performing the stepwise neutralization treatment in this way, an efficient and effective neutralization treatment can be performed.

具体的に、第1の工程では、硫化剤除去工程S30で回収した硫化後液を中和処理槽に装入し、石灰石スラリーを添加して撹拌処理を施す。この第1の工程では、石灰石スラリーを添加することによって、硫化後液のpHを5~6に調整する。pHが5以下であるとアルミニウムが完全に除去されず、中和に使用する消石灰の使用量が増加する。 Specifically, in the first step, the after-sulfurized liquid recovered in the sulfurizing agent removing step S30 is charged into a neutralization treatment tank, and a limestone slurry is added to perform a stirring treatment. In this first step, the pH of the post-sulfidation liquid is adjusted to 5 to 6 by adding a limestone slurry. When the pH is 5 or less, aluminum is not completely removed, and the amount of slaked lime used for neutralization increases.

次に、第2の工程では、石灰石スラリーを添加して第1段階の中和処理を施した溶液に対して、消石灰スラリーを添加して撹拌処理を施す。この第2の工程では、消石灰スラリーを添加することによって、硫化後液のpHを8.5~9.5に引き上げる。 Next, in the second step, the slaked lime slurry is added to the solution subjected to the neutralization treatment in the first step by adding the limestone slurry, and the stirring treatment is performed. In this second step, the pH of the post-sulfidated liquid is raised to 8.5 to 9.5 by adding slaked lime slurry.

排水処理工程S20では、このような2段階の中和処理を施すことによって、中和処理残渣(排水処理澱物)が生成され、テーリングダムに貯留される(テーリング残渣)。一方、排水処理工程S20後の溶液(排水処理終液)は、排出基準を満たすものとなり系外に排出される。 In the wastewater treatment step S20, by performing such a two-step neutralization treatment, a neutralization treatment residue (wastewater treatment starch) is generated and stored in a tailing dam (tailing residue). On the other hand, the solution after the wastewater treatment step S20 (the final liquid for wastewater treatment) satisfies the emission standard and is discharged to the outside of the system.

ここで、排水処理工程S20における中和処理では、硫化後液中に残留している酸、硫化剤や、鉄イオン、マグネシウムイオンやマンガンイオン等の不純物元素イオンの量に応じて、消石灰や石灰石等の中和剤の量が決定される。したがって、硫化後液に残留する酸、硫化剤や、不純物の量が多ければ、中和剤の使用量も多くなる。 Here, in the neutralization treatment in the wastewater treatment step S20, slaked lime and limestone are used according to the amount of acid, sulfide, and impurity element ions such as iron ion, magnesium ion, and manganese ion remaining in the liquid after sulfurization. The amount of neutralizing agent such as is determined. Therefore, if the amount of acid, sulfurizing agent, and impurities remaining in the after-sulfurized liquid is large, the amount of neutralizing agent used is also large.

この点、本実施の形態においては、排水処理工程S20に先立ち、硫化剤除去工程S30で、硫化工程S14で得られた硫化後液に対して、その硫化後液に溶存する硫化水素等の硫化剤を除去するようにしている。そして、その硫化剤除去工程S30では、詳しくは後述するが、酸浸出で得られる浸出スラリーのFe3+濃度を2.9g/L以上にし、該浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得て、該水酸化鉄(III)を含む浸出スラリーを固液分離処理して得られる水酸化鉄(III)を含む浸出残渣を、硫化水素等の硫化剤を酸化固定化するための3価の鉄イオン源として用いている。水酸化鉄(III)は酸化鉄(III)と同様に、硫化剤を除去する反応を生じさせるためには硫酸に溶解させる必要があるが、水酸化鉄(III)は酸化鉄(III)よりも溶解しやすい。そのため、水酸化鉄(III)を硫化剤の除去反応に用いると、酸化鉄(III)を硫化剤の除去反応に用いる場合よりも、硫化剤除去工程S30での硫酸の添加量を少なくすることができる。このことから、排水処理工程S20に対して、硫酸や硫化剤濃度が低い硫化後液を移送させることができる。また、硫化剤を除去するための3価の鉄イオン源として、浸出液が中和工程S13、硫化工程S14、排水処理工程S20を経て得られる中和処理残渣(排水処理澱物)のみを用いた場合と比較して、マグネシウム、マンガン、アルミニウム等の不純物の濃度が低い硫化後液を移送させることができる。このことから、排水処理工程S20に対しては、硫酸や硫化剤濃度が低く、また、鉄、マグネシウム、マンガン、アルミニウム等の不純物の濃度が低い硫化後液を移送させることができる。その結果として、排水処理工程S20にて使用する中和剤の使用量を効果的に低減させることができ、ニッケル酸化鉱石処理全体としても効率的な操業を行うことができるという効果も奏する。 In this respect, in the present embodiment, prior to the wastewater treatment step S20, in the sulfurizing agent removing step S30, the sulfurized liquid obtained in the sulfurizing step S14 is sulfurized with hydrogen sulfide or the like dissolved in the sulfurized liquid. I try to remove the agent. Then, in the sulfide removing step S30, which will be described in detail later, the Fe 3+ concentration of the leached slurry obtained by acid leaching is set to 2.9 g / L or more, and the leached slurry is neutralized to obtain iron hydroxide (). III) is generated to obtain a leachate slurry containing iron hydroxide (III), and the leachate slurry containing the iron hydroxide (III) is subjected to solid-liquid separation treatment to obtain a leachate residue containing iron (III) hydroxide. Is used as a trivalent iron ion source for oxidatively immobilizing a sulfide agent such as hydrogen sulfide. Iron (III) hydroxide, like iron (III) oxide, needs to be dissolved in sulfuric acid in order to cause a reaction to remove the sulfide agent, but iron (III) hydroxide is more than iron (III) oxide. Is also easy to dissolve. Therefore, when iron (III) hydroxide is used for the removal reaction of the sulfurizing agent, the amount of sulfuric acid added in the sulfurizing agent removing step S30 is smaller than that when iron (III) oxide is used for the removing reaction of the sulfurizing agent. Can be done. Therefore, the post-sulfidation liquid having a low concentration of sulfuric acid or sulfurizing agent can be transferred to the wastewater treatment step S20. Further, as a trivalent iron ion source for removing the sulfide agent, only the neutralization treatment residue (wastewater treatment starch) obtained by the leachate through the neutralization step S13, the sulfide step S14, and the wastewater treatment step S20 was used. The post-neutralized liquid having a lower concentration of impurities such as magnesium, manganese, and aluminum can be transferred as compared with the case. Therefore, the post-sulfurized liquid having a low concentration of sulfuric acid and a sulfide agent and a low concentration of impurities such as iron, magnesium, manganese, and aluminum can be transferred to the wastewater treatment step S20. As a result, the amount of the neutralizing agent used in the wastewater treatment step S20 can be effectively reduced, and the nickel oxide ore treatment as a whole can be efficiently operated.

≪3.硫化剤の除去方法の詳細説明≫
上述したニッケル酸化鉱石の湿式製錬プロセスにおいて、硫化工程S14での硫化処理を経て生成した硫化後液には、硫化反応を生じさせるために添加した硫化水素等の硫化剤が溶存していることがある。加えて、硫化水素以外の硫化剤を使用した場合、溶液の状態によっては硫化水素ガスが発生し、反応後の液に未反応の硫化水素ガスが溶存することがある。
≪3. Detailed explanation of how to remove sulfurizing agent ≫
In the above-mentioned wet smelting process of nickel oxide ore, a sulfurizing agent such as hydrogen sulfide added to cause a sulfurization reaction is dissolved in the post-sulfide liquid produced through the sulfurization treatment in the sulfurization step S14. There is. In addition, when a sulfurizing agent other than hydrogen sulfide is used, hydrogen sulfide gas may be generated depending on the state of the solution, and unreacted hydrogen sulfide gas may be dissolved in the liquid after the reaction.

このように硫化後液に硫化水素等の硫化剤が残存している場合、系外に放流することができない。また、その硫化後液を固液分離工程S12や排水処理工程S20へ払い出すと、設備周辺において硫化水素の臭気が発生して環境トラブルが生じる可能性がある等、環境面や安全面で問題となる。 When a sulfurizing agent such as hydrogen sulfide remains in the after-sulfurized liquid as described above, it cannot be discharged to the outside of the system. In addition, if the after-sulfurized liquid is discharged to the solid-liquid separation step S12 or the wastewater treatment step S20, the odor of hydrogen sulfide may be generated around the equipment, which may cause environmental troubles, which is an environmental and safety problem. It becomes.

そこで、本実施の形態においては、硫化後液に含まれる硫化剤を硫黄として固定化、すなわち、溶存する硫化水素等の硫化剤を固体の硫黄Sの形態として固定化し、その硫化後液から回収除去するようにしている(硫化剤除去工程S30)。以下では、より詳細に、硫化工程S14において硫化水素ガスを硫化剤として用いたときに、硫化剤除去工程S30にて硫化後液に残存した硫化水素を除去する態様を一例として説明する。 Therefore, in the present embodiment, the sulfurizing agent contained in the post-sulfidation liquid is immobilized as sulfur, that is, the dissolved sulfurizing agent such as hydrogen sulfide is immobilized as the solid sulfur S 0 form, and the sulfurized liquid is used. It is designed to be recovered and removed (sulfurizing agent removing step S30). In the following, a mode in which hydrogen sulfide remaining in the post-sulfidation liquid is removed in the sulfurizing agent removing step S30 when hydrogen sulfide gas is used as the sulfurizing agent in the sulfurizing step S14 will be described in more detail as an example.

具体的に、硫化剤除去工程S30では、Fe3+濃度が特定範囲の浸出スラリーを予備中和工程S121及び分離工程S122を有する固液分離工程S12に供して得られる水酸化鉄(III)を含む浸出残渣を、3価の鉄イオン源として用いる。硫化水素を含む硫化後液に対して、この水酸化鉄(III)を含む浸出残渣を添加することで、硫化後液に含まれる硫化水素を固体硫黄の形態に固定化し除去する。 Specifically, the sulfide removing step S30 contains iron (III) hydroxide obtained by subjecting an leached slurry having a Fe 3+ concentration in a specific range to a solid-liquid separation step S12 having a preliminary neutralization step S121 and a separation step S122. The leachate residue is used as a trivalent iron ion source. By adding the leachate residue containing iron (III) hydroxide to the post-sulfidation liquid containing hydrogen sulfide, hydrogen sulfide contained in the post-sulfidation liquid is fixed in the form of solid sulfur and removed.

硫化工程S14にて得られる硫化後液は、例えば、ニッケルイオン濃度が0.02g/L~0.10g/L程度であり、鉄、マンガン、マグネシウム、アルミニウム、クロム、鉛等の不純物を含む硫酸酸性溶液である。また、硫化後液のpHは、例えば1.5~2.0程度である。そして、上述のように硫化後液には、硫化工程S14での硫化処理にて用いた硫化水素が、例えば濃度20mg/L~400mg/L程度の割合で溶存している。 The post-sulfuric acid solution obtained in the sulphurization step S14 has, for example, a nickel ion concentration of about 0.02 g / L to 0.10 g / L, and is sulfuric acid containing impurities such as iron, manganese, magnesium, aluminum, chromium, and lead. It is an acidic solution. The pH of the after sulfidation solution is, for example, about 1.5 to 2.0. Then, as described above, hydrogen sulfide used in the sulfurization treatment in the sulfurization step S14 is dissolved in the post-sulfidation liquid at a concentration of, for example, about 20 mg / L to 400 mg / L.

本実施の形態においては、このような硫化後液に対して、浸出工程S11の酸浸出で得られる浸出スラリーのFe3+濃度を2.9g/L以上にし、予備中和工程S121にて該浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得て、分離工程S122にて該水酸化鉄(III)を含む浸出スラリーを固液分離処理して得られる水酸化鉄(III)を含む浸出残渣を、添加する。浸出スラリーに含まれるFe3+から生成させ浸出残渣に含まれる水酸化鉄(III)を、3価の鉄イオン源として用いると、下記式(4)の反応が生じることによって、硫化後液に溶存する硫化水素が酸化されて固体の硫黄として固定化される。このように、3価の鉄イオン源として水酸化鉄(III)を含む浸出残渣を用いることで、硫化水素を効果的に分解して低減することができる。なお、浸出残渣に含まれる水酸化鉄(III)は、通常、固体として含まれる場合は、酸化水酸化鉄(FeO(OH))として存在し、液体として含まれる場合は溶解した状態(Fe3+、OH)として存在する。下記式(4)に示すように、水酸化鉄(III)を硫化水素と反応させるためには水酸化鉄(III)を硫酸に溶解させる必要がある。そのため、処理対象の硫化後液に含まれる硫酸では水酸化鉄(III)の溶解が不十分な場合は、水酸化鉄(III)を含む浸出残渣を硫化後液に添加するとともに、硫酸も硫化後液に添加する。
Fe(OH)+1/2HS+HSO
→FeSO+1/2S+3HO (4)
In the present embodiment, the Fe 3+ concentration of the leaching slurry obtained by acid leaching in the leaching step S11 is 2.9 g / L or more with respect to such a post-sulfurized liquid, and the leaching is performed in the preliminary neutralization step S121. The slurry is neutralized to generate iron (III) hydroxide to obtain an leached slurry containing iron (III) hydroxide, and the leached slurry containing the iron (III) hydroxide is solidified in the separation step S122. The leachate residue containing iron (III) hydroxide obtained by the liquid separation treatment is added. When iron (III) hydroxide generated from Fe 3+ contained in the leaching slurry and contained in the leaching residue is used as a trivalent iron ion source, the reaction of the following formula (4) occurs and is dissolved in the post-sulfidation liquid. Hydrogen sulfide is oxidized and immobilized as solid sulfur. As described above, by using the leaching residue containing iron (III) hydroxide as the trivalent iron ion source, hydrogen sulfide can be effectively decomposed and reduced. The iron (III) hydroxide contained in the leachate residue usually exists as iron oxide hydroxide (FeO (OH)) when it is contained as a solid, and is in a dissolved state (Fe 3+ ) when it is contained as a liquid. , OH- ) . As shown in the following formula (4), in order to react iron (III) hydroxide with hydrogen sulfide, it is necessary to dissolve iron (III) hydroxide in sulfuric acid. Therefore, if the sulfuric acid contained in the post-sulfuric acid solution to be treated does not sufficiently dissolve iron (III) hydroxide, the leachate residue containing iron (III) hydroxide is added to the post-sulfuric acid solution, and the sulfuric acid is also sulphurized. Add to the after liquid.
Fe (OH) 3 + 1 / 2H 2 S + H 2 SO 4
→ FeSO 4 + 1 / 2S 0 + 3H 2 O (4)

そして、本実施の形態においては、浸出工程S11の酸浸出で得られる浸出スラリー中のFe3+濃度は2.9g/L以上である。これにより、硫化水素を極めて効果的に低減できる。本発明者の検討により、後述する実施例にて説明する図3に示されるように、硫化剤除去工程S30において、浸出スラリー中のFe3+濃度と、硫化剤除去効果とには、相関があることが見出された。このことは、Fe3+濃度を2.9g/L以上の範囲に調整した浸出スラリーから得られる浸出残渣を用いることで、式(4)で示される水酸化鉄(III)による硫化水素除去反応の反応性が顕著に向上し、硫化水素を極めて効果的に低減できることによると推測される。 In the present embodiment, the Fe 3+ concentration in the leaching slurry obtained by the acid leaching in the leaching step S11 is 2.9 g / L or more. This makes it possible to reduce hydrogen sulfide extremely effectively. According to the study of the present inventor, as shown in FIG. 3 described in Examples described later, there is a correlation between the Fe 3+ concentration in the leachate slurry and the sulfurizing agent removing effect in the sulfurizing agent removing step S30. Was found. This is due to the hydrogen sulfide removal reaction by iron (III) hydroxide represented by the formula (4) by using the leachate residue obtained from the leachate slurry whose Fe 3+ concentration is adjusted to the range of 2.9 g / L or more. It is presumed that the reactivity is significantly improved and hydrogen sulfide can be reduced extremely effectively.

浸出スラリー中のFe3+濃度の調整は、浸出工程S11における浸出処理での硫酸の添加量を制御して浸出スラリー中の遊離硫酸濃度を調整することによって行うことができる。なお、遊離硫酸とは、余剰の硫酸、すなわち、金属元素と結合可能な硫酸イオン以外の硫酸である。遊離硫酸濃度は、水酸化ナトリウム溶液で中和滴定することで求められる。 The Fe 3+ concentration in the leaching slurry can be adjusted by controlling the amount of sulfuric acid added in the leaching process in the leaching step S11 to adjust the free sulfuric acid concentration in the leaching slurry. The free sulfuric acid is a surplus sulfuric acid, that is, a sulfuric acid other than sulfate ion that can be bonded to a metal element. The free sulfuric acid concentration is determined by neutralization titration with a sodium hydroxide solution.

図2は、浸出スラリー中の遊離硫酸濃度と浸出スラリー中のFe3+濃度との関係を示すグラフ図である。この図2に示されるように、遊離硫酸濃度が増加するに従い、浸出スラリー中のFe3+濃度が増加することが分かる。浸出工程S11における硫酸による浸出処理では、原料鉱石に含まれる鉄が浸出残渣として固定化されて浸出スラリー中に含まれることになるが、浸出処理に寄与しなかった未反応の硫酸(遊離硫酸)により、浸出残渣として固定化された鉄が再溶解してFe3+の形態で浸出スラリー中に存在するようになる。したがって、図2に示されるように、浸出スラリー中の遊離硫酸濃度とFe3+濃度とには、比例関係が成立する。そのため、浸出工程S11における浸出処理での硫酸の添加量を制御して浸出スラリー中の遊離硫酸濃度を調整することによって、浸出スラリー中のFe3+濃度を調整することができる。 FIG. 2 is a graph showing the relationship between the free sulfuric acid concentration in the leachate slurry and the Fe 3+ concentration in the leachate slurry. As shown in FIG. 2, it can be seen that the Fe 3+ concentration in the leachate slurry increases as the free sulfuric acid concentration increases. In the leaching treatment with sulfuric acid in the leaching step S11, iron contained in the raw material ore is immobilized as a leaching residue and contained in the leaching slurry, but unreacted sulfuric acid (free sulfuric acid) that did not contribute to the leaching treatment. As a result, the iron immobilized as the leaching residue is redissolved and becomes present in the leaching slurry in the form of Fe 3+ . Therefore, as shown in FIG. 2, a proportional relationship is established between the concentration of free sulfuric acid in the leachate slurry and the concentration of Fe 3+ . Therefore, the Fe 3+ concentration in the leaching slurry can be adjusted by controlling the amount of sulfuric acid added in the leaching process in the leaching step S11 to adjust the free sulfuric acid concentration in the leaching slurry.

また、浸出スラリー中のFe3+濃度は、3.6g/L以下とすることが好ましい。浸出スラリー中のFe3+濃度を高くするためには、浸出工程S11での硫酸添加量を増やす必要がある。硫酸添加量を増やすと、コストが増加する。また、硫酸添加量を増やすと、遊離硫酸濃度上昇により予備中和工程S121での中和剤添加量が増加するため、コストが増加する。また、硫酸添加量を増やすと、予備中和工程S121において微細な粒子が発生しやすくなり、分離工程S122において固液分離不良が発生する。そのため、浸出スラリー中のFe3+濃度は高すぎないほうがよく、3.6g/L以下が好ましい。 The Fe 3+ concentration in the leachate slurry is preferably 3.6 g / L or less. In order to increase the Fe 3+ concentration in the leaching slurry, it is necessary to increase the amount of sulfuric acid added in the leaching step S11. Increasing the amount of sulfuric acid added increases the cost. Further, when the amount of sulfuric acid added is increased, the amount of the neutralizing agent added in the preliminary neutralization step S121 increases due to the increase in the free sulfuric acid concentration, so that the cost increases. Further, when the amount of sulfuric acid added is increased, fine particles are likely to be generated in the preliminary neutralization step S121, and solid-liquid separation failure occurs in the separation step S122. Therefore, the Fe 3+ concentration in the leachate slurry should not be too high, preferably 3.6 g / L or less.

なお、本実施の形態においては、図1に示すように、固液分離工程S12で得られた浸出残渣を、湿式製錬プロセスにおける排水処理工程S20での処理に装入し、排水処理工程S20にて中和処理を施すようにする。上述したように、排水処理工程S20では、水酸化カルシウム、炭酸カルシウムや水酸化ナトリウム等の中和剤を添加して溶液のpHを8.5~9.5程度に調整する中和処理が行われる。したがって、排水処理工程S20における処理に浸出残渣を装入することで、その浸出残渣が含む酸化鉄(III)等の鉄化合物から水酸化鉄(III)を生成することができ、浸出残渣が含む水酸化鉄(III)量を多くすることができる。図1において、硫化後液に添加する水酸化鉄(III)を含む浸出残渣は、浸出残渣に対して排水処理(中和処理)を施すことで得られる排水処理残渣(中和処理残渣)及び溶液の両者でもよいし、該排水処理(中和処理)を施した後に固液分離して溶液から分離された排水処理残渣(中和処理残渣)のみでもよい。 In the present embodiment, as shown in FIG. 1, the leachate residue obtained in the solid-liquid separation step S12 is charged into the treatment in the wastewater treatment step S20 in the hydrometallurgical process, and the wastewater treatment step S20 is charged. To neutralize with. As described above, in the wastewater treatment step S20, a neutralization treatment is performed in which a neutralizing agent such as calcium hydroxide, calcium carbonate or sodium hydroxide is added to adjust the pH of the solution to about 8.5 to 9.5. Will be. Therefore, by charging the leachate residue into the treatment in the wastewater treatment step S20, iron (III) hydroxide can be produced from the iron compound such as iron (III) oxide contained in the leachate residue, and the leachate residue is contained. The amount of iron (III) hydroxide can be increased. In FIG. 1, the leaching residue containing iron (III) hydroxide added to the post-sulfurization solution is the wastewater treatment residue (neutralization treatment residue) obtained by subjecting the leaching residue to wastewater treatment (neutralization treatment). Both of the solutions may be used, or only the wastewater treatment residue (neutralization treatment residue) separated from the solution by solid-liquid separation after the wastewater treatment (neutralization treatment) may be used.

ここで、湿式製錬プロセスにおいて、浸出スラリーを固液分離して得られた浸出残渣は、その浸出スラリーを固液分離して得られた浸出液が中和工程S13、硫化工程S14、排水処理工程S20を経て得られる中和処理残渣(排水処理澱物)等よりも、マグネシウム、マンガンや、アルミニウム等の不純物が少ない。そのため、本実施の形態のように、硫化剤除去工程S30において、浸出残渣を用いることにより、上記式(4)で示される水酸化鉄(III)による硫化水素除去反応がマグネシウム、マンガンや、アルミニウム等の元素によって阻害され難いため、硫化水素を効果的に除去することができる。 Here, in the wet smelting process, the leachate residue obtained by solid-liquid separation of the leachate slurry is the leachate obtained by solid-liquid separation of the leachate slurry in the neutralization step S13, the sulfide step S14, and the wastewater treatment step. There are less impurities such as magnesium, manganese, and aluminum than the neutralization treatment residue (wastewater treatment starch) obtained through S20. Therefore, as in the present embodiment, by using the leachate residue in the sulfurizing agent removing step S30, the hydrogen sulfide removing reaction by the iron (III) hydroxide represented by the above formula (4) is performed on magnesium, manganese, or aluminum. Since it is not easily inhibited by such elements, hydrogen sulfide can be effectively removed.

また、浸出スラリーを固液分離して得られた浸出残渣は、浸出液が中和工程S13、硫化工程S14、排水処理工程S20を経て得られる中和処理残渣(排水処理澱物)等に比べて、マグネシウム、マンガンや、アルミニウム等の不純物が少なく鉄の含有割合が高い。したがって、本実施の形態のように、硫化剤除去工程S30において、浸出残渣を硫化後液に添加することにより、添加する量に対する硫化水素の除去量が多くなり、硫化水素を効果的に除去することができる。 Further, the leachate residue obtained by solid-liquid separation of the leachate slurry is compared with the neutralization treatment residue (wastewater treatment starch) obtained by the leachate through the neutralization step S13, the sulfide step S14, and the wastewater treatment step S20. , Magnesium, manganese, aluminum and other impurities are few, and the iron content is high. Therefore, as in the present embodiment, by adding the leachate residue to the after-sulfurized liquid in the sulfurizing agent removing step S30, the amount of hydrogen sulfide removed is larger than the amount to be added, and hydrogen sulfide is effectively removed. be able to.

なお、硫化水素を固定化する3価の鉄イオン源として、硫酸鉄(III)を用いることも考えられるが、設備投資や資材購入等のコスト面で不利である。 It is conceivable to use iron (III) sulfate as a trivalent iron ion source for immobilizing hydrogen sulfide, but it is disadvantageous in terms of cost such as capital investment and material purchase.

硫化剤除去工程S30後の硫化後液(処理後硫化後液)は、例えばpHは1.5~2.0である。また、硫化剤除去工程S30に供給する硫化後液の流量や、排水処理工程S20に払い出す硫化剤除去工程S30後の硫化後液の流量は、例えば、500~700m/Hrである。また、硫化後液に添加する水酸化鉄(III)を含む浸出残渣の供給流量は40~50m/Hrである。 The pH of the post-sulfidation liquid (post-treatment liquid after sulfurization) after the sulfurizing agent removing step S30 is, for example, 1.5 to 2.0. The flow rate of the post-sulfurized liquid supplied to the sulfide removing step S30 and the flow rate of the post-sulfurized liquid after the sulphurizing agent removing step S30 to be discharged to the wastewater treatment step S20 are, for example, 500 to 700 m 3 / Hr. The supply flow rate of the leachate residue containing iron (III) hydroxide added to the post-sulfidation liquid is 40 to 50 m 3 / Hr.

また、硫化剤除去工程S30における処理では、硫化後液に対して浸出残渣を添加するとともに、エアレーションを行うことが好ましい。すなわち、浸出残渣に含まれる水酸化鉄(III)と硫化水素との反応は、エアレーションを行う曝気槽で生じさせることが好ましい。例えば、特許文献2に記載されているように、縦型円筒形状の反応容器と、その反応容器内に設けられた撹拌羽根と、反応容器内の底部に設けられた多数の吹出口を有する円環状のエアレーション管とを備える曝気槽に硫化後液を供給し、浸出残渣を添加し、撹拌しながら、硫化後液のスラリー1mあたり1.8Nm以上の割合でエアレーションする。このようなエアレーションにより、硫化後液中に溶存する硫化水素の酸化を促進させることができ、より効率的に硫化水素を除去することができる。 Further, in the treatment in the sulfurizing agent removing step S30, it is preferable to add the leachate residue to the after-sulfurized liquid and perform aeration. That is, it is preferable that the reaction between iron (III) hydroxide contained in the leaching residue and hydrogen sulfide occurs in an aeration tank for aeration. For example, as described in Patent Document 2, a circle having a vertical cylindrical reaction vessel, a stirring blade provided in the reaction vessel, and a large number of outlets provided at the bottom of the reaction vessel. The post-sulfurized liquid is supplied to an aeration tank provided with an annular aeration tube, a leachate residue is added, and the aeration is performed at a ratio of 1.8 Nm 3 or more per 1 m 3 of the post-sulfurized liquid slurry while stirring. By such aeration, the oxidation of hydrogen sulfide dissolved in the post-sulfide liquid can be promoted, and hydrogen sulfide can be removed more efficiently.

硫化剤除去工程S30で硫化水素が除去された処理後硫化後液は、固液分離工程S12の洗浄液として用いてもよい。 The post-treatment sulfurized liquid from which hydrogen sulfide has been removed in the sulfurizing agent removing step S30 may be used as a cleaning liquid in the solid-liquid separation step S12.

以上のように、本実施の形態に係る硫化水素の除去方法によれば、3価の鉄イオン源として、Fe3+濃度が2.9g/L以上である浸出スラリーから生成させた水酸化鉄(III)を含む浸出残渣を硫化水素の酸化の反応主体にすることで、硫化水素を効果的に低減させることができるため、硫化水素を十分に除去することができる。 As described above, according to the method for removing hydrogen sulfide according to the present embodiment, iron hydroxide (iron hydroxide) produced from a leachate slurry having a Fe 3+ concentration of 2.9 g / L or more as a trivalent iron ion source (as described above). By using the leachate residue containing III) as the main reaction body for the oxidation of hydrogen sulfide, hydrogen sulfide can be effectively reduced, so that hydrogen sulfide can be sufficiently removed.

このように本発明によれば、硫化後液中の硫化剤を効果的に低減することができるため、ニッケルを回収するための硫化剤を多量に添加することができる。したがって、本発明は、ニッケル酸化鉱の湿式製錬プロセスにおいて、ニッケルロスの低減及び硫化剤の除去不良発生の抑制による環境面や安全面の改善ができることから、その工業的価値はきわめて高い。 As described above, according to the present invention, since the sulfurizing agent in the post-sulfidation liquid can be effectively reduced, a large amount of the sulfurizing agent for recovering nickel can be added. Therefore, the present invention has extremely high industrial value because it can improve the environment and safety by reducing nickel loss and suppressing the occurrence of sulfide removal defects in the hydrometallurgical process of nickel oxide ore.

また、硫化水素を除去した後の処理後硫化後液は、排水処理工程S20に移送されて排水処理(中和処理)が施されるが、硫化水素が除去されていることから、その処理後硫化後液に対する排水処理では中和剤の使用量も有効に低減させることができ、ニッケル酸化鉱石処理全体としても効率的な操業を行うことができる。 Further, the post-sulfidation liquid after removing hydrogen sulfide is transferred to the wastewater treatment step S20 and subjected to wastewater treatment (neutralization treatment), but since hydrogen sulfide has been removed, after the treatment. In the wastewater treatment for the post-sulfidation liquid, the amount of the neutralizing agent used can be effectively reduced, and the entire nickel oxide ore treatment can be efficiently operated.

なお、硫化剤除去工程S30や排水処理工程S20等のその他の工程において、微量の硫化水素が残留した場合や、そのまま系外に排出することができない有害ガスが生じた場合には、除害塔等の有害ガスを除去する設備で有害ガスを除去した後に、大気中に排出すればよい。また、処理後硫化後液は、固液分離工程S12における処理の洗浄液として用いてもよい。 If a small amount of hydrogen sulfide remains in other steps such as the sulfurizing agent removing step S30 and the wastewater treatment step S20, or if a harmful gas that cannot be discharged to the outside of the system is generated, the abatement tower is used. After removing the harmful gas with a facility that removes harmful gas such as, it may be discharged into the atmosphere. Further, the post-sulfide liquid after treatment may be used as a cleaning liquid for treatment in the solid-liquid separation step S12.

以下に、本発明について実施例を示して具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.

(実施例1~8及び比較例1~4)
図1に示すニッケル酸化鉱石の湿式製錬プロセスで、硫化後液の硫化水素の除去操作を行った。具体的には、図1に示すように、先ず、浸出工程S11において、ニッケル酸化鉱石のスラリーをオートクレーブに装入し、高温高圧下で硫酸を用いて浸出処理を施すことによって浸出液と浸出残渣とを含有する浸出スラリーを得て、固液分離工程S12において、浸出工程S11で得られた浸出スラリーに、中和剤として炭酸カルシウムを添加して中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得て(予備中和工程S121)、得られた水酸化鉄(III)を含む浸出スラリーを固液分離処理して浸出液と水酸化鉄(III)を含む浸出残渣スラリーとを得た(分離工程S122)。
(Examples 1 to 8 and Comparative Examples 1 to 4)
In the hydrometallurgical process of nickel oxide ore shown in FIG. 1, the operation of removing hydrogen sulfide in the post-sulfidation liquid was performed. Specifically, as shown in FIG. 1, first, in the leaching step S11, a slurry of nickel oxide ore is charged into an autoclave and leached with sulfuric acid under high temperature and high pressure to form a leachate and a leachate residue. In the solid-liquid separation step S12, calcium carbonate is added as a neutralizing agent to the leaching slurry obtained in the leaching step S11 to neutralize iron (III) hydroxide. A leached slurry containing iron (III) hydroxide is obtained by producing (preliminary neutralization step S121), and the obtained leached slurry containing iron (III) hydroxide is subjected to solid-liquid separation treatment to obtain a leachate and iron hydroxide (preliminary neutralization step S121). A leachate residue slurry containing III) was obtained (separation step S122).

次に、浸出液に対して不純物を中和除去した(中和工程S13)。そして、硫化工程S14で、中和工程S13で得られた中和終液に硫化剤として硫化水素ガスを添加して生成した亜鉛硫化物を分離し(脱亜鉛工程)、脱亜鉛工程後に硫化剤として硫化水素ガスを添加して生成したニッケル硫化物を回収した(ニッケル回収工程)。この硫化工程S14における硫化反応により、中和終液中のニッケル及びコバルトが硫化され、ニッケル・コバルト混合硫化物が生成した。生成した硫化物は、硫化処理後のスラリーをシックナーにより固液分離して回収した。 Next, impurities were neutralized and removed from the leachate (neutralization step S13). Then, in the sulfurization step S14, the zinc sulfide produced by adding hydrogen sulfide gas as a sulfurizing agent to the neutralizing final solution obtained in the neutralization step S13 is separated (dezincination step), and after the dezincination step, the sulfurizing agent is separated. The nickel sulfide produced by adding hydrogen sulfide gas was recovered (nickel recovery step). By the sulfurization reaction in this sulfurization step S14, nickel and cobalt in the neutralization final liquid were sulfurized, and a nickel-cobalt mixed sulfurized product was produced. The sulfurized product produced was recovered by solid-liquid separation of the sulfurized slurry with a thickener.

一方、硫化物を分離回収した後の硫化後液に溶存する硫化水素の濃度は20~400質量ppmであった。そこで、その硫化後液に溶存する硫化水素を除去する処理を行った(硫化剤除去工程S30)。 On the other hand, the concentration of hydrogen sulfide dissolved in the post-sulfide liquid after the sulfide was separated and recovered was 20 to 400 mass ppm. Therefore, a treatment was performed to remove the hydrogen sulfide dissolved in the after-sulfurized liquid (sulfide agent removing step S30).

硫化水素の除去処理(硫化剤除去工程S30)においては、ニッケル酸化鉱石の湿式製錬プロセスの固液分離工程S12で得られた浸出残渣スラリーに対して中和剤(塩基性化合物)として炭酸カルシウムと水酸化カルシウムを添加してpHを8.5~9.5にし(排水処理工程S20)、得られた排水処理工程S20後の浸出残渣スラリー、すなわち水酸化鉄(III)を含む浸出残渣を、硫化後液に供給した。なお、全ての実施例1~8及び比較例1~4において水酸化鉄(III)を含む浸出残渣を添加し硫酸を添加しなかった。浸出スラリー中の遊離硫酸の量を変更して、各実施例1~8及び比較例1~4の浸出スラリー中のFe3+濃度を変更した。 In the hydrogen sulfide removal treatment (sulfide removal step S30), calcium carbonate is used as a neutralizing agent (basic compound) for the leachate residue slurry obtained in the solid-liquid separation step S12 of the wet smelting process of nickel oxide ore. And calcium hydroxide were added to adjust the pH to 8.5 to 9.5 (wastewater treatment step S20), and the leached residue slurry after the obtained wastewater treatment step S20, that is, the leached residue containing iron (III) hydroxide was obtained. , Supply to the liquid after sulfidation. In all Examples 1 to 8 and Comparative Examples 1 to 4, the leachate residue containing iron (III) hydroxide was added and sulfuric acid was not added. The amount of free sulfuric acid in the leaching slurry was changed to change the Fe 3+ concentration in the leaching slurry of Examples 1 to 8 and Comparative Examples 1 to 4.

なお、硫化剤除去工程S30は、水酸化鉄(III)を含む浸出残渣を添加した後の硫化後液を、撹拌するとともに空気を吹き込む曝気槽で行った。また、硫化剤除去工程S30後の曝気槽中のガスを除害塔に移送し、除害塔で水酸化ナトリウムに接触させた後に、除害塔の排気ガス排出口から排ガスとして排出した。また、硫化剤除去工程S30を経た硫化後液は、排水処理工程S20へ払い出した。 The sulfurizing agent removing step S30 was carried out in an aeration tank in which the post-sulfurized liquid after adding the leachate residue containing iron (III) hydroxide was stirred and air was blown into it. Further, the gas in the aeration tank after the sulfide removing step S30 was transferred to the abatement tower, brought into contact with sodium hydroxide in the abatement tower, and then discharged as exhaust gas from the exhaust gas discharge port of the abatement tower. Further, the post-sulfurized liquid that has passed through the sulfurizing agent removing step S30 was discharged to the wastewater treatment step S20.

なお、硫化剤除去工程S30に供給する硫化後液は、ニッケル濃度が0.02~0.10g/L、鉄濃度が0.6~1.4g/L、アルミニウム濃度が3.5~8.0g/L、マグネシウム濃度が3.5~8.5g/Lであった。 The post-sulfurized liquid supplied to the sulfide removing step S30 has a nickel concentration of 0.02 to 0.10 g / L, an iron concentration of 0.6 to 1.4 g / L, and an aluminum concentration of 3.5 to 8. The magnesium concentration was 3.5 to 8.5 g / L at 0 g / L.

また、硫化後液に添加した水酸化鉄(III)を含む浸出残渣は、中和処理残渣(排水処理殿物)及び溶液(排水処理終液)からなる。そして、該中和処理残渣(排水処理殿物)は、比重1.15~1.35g/cm、固形分濃度20~35質量%、鉄品位35~45質量%であった。また、該溶液(排水処理終液)は、ニッケル濃度が0.1mg/L以下、コバルト濃度が0.05mg/L以下、鉄濃度が0.1mg/L以下であった。 The leaching residue containing iron (III) hydroxide added to the post-sulfurized liquid is composed of a neutralization treatment residue (wastewater treatment wastewater) and a solution (wastewater treatment final liquid). The neutralization treatment residue (wastewater treatment product) had a specific gravity of 1.15 to 1.35 g / cm 3 , a solid content concentration of 20 to 35% by mass, and an iron grade of 35 to 45% by mass. The solution (wastewater treatment final solution) had a nickel concentration of 0.1 mg / L or less, a cobalt concentration of 0.05 mg / L or less, and an iron concentration of 0.1 mg / L or less.

また、操業変動の影響を抑えるために、ニッケル回収工程に供給される始液流量は1200~1400m/Hrかつ始液温度は73℃、硫化剤除去工程S30に供給される硫化後液の流量は500~700m/Hr、排水処理工程S20に払い出される硫化剤除去工程S30後の硫化後液の流量は500~700m/Hr、硫化後液に添加する水酸化鉄(III)を含む浸出残渣の供給流量は40~50m/Hr、曝気槽のエアレーション流量は2700~3100Nm/Hrとした。 Further, in order to suppress the influence of operational fluctuations, the starting liquid flow rate supplied to the nickel recovery process is 1200 to 1400 m 3 / Hr, the starting liquid temperature is 73 ° C., and the flow rate of the after-sulfurized liquid supplied to the sulfide removing step S30. Is 500 to 700 m 3 / Hr, the flow rate of the post-sulfurized liquid after the sulfide removal step S30 discharged to the wastewater treatment step S20 is 500 to 700 m 3 / Hr, and leaching containing iron (III) hydroxide added to the post-sulfurized liquid. The supply flow rate of the residue was 40 to 50 m 3 / Hr, and the aeration flow rate of the aeration tank was 2700 to 3100 Nm 3 / Hr.

浸出スラリー中のFe3+濃度、及び、排気ガス排出口の排ガス中の硫化水素ガス濃度の測定結果を、表1及び図3に示す。なお、硫化剤除去工程S30後の処理後硫化後液のpHは1.5~2.0であった。 Tables 1 and 3 show the measurement results of the Fe 3+ concentration in the leachate slurry and the hydrogen sulfide gas concentration in the exhaust gas of the exhaust gas outlet. The pH of the post-sulfidation solution after the treatment after the sulfurizing agent removing step S30 was 1.5 to 2.0.

表1及び図3に示すように、硫化剤除去工程S30において浸出残渣スラリー(水酸化鉄(III)を含む浸出残渣)を添加し、浸出スラリー中のFe3+濃度が2.90g/L以上であった実施例1~8では、浸出スラリー中のFe3+濃度が2.90g/L未満の比較例1~4に比べて、硫化水素ガス濃度が低く、硫化水素を大幅に低減させることができることが分かった。 As shown in Table 1 and FIG. 3, a leachate residue slurry (a leachate residue containing iron (III) hydroxide) is added in the sulfurizing agent removing step S30, and the Fe 3+ concentration in the leachate slurry is 2.90 g / L or more. In Examples 1 to 8, the hydrogen sulfide gas concentration is lower and hydrogen sulfide can be significantly reduced as compared with Comparative Examples 1 to 4 in which the Fe 3+ concentration in the leachate slurry is less than 2.90 g / L. I understood.

Figure 0007087601000001
Figure 0007087601000001

Claims (7)

ニッケル酸化鉱石を硫酸により220℃~280℃の温度下で、加圧しながら酸浸出して得られる浸出スラリーを固液分離してニッケルを含む浸出液と浸出残渣とを得て、該浸出液に対し硫化剤により硫化処理を施してニッケルの硫化物と硫化後液とを生成させる湿式製錬プロセスにおいて、該ニッケルの硫化物を分離して得られた硫化後液中に溶存する硫化剤を除去する硫化剤の除去方法であって、
前記酸浸出では、得られる浸出スラリー中のFe3+濃度を2.9g/L以上3.6g/L以下にし、
前記固液分離では、前記浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得た後、該水酸化鉄(III)を含む浸出スラリーを固液分離処理してニッケルを含む浸出液と水酸化鉄(III)を含む浸出残渣とを得、
前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣を添加することにより、該硫化後液に含まれる硫化剤を固定化し除去する
硫化剤の除去方法。
The leachate slurry obtained by acid leaching the nickel oxide ore with sulfuric acid at a temperature of 220 ° C to 280 ° C while pressurizing is solid-liquid separated to obtain a leachate containing nickel and a leachate residue, which is sulfurized with respect to the leachate. In a hydrometallurgical process in which sulfurization treatment is performed with an agent to generate a sulfurized nickel and a post-sulfide liquid, sulfurization is performed to remove the sulfurizing agent dissolved in the post-sulfide liquid obtained by separating the sulfurized nickel. It ’s a method of removing the agent.
In the acid leaching, the Fe 3+ concentration in the obtained leaching slurry is set to 2.9 g / L or more and 3.6 g / L or less .
In the solid-liquid separation, the leached slurry is neutralized to generate iron (III) hydroxide to obtain a leached slurry containing iron (III) hydroxide, and then the iron (III) hydroxide is contained. The leachate slurry was subjected to solid-liquid separation treatment to obtain a leachate containing nickel and a leachate residue containing iron (III) hydroxide.
A method for removing a sulfurizing agent, which fixes and removes the sulfurizing agent contained in the post-sulfurizing liquid by adding a leachate residue containing the iron (III) hydroxide to the post-sulfurizing liquid.
前記浸出スラリーに対する固液分離により得られた前記水酸化鉄(III)を含む浸出残渣を、前記湿式製錬プロセスにおける、前記硫化後液に対して中和処理を施すことで無害化する排水処理に供し
前記硫化後液に対して、前記排水処理後の前記水酸化鉄(III)を含む浸出残渣を添加する
請求項1に記載の硫化剤の除去方法。
Wastewater treatment for detoxifying the leachate residue containing the iron (III) hydroxide obtained by solid-liquid separation of the leachate slurry by neutralizing the post-sulfurized liquid in the wet smelting process. The method for removing a sulfide agent according to claim 1, wherein a leachate residue containing the iron (III) hydroxide after the wastewater treatment is added to the post-sulfurized liquid.
前記浸出スラリーに対する中和処理では、前記浸出スラリーのpHを2.5~3.2にする、
請求項1又は2に記載の硫化剤の除去方法。
In the neutralization treatment for the leaching slurry, the pH of the leaching slurry is set to 2.5 to 3.2.
The method for removing a sulfurizing agent according to claim 1 or 2.
前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣とともに硫酸を添加する
請求項1乃至3のいずれかに記載の硫化剤の除去方法。
The method for removing a sulfurizing agent according to any one of claims 1 to 3, wherein sulfuric acid is added to the post-sulfurized liquid together with the leachate residue containing iron (III) hydroxide.
前記硫化後液は、ニッケルイオン濃度が0.02~0.10g/Lであり、鉄、マンガン、マグネシウム、アルミニウム及びクロムから選択される少なくとも一種を含む硫酸酸性溶液である
請求項1乃至4のいずれかに記載の硫化剤の除去方法。
The post-sulfurized solution is a sulfuric acid acidic solution having a nickel ion concentration of 0.02 to 0.10 g / L and containing at least one selected from iron, manganese, magnesium, aluminum and chromium, according to claims 1 to 4. The method for removing a sulfurizing agent according to any one.
前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣を添加するとともに、エアレーションを行う
請求項1乃至5のいずれかに記載の硫化剤の除去方法。
The method for removing a sulfurizing agent according to any one of claims 1 to 5, wherein the leachate residue containing the iron (III) hydroxide is added to the after-sulfurized liquid and aeration is performed.
ニッケル酸化鉱石を硫酸により220℃~280℃の温度下で、加圧しながら酸浸出して浸出スラリーを得る浸出工程と、浸出工程で得られた前記浸出スラリーを固液分離してニッケルを含む浸出液と浸出残渣とを得る固液分離工程と、固液分離工程で得られた前記浸出液に中和剤を添加してニッケルを含む中和終液と不純物元素を含む中和澱物とを得る中和工程と、中和工程で得られた前記中和終液に対し硫化剤により硫化処理を施してニッケルの硫化物と硫化後液とを得る硫化工程と、前記ニッケルの硫化物を分離して得られた前記硫化後液に含まれる硫化剤を固定化し除去する硫化剤除去工程と、を有するニッケル酸化鉱石の湿式製錬方法であって、
前記固液分離工程は、前記浸出工程で得られた前記浸出スラリーに中和処理を施して水酸化鉄(III)を生成させて水酸化鉄(III)を含む浸出スラリーを得る予備中和工程、及び、該予備中和工程で得られた前記水酸化鉄(III)を含む浸出スラリーを固液分離処理して浸出液と水酸化鉄(III)を含む浸出残渣とを得る分離工程を有し、
前記浸出工程では、前記浸出スラリー中のFe3+濃度を2.9g/L以上3.6g/L以下にし、
前記硫化剤除去工程では、前記ニッケルの硫化物を分離して得られた前記硫化後液に対して、前記水酸化鉄(III)を含む浸出残渣を添加することにより、前記硫化後液に含まれる硫化剤を固定化し除去する
ニッケル酸化鉱石の湿式製錬方法。
A leaching step of leaching nickel oxide ore with sulfuric acid at a temperature of 220 ° C. to 280 ° C. to obtain a leaching slurry while pressurizing, and a leaching solution containing nickel by solid-liquid separation of the leaching slurry obtained in the leaching step. In the solid-liquid separation step for obtaining the leaching residue and the neutralizing final solution containing nickel and the neutralizing starch containing an impurity element by adding a neutralizing agent to the leachate obtained in the solid-liquid separation step. The Japanese step, the sulfide step of subjecting the neutralized final solution obtained in the neutralization step to a sulfide treatment with a sulfide agent to obtain a nickel sulfide and a post-sulfurized solution, and the nickel sulfide are separated. A wet smelting method for nickel oxide ore, comprising a sulfide removing step of fixing and removing the sulfide contained in the obtained post-sulfurization liquid.
The solid-liquid separation step is a pre-neutralization step of subjecting the leaching slurry obtained in the leaching step to an iron hydroxide (III) to generate an leached slurry containing iron (III) hydroxide. And, the leaching slurry containing the iron (III) hydroxide obtained in the pre-neutralization step is subjected to solid-liquid separation treatment to obtain a leaching solution and a leaching residue containing iron (III) hydroxide. ,
In the leaching step, the Fe 3+ concentration in the leaching slurry is set to 2.9 g / L or more and 3.6 g / L or less .
In the sulfurizing agent removing step, a leachate residue containing iron (III) hydroxide is added to the post-sulfide liquid obtained by separating the sulfide of nickel, so that the liquid is contained in the post-sulfide liquid. A wet smelting method for nickel oxide ore that immobilizes and removes the sulfurizing agent.
JP2018073533A 2018-04-06 2018-04-06 Sulfide removal method and nickel oxide ore hydrometallurgy method Active JP7087601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018073533A JP7087601B2 (en) 2018-04-06 2018-04-06 Sulfide removal method and nickel oxide ore hydrometallurgy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018073533A JP7087601B2 (en) 2018-04-06 2018-04-06 Sulfide removal method and nickel oxide ore hydrometallurgy method

Publications (2)

Publication Number Publication Date
JP2019181349A JP2019181349A (en) 2019-10-24
JP7087601B2 true JP7087601B2 (en) 2022-06-21

Family

ID=68338703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018073533A Active JP7087601B2 (en) 2018-04-06 2018-04-06 Sulfide removal method and nickel oxide ore hydrometallurgy method

Country Status (1)

Country Link
JP (1) JP7087601B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276033B2 (en) 2003-09-10 2009-06-10 西松建設株式会社 Fixing material injection pipe and cap
WO2009114903A1 (en) 2008-03-20 2009-09-24 Bhp Billiton Ssm Development Pty Ltd Process for the recovery of nickel and/or cobalt from high ferrous content laterite ores
JP2014177391A (en) 2013-02-15 2014-09-25 Sumitomo Metal Mining Co Ltd Method for recovering scandium
JP2015206068A (en) 2014-04-18 2015-11-19 住友金属鉱山株式会社 Wet smelting method of nickel oxide ore
WO2017094308A1 (en) 2015-12-01 2017-06-08 住友金属鉱山株式会社 Sulfurizing agent removal method
JP2017115231A (en) 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for removing sulfurizing agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276033A (en) * 1991-02-28 1992-10-01 Nisshin Steel Co Ltd Treatment of magnesia nickel silicate ore
JP2004089915A (en) * 2002-09-02 2004-03-25 Sumitomo Metal Mining Co Ltd Method for removing dissolved hydrogen sulfide
JP5403033B2 (en) * 2011-11-01 2014-01-29 住友金属鉱山株式会社 Method for hydrometallizing nickel oxide ore

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276033B2 (en) 2003-09-10 2009-06-10 西松建設株式会社 Fixing material injection pipe and cap
WO2009114903A1 (en) 2008-03-20 2009-09-24 Bhp Billiton Ssm Development Pty Ltd Process for the recovery of nickel and/or cobalt from high ferrous content laterite ores
JP2014177391A (en) 2013-02-15 2014-09-25 Sumitomo Metal Mining Co Ltd Method for recovering scandium
JP2015206068A (en) 2014-04-18 2015-11-19 住友金属鉱山株式会社 Wet smelting method of nickel oxide ore
WO2017094308A1 (en) 2015-12-01 2017-06-08 住友金属鉱山株式会社 Sulfurizing agent removal method
JP2017115231A (en) 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for removing sulfurizing agent

Also Published As

Publication number Publication date
JP2019181349A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP2010126778A (en) Method for producing sulfide containing nickel and cobalt
EP3279344B1 (en) Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method
JP6953988B2 (en) How to remove sulfide
WO2017110572A1 (en) Method for removing sulfidizing agent
WO2016194709A1 (en) Free acid-removing equipment, free acid-removing method, and method for manufacturing mixed nickel and cobalt sulfide
JP5892301B2 (en) Neutralization method in the hydrometallurgy of nickel oxide ore
JP7238686B2 (en) Neutralization method
WO2013187367A1 (en) Neutralization method
JP6036875B2 (en) Method for hydrometallizing nickel oxide ore
JP6724351B2 (en) How to remove sulfiding agent
JP7087601B2 (en) Sulfide removal method and nickel oxide ore hydrometallurgy method
JP7147362B2 (en) Method for reducing odor in hydrometallurgy of nickel oxide ore
JP7293873B2 (en) Method for producing nickel sulfide, hydrometallurgical method for nickel oxide ore
JP2017061733A (en) Hydrometallurgical process of nickel oxide ore and exudation treatment facility
JP2020028858A (en) Final neutralization method in wet refining process for nickel oxide ore
JP7508977B2 (en) Dezincification treatment method, nickel oxide ore hydrometallurgy method
JP2018079435A (en) Neutralization treatment method
JP6206518B2 (en) Neutralization treatment method, nickel oxide ore hydrometallurgy method
JP2022104019A (en) Neutralization treatment method, and hydrometallurgical method of nickel oxidized ore
JP2019077928A (en) Neutralization treatment method and wet refining method of nickel oxide ore
JP2019157161A (en) Wet-type smelting process for nickel oxide ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150