JP2004089915A - Method for removing dissolved hydrogen sulfide - Google Patents

Method for removing dissolved hydrogen sulfide Download PDF

Info

Publication number
JP2004089915A
JP2004089915A JP2002256897A JP2002256897A JP2004089915A JP 2004089915 A JP2004089915 A JP 2004089915A JP 2002256897 A JP2002256897 A JP 2002256897A JP 2002256897 A JP2002256897 A JP 2002256897A JP 2004089915 A JP2004089915 A JP 2004089915A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
solution
compound
reaction
trivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256897A
Other languages
Japanese (ja)
Inventor
Chu Kobayashi
小林 宙
Masaki Imamura
今村 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002256897A priority Critical patent/JP2004089915A/en
Publication of JP2004089915A publication Critical patent/JP2004089915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and economically oxidizing and fixing hydrogen sulfide from a solution in which hydrogen sulfide is dissolved. <P>SOLUTION: A trivalent Fe compound is added to a solution containing hydrogen sulfide to adjust not only the pH of the solution to 3 or less but also ORP (oxidation-reduction potential) to 0 mV (Ag/AgCl electrode reference) or more to fix hydrogen sulfide dissolved in the solution in a sulfur form. Reaction is preferably performed for 30 min or more. The Fe compound is iron hydroxide and the concentration thereof in the solution is preferably becomes 1 g/l or more with respect to an Fe amount. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶液中に溶存する硫化水素を酸化固定して除去する方法に関する。
【0002】
【従来の技術】
溶液中に溶存する硫化水素の除去は、主に除害処理を目的として行われ、その手段として、酸化剤よる酸化固定、エアレーションによる曝気、あるいは、減圧、溶液の酸濃度の上昇等による溶解度の低下を利用する方法が一般的に用いられている。しかし、これらの方法は効果的である反面、実施にあたって設備または操業資材が大きくなる傾向がある。
【0003】
たとえば、酸化剤による酸化固定を行う方法では、固定酸化剤として液体である過酸化水素を用いる方法が、酸化反応速度が大きく、現実的な操業資材として考えられるが、過酸化水素は高価であるためコストがかかる。
【0004】
一方、硫化水素の溶解度を低減させる方法においては、エアレーション曝気においてはブロワーを必要とし、減圧する場合であれば密閉できる反応槽と減圧ポンプなどを必要とし、さらに、基本的に硫化水素が発生することから、その除害のために苛性ソーダ等のアルカリによるガスの吸収塔なども必要となる。そのため、大規模な設備が必要とされる。
【0005】
【発明が解決しようとする課題】
本発明の目的は、硫化水素が溶存する溶液から、硫化水素を簡単かつ経済的に酸化固定して除去する方法を提供することにある。
【0006】
【課題を解決するための手段】
この目的を達成するために、本発明は、硫化水素を含む溶液中に3価のFe化合物を添加し、pHを3以下とし、かつ、ORPを0mV(Ag/AgCl電極基準)以上として、硫化水素と3価のFe化合物を反応させることにより、溶液に溶存する硫化水素を固定して、大気中に有毒である硫化水素ガスを放出することなく、迅速に酸化固定し除去しうる非常に簡単な一連の湿式工程を提供する。
【0007】
なお、硫化水素と3価のFe化合物は30分間以上反応させることが好ましい。また、Fe化合物は、水酸化鉄であることが好ましく、さらに、水酸化鉄の溶液中濃度が、Fe量にして1g/l以上となるようにすることが好ましい。
【0008】
【発明の実施の形態】
本発明は、3価のFe化合物が、酸性溶液中で溶解して、硫化水素を酸化することによって、該溶液中に硫化水素を固定除去しうることに基づいている。その酸化反応を、次式(式1)に示す。
【0009】
【式1】

Figure 2004089915
固定とは、安定な物質に変換することであり、本発明では、反応で生じたSは硫黄として沈澱し除去できる。
【0010】
3価のFe化合物には、代表的には、鉄を含む酸性溶液を炭酸カルシウムまたは消石灰で中和する酸化脱Fe工程で得られる水酸化鉄:Fe(OH)がある。湿式製錬を行う工場においては、工程内の廃棄物として水酸化鉄を容易に入手しうる。
【0011】
水酸化鉄の場合では、Fe化合物の酸性溶液中濃度は、Fe基準で1.0g/l以上、好ましくは、1.2g/l以上とすることが望ましい。1.0g/l未満では、溶存する硫化水素を完全に固定することができない。
【0012】
すなわち、反応のORP(酸化還元電圧)は添加混合するFe化合物量により制御可能であり、この値は、0mV以上であることが必要である。ORPは反応の進行度合いを示し、この範囲以下では十分な固定反応が起らない。水酸化鉄の場合には、添加濃度をFe量にして1.0g/l以上とすることで、ORPを0mV以上にできる。
【0013】
なお、反応の時間は30分程度あることが必要である。この範囲以下の場合、酸化固定反応が十分に完了せず、硫化水素が完全に固定されない。
【0014】
また、pHは、3以下に制御する必要がある。Feイオンの溶解を促進し、反応速度を増加させるためである。ただし、さらに酸濃度を上昇させ、pHを低下させても、反応は可能であるが、あまりpHを低下させると硫化水素の溶解度が低下し、本発明を採用する意味が薄れる。従って、pH1〜3程度が好ましい。
【0015】
このように、反応時のORPを制御し、必要な時間の反応を行うことにより、任意の3価の鉄化合物の添加により本発明は達成される。ただし、上記の水酸化鉄のように工程内の廃棄物として容易に得られるものがコストの面で好ましい。他に、オートクレーブ浸出工程の残渣であるヘマタイトが考えられる。ただし、ヘマタイトは3価の鉄化合物ではあるが、安定な化合物であり、その反応性が劣るため、ヘマタイトを大過剰に加えるか、pHをかなり下げて、溶解するFe3+イオンを増やす必要がある。大過剰に加える場合、実操業にて攪拌、送液に大きな装置を用いる必要が生じ不利であり、pHを下げた場合、下げた分の中和にコストがかかるため現実には実施しにくい。したがって、使用する3価の鉄化合物としては、水酸化鉄がより好ましい。
【0016】
【実施例】
(実施例1)
300mlのビーカーに、表1の組成の硫化水素溶存溶液200mlを入れ、中和脱Fe澱物である水分率45.3%、Fe品位9.0%の水酸化鉄(Fe(OH))をその添加濃度がFe量にして1.2g/lとなるように加えた。スターラーにて中の液にエアーを噛まないよう注意して攪拌しながら、反応温度68〜71℃、反応pHが1.9〜2.5の範囲内となる条件で、30分間の反応を行った。その結果を表2に示す。
【0017】
(実施例2)
水酸化鉄の添加濃度をFe量にして2.5g/lとなるように水酸化鉄を加えた以外は、実施例1と同様に反応を行った。その結果を表2に示す。
【0018】
(比較例1)
300mlのビーカーに、表1の組成の硫化水素溶存溶液200mlを入れ、全くFe化合物の添加を行わずに、スターラーにて中の液にエアーを噛まないようにして注意して攪拌を30分間行った。その結果を表2に示す。
【0019】
(比較例2)
反応時間を15分間とした以外は実施例1と同様に反応を行った。その結果を表2に示す。
【0020】
(実施例3〜4)
300mlのビーカーに、表1の組成の硫化水素溶存溶液200mlを入れ、オートクレーブ浸出残渣である水分率30.7%、Fe品位50.0%のヘマタイト(Fe)をその添加濃度がFe量にして17.3g/lとなるように加えた。スターラーにて中の液にエアーを噛まないように注意して攪拌しながら、反応温度68〜71℃、反応pHが1.9〜2.5の範囲内となる条件で、30分間の反応を行った。その結果を表2に示す。
【0021】
また、ヘマタイトの添加濃度がFe量にして52.0g/lとなるようにしたものについても同様に反応を行った。
【0022】
(比較例3〜5)
ヘマタイトの添加量を、Fe量にして1.2、2.4、8.7とした以外は、実施例3と同様に反応を行った。その結果を表2に示す。
【0023】
【表1】
Figure 2004089915
【0024】
【表2】
Figure 2004089915
【0025】
反応時間を30分として比較した場合、比較例1のように全くFe化合物の添加を行わなければ、徐々に溶液から気化または、酸化されて減量していくものの、硫化水素を完全には固定することができない。
【0026】
実施例1および2に示すように、水酸化鉄の場合、1.2g/l以上のFe濃度となるようにスラリーを添加することにより、完全に硫化水素を固定することができる。ただし、比較例2のように、反応時間が30分未満では、硫化水素を完全に固定できない。
【0027】
一方、実施例3および4のように、ヘマタイトの場合は17.3g/l以上とスラリー濃度を非常に高くして反応させた場合には、硫化水素を完全に固定しうるが、比較例3〜5に示すように、それ未満の低いスラリー濃度では、硫化水素を完全には固定できない。
【0028】
また、Fe化合物の添加量を変化させることにより、反応のORPを調整することができる。硫化水素の固定を確実に行うためには、各実施例のようにORPを0mV(Ag/AgCl電極基準)以上とする必要がある。
【0029】
【発明の効果】
以上のように、本発明では、硫化水素が溶存する溶液に3価のFe化合物(Fe(OH)等)を混合することにより、簡単にかつ経済的に硫化水素を酸化固定し除去しうる一連の湿式工程を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for oxidatively fixing and removing hydrogen sulfide dissolved in a solution.
[0002]
[Prior art]
Removal of hydrogen sulfide dissolved in the solution is mainly performed for the purpose of detoxification treatment. As a means, oxidative fixation with an oxidizing agent, aeration by aeration, or reduction of solubility due to reduced pressure, increase in acid concentration of the solution, etc. A method that utilizes reduction is generally used. However, while these methods are effective, they tend to require larger equipment or operating materials for implementation.
[0003]
For example, in a method of performing oxidative fixation using an oxidizing agent, a method using liquid hydrogen peroxide as a fixed oxidizing agent has a high oxidation reaction rate and is considered as a practical operating material, but hydrogen peroxide is expensive. Costs.
[0004]
On the other hand, in the method of reducing the solubility of hydrogen sulfide, a blower is required for aeration aeration, and in the case of depressurization, a sealed reaction tank and a decompression pump are required, and further, hydrogen sulfide is basically generated. Therefore, a tower for absorbing a gas with an alkali such as caustic soda is required for the elimination. Therefore, large-scale equipment is required.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for easily and economically oxidatively fixing and removing hydrogen sulfide from a solution in which hydrogen sulfide is dissolved.
[0006]
[Means for Solving the Problems]
In order to achieve this object, the present invention relates to a method of adding a trivalent Fe compound to a solution containing hydrogen sulfide, setting the pH to 3 or less, and setting the ORP to 0 mV (based on the Ag / AgCl electrode) or more. By reacting hydrogen with a trivalent Fe compound, hydrogen sulfide dissolved in the solution is fixed, and it can be quickly oxidized and fixed without removing toxic hydrogen sulfide gas into the atmosphere. A series of wet processes.
[0007]
Preferably, the hydrogen sulfide and the trivalent Fe compound are reacted for 30 minutes or more. Further, the Fe compound is preferably iron hydroxide, and more preferably, the concentration of the iron hydroxide in the solution is 1 g / l or more in terms of Fe amount.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is based on the fact that a trivalent Fe compound dissolves in an acidic solution and oxidizes hydrogen sulfide, whereby hydrogen sulfide can be fixedly removed in the solution. The oxidation reaction is shown in the following equation (Equation 1).
[0009]
(Equation 1)
Figure 2004089915
Immobilization means conversion to a stable substance, and in the present invention, S generated in the reaction precipitates as sulfur and can be removed.
[0010]
The trivalent Fe compound typically includes iron hydroxide: Fe (OH) 3 obtained in an oxidative de-Fe process in which an acidic solution containing iron is neutralized with calcium carbonate or slaked lime. In a factory that performs hydrometallurgy, iron hydroxide can be easily obtained as waste in the process.
[0011]
In the case of iron hydroxide, the concentration of the Fe compound in the acidic solution is preferably 1.0 g / l or more, more preferably 1.2 g / l or more based on Fe. If it is less than 1.0 g / l, dissolved hydrogen sulfide cannot be completely fixed.
[0012]
That is, the ORP (oxidation-reduction voltage) of the reaction can be controlled by the amount of the Fe compound added and mixed, and this value needs to be 0 mV or more. ORP indicates the degree of progress of the reaction, and below this range, a sufficient fixation reaction does not occur. In the case of iron hydroxide, the ORP can be made 0 mV or more by setting the addition concentration to 1.0 g / l or more in terms of Fe amount.
[0013]
The reaction time needs to be about 30 minutes. If it is below this range, the oxidative fixation reaction will not be sufficiently completed, and hydrogen sulfide will not be completely fixed.
[0014]
Further, the pH needs to be controlled to 3 or less. This is for accelerating the dissolution of Fe ions and increasing the reaction rate. However, the reaction is possible even if the acid concentration is further raised and the pH is lowered, but if the pH is lowered too much, the solubility of hydrogen sulfide is lowered, and the significance of adopting the present invention is diminished. Therefore, the pH is preferably about 1 to 3.
[0015]
Thus, by controlling the ORP during the reaction and conducting the reaction for a required time, the present invention can be achieved by adding an arbitrary trivalent iron compound. However, those easily obtained as waste in the process, such as the above-mentioned iron hydroxide, are preferable in terms of cost. Another possibility is hematite, which is a residue of the autoclave leaching step. However, although hematite is a trivalent iron compound, it is a stable compound and its reactivity is inferior. Therefore, it is necessary to add hematite in a large excess or considerably lower the pH to increase the amount of dissolved Fe 3+ ions. . If it is added in a large excess, it is disadvantageous because a large apparatus must be used for stirring and liquid sending in actual operation, and when the pH is lowered, it is difficult to neutralize the lowered amount because it is costly to neutralize the lowered amount. Therefore, iron hydroxide is more preferable as the trivalent iron compound to be used.
[0016]
【Example】
(Example 1)
200 ml of a hydrogen sulfide-dissolved solution having the composition shown in Table 1 was placed in a 300 ml beaker, and iron hydroxide (Fe (OH) 2 ) having a water content of 45.3% and a Fe grade of 9.0%, which is a neutralized de-Fe precipitate. Was added so that the concentration of Fe was 1.2 g / l in terms of the amount of Fe. The reaction is carried out for 30 minutes at a reaction temperature of 68 to 71 ° C. and a reaction pH within a range of 1.9 to 2.5 while stirring with care by a stirrer so that air does not bite into the liquid inside. Was. Table 2 shows the results.
[0017]
(Example 2)
The reaction was carried out in the same manner as in Example 1 except that iron hydroxide was added so that the concentration of iron hydroxide added was 2.5 g / l in terms of the amount of Fe. Table 2 shows the results.
[0018]
(Comparative Example 1)
In a 300 ml beaker, 200 ml of the hydrogen sulfide-dissolved solution having the composition shown in Table 1 was added, and stirring was carried out for 30 minutes without adding an Fe compound at all by using a stirrer and taking care not to bite air into the liquid. Was. Table 2 shows the results.
[0019]
(Comparative Example 2)
The reaction was carried out in the same manner as in Example 1, except that the reaction time was changed to 15 minutes. Table 2 shows the results.
[0020]
(Examples 3 and 4)
200 ml of a hydrogen sulfide-dissolved solution having the composition shown in Table 1 was placed in a 300 ml beaker, and hematite (Fe 2 O 3 ) having a moisture content of 30.7% and an Fe grade of 50.0%, which was an autoclave leaching residue, was added at a concentration of Fe. It was added to give a volume of 17.3 g / l. The reaction is carried out for 30 minutes at a reaction temperature of 68 to 71 ° C. and a reaction pH of 1.9 to 2.5 while stirring with care using a stirrer so that air does not bite into the liquid inside. went. Table 2 shows the results.
[0021]
In addition, a reaction was performed in the same manner for the case where the addition concentration of hematite was adjusted to 52.0 g / l in terms of Fe amount.
[0022]
(Comparative Examples 3 to 5)
The reaction was carried out in the same manner as in Example 3, except that the amount of hematite added was changed to 1.2, 2.4, and 8.7 in terms of the amount of Fe. Table 2 shows the results.
[0023]
[Table 1]
Figure 2004089915
[0024]
[Table 2]
Figure 2004089915
[0025]
When the reaction time is compared with 30 minutes, if no Fe compound is added as in Comparative Example 1, the solution is gradually vaporized or oxidized to reduce its weight, but hydrogen sulfide is completely fixed. I can't.
[0026]
As shown in Examples 1 and 2, in the case of iron hydroxide, hydrogen sulfide can be completely fixed by adding a slurry so that the Fe concentration becomes 1.2 g / l or more. However, as in Comparative Example 2, if the reaction time is less than 30 minutes, hydrogen sulfide cannot be completely fixed.
[0027]
On the other hand, as in Examples 3 and 4, when hematite was reacted at a very high slurry concentration of 17.3 g / l or more, hydrogen sulfide could be completely fixed. As shown in 〜5, at a lower slurry concentration, hydrogen sulfide cannot be completely fixed.
[0028]
The ORP of the reaction can be adjusted by changing the amount of the Fe compound added. In order to reliably fix hydrogen sulfide, the ORP needs to be 0 mV or more (based on the Ag / AgCl electrode) as in each embodiment.
[0029]
【The invention's effect】
As described above, in the present invention, by mixing a trivalent Fe compound (Fe (OH) 3 or the like) with a solution in which hydrogen sulfide is dissolved, hydrogen sulfide can be easily oxidized and fixed and removed economically. A series of wet processes can be provided.

Claims (4)

硫化水素を含む溶液中に3価のFe化合物を添加し、pHを3以下とし、ORPを0mV(Ag/AgCl電極基準)以上として、硫化水素と3価のFe化合物を反応させることにより、溶液に溶存する硫化水素を硫黄の形に固定することを特徴とする溶存硫化水素の除去方法。By adding a trivalent Fe compound to a solution containing hydrogen sulfide, setting the pH to 3 or less, and setting the ORP to 0 mV (based on an Ag / AgCl electrode), the hydrogen sulfide and the trivalent Fe compound are reacted. A method for removing dissolved hydrogen sulfide, comprising fixing hydrogen sulfide dissolved in sulfur into sulfur. 硫化水素と3価のFe化合物を30分間以上反応させる請求項1に記載の溶存硫化水素の除去方法。The method for removing dissolved hydrogen sulfide according to claim 1, wherein the hydrogen sulfide and the trivalent Fe compound are reacted for 30 minutes or more. Fe化合物が、水酸化鉄である請求項1または2に記載の溶存硫化水素の除去方法。The method for removing dissolved hydrogen sulfide according to claim 1 or 2, wherein the Fe compound is iron hydroxide. 水酸化鉄の溶液中濃度が、Fe量にして1g/l以上であることを特徴とする請求項3に記載の溶存硫化水素の除去方法。4. The method for removing dissolved hydrogen sulfide according to claim 3, wherein the concentration of iron hydroxide in the solution is 1 g / l or more in terms of Fe amount.
JP2002256897A 2002-09-02 2002-09-02 Method for removing dissolved hydrogen sulfide Pending JP2004089915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256897A JP2004089915A (en) 2002-09-02 2002-09-02 Method for removing dissolved hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256897A JP2004089915A (en) 2002-09-02 2002-09-02 Method for removing dissolved hydrogen sulfide

Publications (1)

Publication Number Publication Date
JP2004089915A true JP2004089915A (en) 2004-03-25

Family

ID=32061982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256897A Pending JP2004089915A (en) 2002-09-02 2002-09-02 Method for removing dissolved hydrogen sulfide

Country Status (1)

Country Link
JP (1) JP2004089915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135738A (en) * 2010-12-27 2012-07-19 Kureatera:Kk Method for suppressing generation of hydrogen sulfide gas, and generation inhibitor for hydrogen sulfide gas
WO2017094308A1 (en) * 2015-12-01 2017-06-08 住友金属鉱山株式会社 Sulfurizing agent removal method
WO2017110572A1 (en) 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for removing sulfidizing agent
JP2019181349A (en) * 2018-04-06 2019-10-24 住友金属鉱山株式会社 Sulfurizing agent removal method, and wet-type method of refining nickel oxide ore
JP2020029589A (en) * 2018-08-22 2020-02-27 住友金属鉱山株式会社 Odor-reducing method in wet refining method of nickel oxide ore

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135738A (en) * 2010-12-27 2012-07-19 Kureatera:Kk Method for suppressing generation of hydrogen sulfide gas, and generation inhibitor for hydrogen sulfide gas
WO2017094308A1 (en) * 2015-12-01 2017-06-08 住友金属鉱山株式会社 Sulfurizing agent removal method
JP2017101276A (en) * 2015-12-01 2017-06-08 住友金属鉱山株式会社 Method for removing sulfurizing agent
WO2017110572A1 (en) 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for removing sulfidizing agent
JP2017115231A (en) * 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for removing sulfurizing agent
JP2019181349A (en) * 2018-04-06 2019-10-24 住友金属鉱山株式会社 Sulfurizing agent removal method, and wet-type method of refining nickel oxide ore
JP2020029589A (en) * 2018-08-22 2020-02-27 住友金属鉱山株式会社 Odor-reducing method in wet refining method of nickel oxide ore
JP7147362B2 (en) 2018-08-22 2022-10-05 住友金属鉱山株式会社 Method for reducing odor in hydrometallurgy of nickel oxide ore

Similar Documents

Publication Publication Date Title
JP4255154B2 (en) Method for removing arsenic from a solution containing sulfur dioxide
JP5188297B2 (en) Method for processing non-ferrous smelting intermediates containing arsenic
KR20100049593A (en) Method of treating arsenical matter with alkali
KR20100046191A (en) Method of treating copper-arsenic compound
US7534413B2 (en) Calcium-sodium polysulfide chemical reagent and production methods
JP2009242223A (en) Method of treating diarsenic trioxide
JP2006239507A (en) Organic arsenic compound-containing water treatment method and apparatus
JP4529969B2 (en) Method for removing selenium from selenate-containing liquid
JP2004089915A (en) Method for removing dissolved hydrogen sulfide
JPS5834197B2 (en) High speed inosyoriho
JP4567344B2 (en) How to remove arsenic
JP4277736B2 (en) Method for treating water containing organic arsenic compound
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP3802264B2 (en) Detoxification method for soil contaminated with arsenic
JP4527896B2 (en) Wastewater treatment equipment
JP5791981B2 (en) Wastewater treatment method
JP2001286876A (en) Method and device for treating waste water containing hardly decomposable chemical substance
JP2005313112A (en) Method for treating waste water containing cyanogen
JP2001300553A (en) Method for treating cyanide-containing wastewater
JP2003181476A (en) Method for decomposing chelating agent
JP2005040656A (en) Treatment method for arsenic-containing mineral acid
JP2003080276A (en) Method for treating hard-to-decompose organic substance
JP2000288536A (en) Method and apparatus for treating waste water containing hydrogen peroxide
JPH10263557A (en) Treatment of selenium-containing waste water
JP2001187392A (en) Decomposition method of organic matter