JP2007083179A - Treatment method and apparatus for copper particle-containing water - Google Patents

Treatment method and apparatus for copper particle-containing water Download PDF

Info

Publication number
JP2007083179A
JP2007083179A JP2005276054A JP2005276054A JP2007083179A JP 2007083179 A JP2007083179 A JP 2007083179A JP 2005276054 A JP2005276054 A JP 2005276054A JP 2005276054 A JP2005276054 A JP 2005276054A JP 2007083179 A JP2007083179 A JP 2007083179A
Authority
JP
Japan
Prior art keywords
filter medium
copper
filtration
water
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005276054A
Other languages
Japanese (ja)
Inventor
Masashi Otani
昌司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZENKEN KK
Kurita Water Industries Ltd
Original Assignee
ZENKEN KK
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZENKEN KK, Kurita Water Industries Ltd filed Critical ZENKEN KK
Priority to JP2005276054A priority Critical patent/JP2007083179A/en
Publication of JP2007083179A publication Critical patent/JP2007083179A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a recovery of copper and preparation of treated water with a releasable excellent water quality by efficiently precipitating copper particles in copper particle-containing water and subjecting the water to solid-liquid separation. <P>SOLUTION: In a copper particle-containing water treatment method, copper ions are added to and mixed with the copper particle-containing water; pH is adjusted to 8-10 to generate flocs of copper hydroxide; the copper particles are incorporated into the flocs, and then solid-liquid separation is carried out. It is desirable that the solid-liquid separation is carried out by using a filter device having a floating filter medium layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅粒子含有水中の銅粒子を効率的に除去する銅粒子含有水の処理方法及び装置に関する。   The present invention relates to a method and apparatus for treating copper-containing water that efficiently removes copper particles in copper-containing water.

銅は有価金属であるため、これを多量に含有する排水から銅を除去して銅原料として回収利用されている。例えば、銅を銅イオンとして含む排水の処理方法としては、排水にアルカリを添加して銅を水酸化銅として不溶化させて固液分離する方法があり、特許第3593726号公報には、硫酸が共存する銅含有排水にアルカリを添加して銅不溶化物を固液分離する方法が提案されている。   Since copper is a valuable metal, it is recovered and used as a copper raw material by removing copper from wastewater containing a large amount of copper. For example, as a method for treating wastewater containing copper as copper ions, there is a method in which alkali is added to the wastewater to insolubilize the copper as copper hydroxide and solid-liquid separation is performed. In Japanese Patent No. 3593726, sulfuric acid coexists. There has been proposed a method of solid-liquid separation of copper insolubilized material by adding alkali to copper-containing wastewater.

一方、銅を銅イオンとしてではなく、固体の銅粒子として含む排水であれば、これを固液分離処理することにより銅粒子を回収することが可能であると考えられる。   On the other hand, if it is the waste water which contains copper not as a copper ion but as a solid copper particle, it is thought that a copper particle can be collect | recovered by carrying out a solid-liquid separation process.

しかし、銅製品の研磨工程等から排出される銅粒子含有水は、粒径0.1〜10μm程度の微細な銅粒子から粒径10〜100μm程度の比較的粗大な銅粒子まで、様々な粒径の銅粒子を多量に含むものであり、そのままでは、長時間静置しても銅粒子は殆ど沈降しない。   However, the copper particle-containing water discharged from the copper product polishing process or the like has a variety of particles from fine copper particles having a particle size of about 0.1 to 10 μm to relatively coarse copper particles having a particle size of about 10 to 100 μm. It contains a large amount of copper particles having a diameter, and as it is, the copper particles hardly settle even if left for a long time.

この銅粒子含有水中の銅粒子の難沈降性は、固液分離に先立ち、銅粒子含有水に高分子凝集剤を添加して凝集処理を行っても殆ど変わることはない。しかも、長時間の沈降分離によりある程度の銅粒子を分離除去しても、分離水中にはなお微細な銅粒子が含まれるため、これをそのまま放流することができないという問題もあった。
特許第3593726号公報
The difficulty of sedimentation of the copper particles in the copper particle-containing water hardly changes even when a polymer flocculant is added to the copper particle-containing water before the solid-liquid separation. In addition, even if a certain amount of copper particles are separated and removed by sedimentation for a long time, since the separated water still contains fine copper particles, it cannot be discharged as it is.
Japanese Patent No. 3593726

本発明は、上記従来の実情に鑑みてなされたものであって、銅粒子含有水中の銅粒子を効率的に沈降させて固液分離することにより銅を回収すると共に、放流可能な良好な水質の処理水を得ることができる銅粒子含有水の処理方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional circumstances, and efficiently collects copper particles in copper particle-containing water and separates them into solid and liquid to recover copper, and has good water quality that can be discharged. It aims at providing the processing method and apparatus of copper particle containing water which can obtain the treated water of this.

本発明(請求項1)の銅粒子含有水の処理方法は、銅粒子含有水に銅イオンを添加混合し、pHを8〜10に調整して水酸化銅のフロックを生成させるとともに、このフロック内に銅粒子を取り込ませ、次いで固液分離することを特徴とする。   The copper particle-containing water treatment method of the present invention (Claim 1) adds copper ions to copper particle-containing water, adjusts the pH to 8 to 10 to generate a copper hydroxide floc, and the floc It is characterized in that copper particles are taken in and then solid-liquid separation is performed.

請求項2の銅粒子含有水の処理方法は、請求項1において、浮上濾材層を有する濾過装置を用いて前記固液分離を行うことを特徴とする。   According to a second aspect of the present invention, there is provided a copper particle-containing water treatment method according to the first aspect, wherein the solid-liquid separation is performed using a filtration device having a floating filter medium layer.

請求項3の銅粒子含有水の処理方法は、請求項2において、前記濾過装置が、筒軸方向を上下方向とした筒形の濾過塔内に浮上濾材による濾過層が形成された浮上濾過装置であって、該濾過層の下部に原水を旋回方向に導入して該濾過層下部に旋回流動を生じさせる原水導入配管と、該濾過層下部から該浮上濾材の一部を取り出し再度該濾過層下部に導入する濾材循環手段と、該濾過塔の底部から浮上濾材含有沈降物が導入され該浮上濾材含有沈降物から浮上濾材を分離するための沈降物受入槽と、該沈降物受入槽内で固形分が分離された浮上濾材を前記原水導入配管に導く浮上濾材返送手段と、を備えてなり、該浮上濾材返送手段は、前記原水導入配管に設けられたエゼクタ式吸引手段を有し、該エゼクタ式吸引手段によって該沈降物受入槽から浮上濾材を吸引して該原水導入配管に返送するものであることを特徴とする。   The copper particle-containing water treatment method according to claim 3 is the floating filtration device according to claim 2, wherein the filtration device has a filtration layer made of a floating filter medium formed in a cylindrical filtration tower with the cylinder axis direction being the vertical direction. The raw water is introduced into the lower part of the filtration layer in the swirling direction to generate a swirling flow in the lower part of the filtration layer, and a part of the floating filter medium is taken out from the lower part of the filtration layer and again the filtration layer A filter medium circulating means to be introduced into the lower part, a sediment receiving tank for separating the floated filter medium from the floated filter medium-containing sediment by introducing the floated filter medium-containing sediment from the bottom of the filtration tower, and the sediment receiving tank. A floating filter medium returning means for guiding the floating filter medium from which the solid content has been separated to the raw water introduction pipe, and the floating filter medium returning means has an ejector-type suction means provided in the raw water introduction pipe, The sediment is received by the ejector type suction means. It was aspirated floating filter media from and characterized in that for returning the raw water inlet pipe.

本発明(請求項4)の銅粒子含有水の処理装置は、銅粒子含有水に銅イオンを添加混合する混合手段と、該混合手段で得られた混合水をpHを8〜10に調整して水酸化銅のフロックを生成させるとともに、このフロック内に銅粒子を取り込ませるpH調整手段と、該pH調整手段からの水を固液分離する手段とを備えることを特徴とする。   The copper particle-containing water treatment apparatus of the present invention (Claim 4) adjusts the pH of the mixing water obtained by adding copper ions to the copper particle-containing water and the mixed water obtained by the mixing means to 8 to 10. A pH adjusting means for generating a copper hydroxide floc and taking copper particles into the floc; and a means for solid-liquid separation of water from the pH adjusting means.

請求項5の銅粒子含有水の処理装置は、請求項4において、前記固液分離手段が、浮上濾材層を有する濾過装置であることを特徴とする。   The copper particle-containing water treatment apparatus according to claim 5 is characterized in that, in claim 4, the solid-liquid separation means is a filtration apparatus having a floating filter medium layer.

請求項6の銅粒子含有水の処理装置は、請求項5において、前記濾過装置が、筒軸方向を上下方向とした筒形の濾過塔内に浮上濾材による濾過層が形成された浮上濾過装置であって、該濾過層の下部に原水を旋回方向に導入して該濾過層下部に旋回流動を生じさせる原水導入配管と、該濾過層下部から該浮上濾材の一部を取り出し再度該濾過層下部に導入する濾材循環手段と、該濾過塔の底部から浮上濾材含有沈降物が導入され該浮上濾材含有沈降物から浮上濾材を分離するための沈降物受入槽と、該沈降物受入槽内で固形分が分離された浮上濾材を前記原水導入配管に導く浮上濾材返送手段と、を備えてなり、該浮上濾材返送手段は、前記原水導入配管に設けられたエゼクタ式吸引手段を有し、該エゼクタ式吸引手段によって該沈降物受入槽から浮上濾材を吸引して該原水導入配管に返送するものであることを特徴とする。   The copper particle-containing water treatment apparatus according to claim 6 is the floating filtration apparatus according to claim 5, wherein the filtration apparatus has a filtration layer formed of a floating filter medium in a cylindrical filtration tower having a cylinder axis direction as a vertical direction. The raw water is introduced into the lower part of the filtration layer in the swirling direction to generate a swirling flow in the lower part of the filtration layer, and a part of the floating filter medium is taken out from the lower part of the filtration layer and again the filtration layer A filter medium circulating means to be introduced into the lower part, a sediment receiving tank for separating the floated filter medium from the floated filter medium-containing sediment by introducing the floated filter medium-containing sediment from the bottom of the filtration tower, and in the sediment receiving tank A floating filter medium returning means for guiding the floating filter medium from which the solid content has been separated to the raw water introduction pipe, and the floating filter medium returning means has an ejector-type suction means provided in the raw water introduction pipe, The sediment is received by the ejector type suction means. It was aspirated floating filter media from and characterized in that for returning the raw water inlet pipe.

本発明によれば、銅粒子含有水中の銅粒子を銅イオンを不溶化させて生成させた水酸化銅(Cu(OH))のフロック内に取り込ませることにより、良好な共沈作用で円滑に沈降させることができる。このため、銅粒子の沈降性の悪い銅粒子含有水であっても、効率的に固液分離処理して銅を回収すると共に、そのままで、或いは必要に応じて軽微な後処理を施した後、放流可能な良好な水質の処理水を得ることができる。 According to the present invention, copper particles in water containing copper particles are smoothly incorporated with a good coprecipitation effect by incorporating them into a floc of copper hydroxide (Cu (OH) 2 ) produced by insolubilizing copper ions. Can be allowed to settle. For this reason, even if it is copper particle containing water with poor sedimentation property of copper particles, copper is recovered by an efficient solid-liquid separation process, and after being subjected to a slight post-treatment as it is or as necessary Therefore, it is possible to obtain treated water with good water quality that can be discharged.

なお、銅イオンではなく、鉄イオン(例えば、塩化第二鉄)、或いは鉄イオンとカオリン等の粘土鉱物を添加してアルカリ性にpH調整しても銅粒子を水酸化鉄のフロックに取り込んで固液分離することが可能であるが、この場合には、回収された汚泥は、銅と鉄、或いは更にカオリンとを含むものとなり、銅の回収再利用には不利である。   It should be noted that iron particles (for example, ferric chloride), or iron ions and clay minerals such as kaolin, are added instead of copper ions to adjust the pH to alkaline, so that the copper particles are incorporated into the iron hydroxide floc and solidified. Although liquid separation is possible, in this case, the recovered sludge contains copper and iron, or further kaolin, which is disadvantageous for the recovery and reuse of copper.

本発明によれば、銅粒子を水酸化銅のフロック内に取り込んで効率的に沈降させることができるが、なお、その沈降性は十分ではなく、浮上し易いフロックも存在する。従って、本発明では、固液分離は浮上濾材層を有する濾過装置を用いて行い、沈降し易いフロックを沈降分離し、浮上し易いフロックは浮上濾材層で捕捉するようにすることが好ましい(請求項2,5)。   According to the present invention, the copper particles can be taken into the flocs of copper hydroxide and efficiently settled. However, the sedimentation property is not sufficient, and there are flocs that easily float. Therefore, in the present invention, it is preferable that solid-liquid separation is performed using a filtration device having a floating filter medium layer, and flocs that are likely to settle are settled and separated, and flocs that are likely to float are captured by the floating filter medium layer. Item 2, 5).

そして、この浮上濾材層を有する濾過装置としては、筒軸方向を上下方向とした筒形の濾過塔内に浮上濾材による濾過層が形成された浮上濾過装置において、該濾過層の下部に原水を旋回方向に導入して該濾過層下部に旋回流動を生じさせる原水導入配管と、該濾過層下部から該浮上濾材の一部を取り出し再度該濾過層下部に導入する濾材循環手段と、該濾過塔の底部から浮上濾材含有沈降物が導入され該浮上濾材含有沈降物から浮上濾材を分離するための沈降物受入槽と、該沈降物受入槽内で固形分が分離された浮上濾材を前記原水導入配管に導く浮上濾材返送手段とを備えてなり、該浮上濾材返送手段は、前記原水導入配管に設けられたエゼクタ式吸引手段を有し、該エゼクタ式吸引手段によって該沈降物受入槽から浮上濾材を吸引して該原水導入配管に返送するものである浮上濾過装置が好ましく(請求項3,6)、この浮上濾過装置であれば、次のような効果のもとに効率的な固液分離を行える。   And, as a filtration device having this floating filter material layer, in a floating filtration device in which a filtration layer made of a floating filter material is formed in a cylindrical filtration tower whose vertical direction is the cylinder axis direction, raw water is supplied to the lower part of the filtration layer. Raw water introduction pipe for introducing a swirl flow in the lower part of the filtration layer by introducing in the swirl direction, a filter medium circulating means for taking out a part of the floating filter medium from the lower part of the filter layer and introducing it again into the lower part of the filter layer, and the filtration tower The raw water is introduced into the sediment receiving tank for separating the floated filter medium from the floated filter medium-containing sediment from which the floated filter medium-containing sediment is introduced, and the solid material separated in the sediment receiving tank. A floating filter medium returning means for guiding to the pipe, the floating filter medium returning means having an ejector type suction means provided in the raw water introduction pipe, and the floating filter medium from the sediment receiving tank by the ejector type suction means. Suck Preferably the raw water introduced is to return to the pipe floating filtration device (claim 3, 6), if the floating filtration device, can perform efficient solid-liquid separation based on the following effects.

(1) 浮上濾材による濾過層の下部が旋回流動するので、濾過層の下面部が懸濁物質で目詰りしにくい。そのため、洗浄頻度を少なくしても低圧損で濾過運転を継続することができる。また、浮上濾材として粒度の小さいものを用いても、目詰りによる圧損の増大が十分に抑制される。
(2) 濾過運転を行っているときに、濾過層の下部から該浮上濾材の一部を取り出し再度該濾過層下部に導入するが、この濾過層下部に再導入される濾材が濾過層に衝突して濾過層下部を撹乱させ、旋回流動層の形成と濾過層下部の更新が促進される。また、濾材の衝突により濾材に付着している付着物が剥離するので、濾過層の目詰りが抑制される。
(3) 濾過運転を行っていると、浮上濾材に固形分が付着して一部の浮上濾材が濾過塔の底部に沈降する。この浮上濾材含有沈降物は、濾過塔から沈降物受入槽に導入され、この沈降物受入槽内において浮上濾材と付着固形分とが分離される。浮上濾材は、この沈降物受入槽内において浮上し、原水導入配管を介して濾過塔に戻される。
(4) 原水導入配管にエゼクタ式吸引手段を設け、このエゼクタ式吸引手段によって沈降物受入槽内の浮上濾材を吸引して原水導入配管に導くようにしているので、浮上濾材が沈降物受入槽から原水導入配管へスムーズに移送される。このため、沈降物受入槽内に浮上濾材が残留することが防止される。
(1) Since the lower part of the filtration layer by the floating filter medium swirls and flows, the lower surface part of the filtration layer is not easily clogged with suspended substances. Therefore, the filtration operation can be continued with a low pressure loss even if the frequency of washing is reduced. Further, even when a floating filter medium having a small particle size is used, an increase in pressure loss due to clogging is sufficiently suppressed.
(2) During filtration operation, a part of the floating filter medium is taken out from the lower part of the filter layer and introduced again into the lower part of the filter layer. The filter medium re-introduced into the lower part of the filter layer collides with the filter layer. Thus, the lower part of the filtration layer is disturbed, and the formation of the swirling fluidized bed and the update of the lower part of the filtration layer are promoted. Moreover, since the deposit | attachment adhering to a filter medium peels by the collision of a filter medium, the clogging of a filtration layer is suppressed.
(3) When the filtration operation is performed, solid matter adheres to the floating filter medium, and a part of the floating filter medium settles at the bottom of the filtration tower. The floated filter medium-containing sediment is introduced from the filtration tower into the sediment receiving tank, and the floated filter medium and the attached solid matter are separated in the sediment receiving tank. The floating filter medium floats in the sediment receiving tank and is returned to the filtration tower through the raw water introduction pipe.
(4) Ejector type suction means is provided in the raw water introduction pipe, and the floating filter medium in the sediment receiving tank is sucked and guided to the raw water introduction pipe by this ejector type suction means. Smoothly transferred to the raw water introduction pipe. For this reason, the floating filter medium is prevented from remaining in the sediment receiving tank.

なお、この浮上濾過装置の浮上性濾材は、比較的高比重かつ大粒径の大粒径濾材と比較的低比重かつ小粒径の小粒径濾材とを含んでおり、小粒径濾材により濾過層の上部側が構成され、大粒径濾材により濾過層の下部側が構成されており、濾過操作時に原水が大粒径濾材よりなる濾過層の上下方向の途中部分に導入され、これにより、濾過操作時には、濾過層には上から順に小粒径濾材よりなる固定層、大粒径濾材よりなる固定層及び大粒径濾材よりなる流動層が形成されるものであることが好ましく、このような浮上濾過装置によると、濾過層の下部が大粒径濾材よりなる流動層となっていることから、濾過層の目詰りを長期にわたって抑制することができる。また、濾過層の上部が小粒径濾材よりなるため、純度の高い濾過処理水を得ることができる。   The levitation filter medium of this levitation filter device includes a large particle size filter medium having a relatively high specific gravity and a large particle size, and a small particle size filter medium having a relatively low specific gravity and a small particle size. The upper side of the filtration layer is constituted, and the lower side of the filtration layer is constituted by the large particle size filter medium, and raw water is introduced into the middle part of the filtration layer made of the large particle size filter medium during the filtration operation. At the time of operation, it is preferable that a fixed layer made of a small particle size filter material, a fixed layer made of a large particle size filter material, and a fluidized bed made of a large particle size filter material are formed in order from the top in the filtration layer. According to the floating filtration device, since the lower part of the filtration layer is a fluidized bed made of a large particle size filter medium, clogging of the filtration layer can be suppressed over a long period of time. Moreover, since the upper part of a filtration layer consists of a small particle size filter medium, highly purified filtration water can be obtained.

また、この場合においては、沈降物受入槽内に、大粒径濾材よりも開口が小さいフィルタが設けられ、フィルタ通過物を沈降物受入槽から排出するものであることが好ましく、このようにすることで、沈降物受入槽内に設けられたフィルタにより、濾材の流出が防止される。このフィルタの開口が比較的大きいので、フィルタの目詰りも抑制される。   Further, in this case, it is preferable that a filter having a smaller opening than the large particle size filter medium is provided in the sediment receiving tank, and the filter passing material is preferably discharged from the sediment receiving tank. Thus, the filter provided in the sediment receiving tank prevents the filter medium from flowing out. Since the opening of the filter is relatively large, clogging of the filter is also suppressed.

更に、この場合において、沈降物受入槽内には、フィルタによって区画された上室及び下室が設けられており、フィルタの下側に気体を供給する手段が設けられていることが好ましく、このようにすることで、フィルタの下側に空気等の気体を導入することにより、固形分が付着した浮上濾材が該沈降物受入槽内で撹拌され、付着固形分が浮上濾材から効率良く分離される。また、沈降物受入槽内で固まった汚泥がほぐれて細かくなり、フィルタを通して排出できるようになる。   Furthermore, in this case, it is preferable that an upper chamber and a lower chamber partitioned by a filter are provided in the sediment receiving tank, and a means for supplying gas to the lower side of the filter is provided. Thus, by introducing a gas such as air to the lower side of the filter, the floating filter medium to which the solid content has adhered is stirred in the sediment receiving tank, and the adhered solid content is efficiently separated from the floating filter medium. The Moreover, the sludge solidified in the sediment receiving tank is loosened and becomes fine and can be discharged through the filter.

更に、この場合において、沈降物移送用の弁を開くことにより濾過塔内の沈降物を沈降物受入槽に流入させることが好ましい。濾過塔底部においても、比較的高比重且つ大粒径の濾材が比較的低比重且つ小粒径の濾材の下側に沈積しているので、弁を開いたときに先に大粒径の濾材が沈降物受入槽内に流入し、後から小粒径の濾材が流入してくる。そのため、沈降物受入槽内のフィルタの開口が小粒径濾材の粒径よりも大きくても、小粒径濾材はフィルタを殆ど通過しない。   Furthermore, in this case, it is preferable to allow the sediment in the filtration tower to flow into the sediment receiving tank by opening the sediment transfer valve. At the bottom of the filtration tower, the filter medium with a relatively high specific gravity and large particle size is deposited below the filter medium with a relatively low specific gravity and small particle size. Flows into the sediment receiving tank, and a small-diameter filter medium flows later. Therefore, even if the opening of the filter in the sediment receiving tank is larger than the particle size of the small particle size filter medium, the small particle size filter medium hardly passes through the filter.

以下に本発明の銅粒子含有水の処理方法及び装置の実施の形態を詳細に説明する。   Embodiments of the method and apparatus for treating copper particle-containing water according to the present invention will be described in detail below.

[銅粒子含有水]
本発明において、処理対象となる銅粒子含有水は、銅製品の研磨工程、銅粒子を原料として製品に加工する工程等から排出される銅粒子含有水であって、このような銅粒子含有水は、一般に銅粒子をSS濃度として10〜1000mg/L程度含み、その他は、ほぼ純水であるpH5〜8程度の排水である。このような銅粒子含有水中の銅粒子は通常酸化銅(CuO)の形態で存在しており、従って排水は茶褐色を呈している。
[Copper particle-containing water]
In the present invention, the copper particle-containing water to be treated is copper particle-containing water discharged from a copper product polishing step, a step of processing copper particles as a raw material into a product, and the like. Generally contains copper particles in an SS concentration of about 10 to 1000 mg / L, and the others are wastewater having a pH of about 5 to 8 which is almost pure water. Such copper particles in the water containing copper particles are usually present in the form of copper oxide (Cu 2 O), and therefore the waste water has a brown color.

本発明は、このような銅粒子含有水のうち、特に銅粒子の粒径分布が広く、沈殿分離するには時間がかかりすぎ、ふるいで分離するには、適切なふるいがない場合に有効である。   The present invention is effective when the particle size distribution of such copper particle-containing water is particularly wide, it takes too much time for precipitation separation, and there is no suitable sieve for separation by sieving. is there.

[銅イオン]
銅粒子含有水に添加する銅イオンとしては、特に制限はないが、硫酸銅、塩化第二銅、硝酸銅、炭酸銅等の銅化合物由来のものが用いられる。これらは、通常5〜25重量%水溶液として銅粒子含有水に添加される。また、銅イオン供給源として、銅メッキ工程、銅製品酸洗浄工程等から排出される銅イオン含有排水を用いることもできる。銅イオンは各種の銅化合物や排水由来のものを1種を単独で用いても良く、2種以上を混合して用いても良い。
[Copper ion]
Although there is no restriction | limiting in particular as copper ion added to copper particle containing water, The thing derived from copper compounds, such as copper sulfate, cupric chloride, copper nitrate, copper carbonate, is used. These are usually added to the copper particle-containing water as a 5 to 25% by weight aqueous solution. Moreover, the copper ion containing waste_water | drain discharged | emitted from a copper plating process, a copper product acid washing process, etc. can also be used as a copper ion supply source. As the copper ions, various copper compounds and wastewater-derived ones may be used alone, or two or more kinds may be mixed and used.

銅イオンの添加量は、銅粒子含有水中の銅粒子を十分な共沈作用で沈降させうる量であれば良く、銅粒子含有水中の銅粒子の量やその沈降性(粒径等)によっても異なるが、通常銅粒子含有水中の銅粒子の銅換算量に対して添加する銅イオン量が0.1〜5重量倍、特に0.5〜2重量倍程度となる量であることが好ましい。   The amount of copper ion added may be an amount that allows copper particles in copper particle-containing water to settle with sufficient coprecipitation, and also depends on the amount of copper particles in the copper particle-containing water and the sedimentation properties (particle size, etc.). Although it is different, it is preferable that the amount of copper ions added to the copper equivalent of the copper particles in the copper particle-containing water is usually 0.1 to 5 times by weight, particularly about 0.5 to 2 times by weight.

[pH調整]
銅粒子含有水に銅イオンを添加して混合した後は、必要に応じてアルカリ等のpH調整剤を添加してpH8〜10、好ましくはpH9〜10に調整して水酸化銅のフロックを生成させると共に、フロック内に銅粒子を取り込む。ここで、生成したフロック内に十分に安定に銅粒子を取り込ませるために、アルカリの添加に先立ち、銅粒子含有水と添加した銅イオン(銅イオン含有水)とを十分に撹拌混合することが好ましい。
[PH adjustment]
After adding copper ions to copper particle-containing water and mixing, add pH adjuster such as alkali as necessary to adjust pH to 8-10, preferably pH 9-10 to produce copper hydroxide floc At the same time, the copper particles are taken into the floc. Here, in order to incorporate copper particles into the generated floc sufficiently stably, prior to the addition of alkali, the copper particle-containing water and the added copper ions (copper ion-containing water) may be sufficiently stirred and mixed. preferable.

前述の如く、銅粒子含有水は通常pH5〜8程度の中性排水であり、これに銅イオンを添加した後の混合液もpH5〜8程度であるため、通常pH調整剤としては、水酸化ナトリウム(NaOH)等のアルカリが用いられる。ここで、調整pHが低過ぎると、水中の銅イオンを水酸化銅として十分にフロック化することができず、高過ぎてもフロックの生成量には大差はなくアルカリ添加量が増え不経済であると共に、処理水の放流のために酸を添加してpH調整を行う必要が生じ好ましくない。   As described above, the copper particle-containing water is usually a neutral wastewater having a pH of about 5 to 8, and the mixed liquid after adding copper ions to this has a pH of about 5 to 8. An alkali such as sodium (NaOH) is used. Here, if the adjusted pH is too low, the copper ions in the water cannot be sufficiently flocculated as copper hydroxide, and if it is too high, the amount of floc produced is not much different and the amount of alkali added increases and is uneconomical. In addition, it is necessary to adjust the pH by adding an acid for discharging the treated water, which is not preferable.

[凝集処理]
銅粒子含有水に銅イオンを添加してpH8〜10に調整した後は、生成したフロックを固液分離するが、固液分離に先立ち凝集剤を添加して凝集処理を行うことが好ましい。
[Aggregation treatment]
After adding copper ions to the copper particle-containing water and adjusting the pH to 8 to 10, the generated floc is subjected to solid-liquid separation. However, it is preferable to add a flocculant and perform agglomeration before solid-liquid separation.

この凝集処理に用いる凝集剤としては有機高分子凝集剤、特にポリアクリル酸ナトリウム、ポリアクリルアミドの部分加水分解物等が好ましく、これらの1種又は2種以上を用いることができる。   As the aggregating agent used in the aggregating treatment, organic polymer aggregating agents, particularly sodium polyacrylate, partially hydrolyzed polyacrylamide, and the like are preferable, and one or more of these can be used.

凝集剤の添加量は、処理する銅粒子含有水の水質や調整pH等によっても異なるが、通常0.1〜5mg/L程度である。   The addition amount of the flocculant is usually about 0.1 to 5 mg / L, although it varies depending on the water quality of the copper particle-containing water to be treated and the adjusted pH.

凝集処理により、水中のフロックを1〜10mm程度に増大化させて、固液分離性を高めることができる。   By aggregating, the floc in water can be increased to about 1-10 mm, and solid-liquid separability can be improved.

[固液分離処理]
前述の如く、銅粒子を取り込んだ水酸化銅フロックは、銅粒子含有水中の銅粒子よりも沈降性が改善されるが、なお、更に、沈降性の悪いものも混在しているため、本発明ではこのようなフロックの固液分離は、浮上濾材層を有する濾過装置、好ましくは後述の図2,3に示す浮上濾過装置を用いて行うことが好ましい。
[Solid-liquid separation process]
As described above, the copper hydroxide flock incorporating copper particles has improved sedimentation properties compared to copper particles in copper particle-containing water, but further, those having poor sedimentation properties are also mixed, so that the present invention. Then, such solid-liquid separation of floc is preferably performed using a filtration apparatus having a floating filter medium layer, preferably a floating filtration apparatus shown in FIGS.

なお、このような浮上濾過装置を用いて固液分離を行う場合、この通水LVが大き過ぎるとフロックが沈降せずにその大部分が浮上濾材層に捕捉されることにより浮上濾材層の差圧が急速に上昇し、濾過不能になるおそれがある。また、浮上濾材層に捕捉されたフロック自体が濾材機能を本来有しているが、通水LVが大き過ぎると、フロックがこわれて、SSの捕捉性が悪くなり、処理水水質が低下すると共に濾過塔の下部へフロックが沈降しにくくなるため、分離汚泥の濃度も低いものとなる。従って、通水LVは25m/hr以下であることが好ましい。濾過効率の面からは、通水LVは7m/hr以上、特に10〜20m/hrとすることが好ましい。   When solid-liquid separation is performed using such a floating filtration device, if the water flow LV is too large, flocs do not settle and most of the flocs are trapped in the floating filter media layer, resulting in a difference in the floating filter media layer. There is a risk that the pressure will rise rapidly and become unfilterable. In addition, the flocs captured by the floating filter medium layer originally have a filter medium function. However, if the water flow LV is too large, the flocs are broken, the SS trapping ability is deteriorated, and the quality of treated water is lowered. Since flocs are less likely to settle to the lower part of the filtration tower, the concentration of separated sludge is low. Accordingly, the water flow LV is preferably 25 m / hr or less. From the viewpoint of filtration efficiency, the water flow LV is preferably 7 m / hr or more, particularly preferably 10 to 20 m / hr.

ただし、固液分離は、浮上濾材層を有する濾過装置に限らず、浮上分離装置、沈殿槽と固定濾過層を有する濾過装置とを組合せたもの等を用いて行うこともできる。   However, the solid-liquid separation is not limited to the filtration device having a floating filter medium layer, and can be performed using a combination of a floating separation device, a precipitation tank and a filtration device having a fixed filtration layer, or the like.

固液分離で得られた汚泥は、フィルタープレス、スクリュープレス、ベルトプレス等の脱水機で脱水処理された後、銅の回収工程に供される。一方、分離水は必要に応じて更にpH調整等の後処理を施した後、放流、又は現場作業用水等の工業用水として回収される。   Sludge obtained by solid-liquid separation is dehydrated by a dehydrator such as a filter press, screw press, or belt press, and then subjected to a copper recovery process. On the other hand, the separated water is further subjected to post-treatment such as pH adjustment as necessary, and then recovered as industrial water such as discharged water or field work water.

[処理フロー]
図1に本発明の実施に好適な処理フローの一例を示す。
[Processing flow]
FIG. 1 shows an example of a processing flow suitable for implementing the present invention.

原水の銅粒子含有水は混合槽61に導入され、銅イオン、例えば硫酸銅含有排水や銅化合物水溶液等が添加され5〜10分程度撹拌混合される。混合槽61からの混合水は、pH調整槽62に導入され、NaOH等のアルカリが添加され、pH8〜10、好ましくは9〜10に調整される。このpH調整槽62では、5〜15分程度の撹拌混合を行うのが好ましい。   The raw water copper particle-containing water is introduced into the mixing tank 61, and copper ions, for example, copper sulfate-containing waste water, a copper compound aqueous solution, and the like are added thereto and stirred and mixed for about 5 to 10 minutes. The mixed water from the mixing tank 61 is introduced into the pH adjusting tank 62, and an alkali such as NaOH is added to adjust the pH to 8 to 10, preferably 9 to 10. In the pH adjusting tank 62, it is preferable to perform stirring and mixing for about 5 to 15 minutes.

pH調整槽62からのpH調整水は高分子凝集剤が添加された後、濾過装置63で固液分離され、分離水は処理水槽64を経て系外へ排出され放流される。   After the polymer flocculant is added, the pH-adjusted water from the pH-adjusting tank 62 is solid-liquid separated by the filtering device 63, and the separated water is discharged out of the system through the treated water tank 64 and discharged.

一方、分離汚泥は、汚泥槽65を経て脱水機66で脱水処理され、脱水ケーキは系外へ排出され銅回収工程へ送給される。   On the other hand, the separated sludge is dewatered by the dehydrator 66 through the sludge tank 65, and the dewatered cake is discharged out of the system and sent to the copper recovery process.

図1は本発明の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示の態様に限定されるものではない。   FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated embodiment as long as the gist thereof is not exceeded.

例えば、pH調整槽62と濾過装置63との間に凝集槽を設けても良く、また、種晶作用を得るために、濾過装置63で分離された汚泥の一部をpH調整槽62に返送しても良く、また、この汚泥をアルカリと混合してpH調整槽62に添加しても良い。   For example, a coagulation tank may be provided between the pH adjustment tank 62 and the filtration apparatus 63, and a part of the sludge separated by the filtration apparatus 63 is returned to the pH adjustment tank 62 in order to obtain a seed crystal action. Alternatively, this sludge may be mixed with an alkali and added to the pH adjusting tank 62.

[浮上濾材層を有する濾過装置]
以下に本発明におけるフロックの固液分離手段として好適な浮上濾材層を有する濾過装置について、図2,3を参照して説明する。
[Filtration device with floating filter media layer]
A filtration apparatus having a floating filter medium layer suitable as a floc solid-liquid separation means in the present invention will be described below with reference to FIGS.

図2は本発明におけるフロックの固液分離に用いる濾過装置として好適な浮上濾過装置の一例を示す系統図であり、図3はその濾過塔の水平断面図である。   FIG. 2 is a system diagram showing an example of a flotation filtration apparatus suitable as a filtration apparatus used for floc solid-liquid separation in the present invention, and FIG. 3 is a horizontal sectional view of the filtration tower.

この浮上濾過装置は、原水槽1内の原水を配管2、バルブV、ポンプP、配管3、バルブV、配管4を介して濾過塔10内に導入し、浮上性濾材よりなる濾過層13によって濾過し、集水管14及び配管30より濾過処理水として取り出し、この濾過処理水をバルブV及び配管31を介して濾過水槽33に導くようにしたものである。 This floating filtration apparatus introduces raw water in a raw water tank 1 into a filtration tower 10 via a pipe 2, a valve V 1 , a pump P, a pipe 3, a valve V 2 and a pipe 4, and a filtration layer made of a floating filter medium. 13, and is taken out as filtered water from the water collection pipe 14 and the pipe 30, and this filtered water is led to the filtered water tank 33 through the valve V 3 and the pipe 31.

なお、濾過水槽33内の水を配管2に導くためにバルブVを備えた配管5が配管2に合流しており、また、配管3から分岐した配管6がバルブV及び配管8を介して濾過塔10の頂部近傍に接続されている。 In addition, in order to guide the water in the filtered water tank 33 to the pipe 2, the pipe 5 provided with the valve V 4 joins the pipe 2, and the pipe 6 branched from the pipe 3 passes through the valve V 5 and the pipe 8. And connected to the vicinity of the top of the filtration tower 10.

この濾過塔10は、上端部及び下端部付近を除いて円筒形状であり、筒軸方向を上下方向にして設置されている。この濾過塔10内の最上部には集水管14が設けられている。また、濾過塔10内の上部には、浮上性濾材よりなる濾過層13が形成されている。この濾過層13は、小粒径濾材よりなる濾過層(以下、「小粒径層」と称することがある。)11と、その下側の大粒径濾材よりなる濾過層(以下、「大粒径層」と称することがある。)12とからなる。   The filtration tower 10 has a cylindrical shape except for the vicinity of the upper end portion and the lower end portion, and is installed with the cylinder axis direction being the vertical direction. A water collection pipe 14 is provided at the top of the filtration tower 10. Further, a filtration layer 13 made of a floatable filter medium is formed in the upper part of the filtration tower 10. The filtration layer 13 includes a filtration layer (hereinafter sometimes referred to as a “small particle size layer”) 11 made of a small particle size filter material and a filtration layer (hereinafter referred to as “large particle size filter material” made of a large particle size filter material below the filter layer 13. It may be referred to as a “particle size layer.”)

大粒径濾材及び小粒径濾材の比重は原水の比重と同等以下であり、確実に浮上するように比重は原水の比重よりも所要程度小さいことが好ましい。小粒径濾材の比重は大粒径濾材の比重よりも小さく、後述の通り、逆洗後に小粒径濾材の方が大粒径濾材よりも先に浮上するように、小粒径濾材の比重が大粒径濾材の比重よりも所要程度小さいものとなっている。例えば、小粒径濾材の比重が0.08〜0.30、大粒径濾材の比重が0.50〜0.95であることが好ましく、特に小粒径濾材の比重が0.10〜0.15、大粒径濾材の比重が0.85〜0.95であることが好ましい。   The specific gravity of the large particle size filter medium and the small particle size filter medium is equal to or less than the specific gravity of the raw water, and the specific gravity is preferably smaller than the specific gravity of the raw water so as to surely float. The specific gravity of the small particle size filter medium is smaller than the specific gravity of the large particle size filter medium, and as described later, the specific gravity of the small particle size filter medium so that the small particle size filter medium floats before the large particle size filter medium after backwashing. Is smaller than the specific gravity of the large particle size filter medium. For example, the specific gravity of the small particle size filter medium is preferably 0.08 to 0.30, the specific gravity of the large particle size filter medium is preferably 0.50 to 0.95, and the specific gravity of the small particle size filter medium is particularly preferably 0.10 to 0. .15, the specific gravity of the large particle size filter medium is preferably 0.85 to 0.95.

これら大粒径濾材及び小粒径濾材の粒径は、原水中の懸濁物質の粒径や要求処理水水質に応じて適宜選択されるが、通常の場合、大粒径濾材は0.7〜2.5mmとりわけ1.0〜1.5mm、小粒径濾材は0.1〜0.6mmとりわけ0.3〜0.5mm程度のものが好適である。   The particle size of the large particle size filter medium and the small particle size filter medium is appropriately selected according to the particle size of the suspended solids in the raw water and the required treated water quality. A filter medium having a particle size of about 0.1 to 0.6 mm, particularly about 0.3 to 0.5 mm is preferable.

浮上性濾材の材料としては、ポリエチレン、ポリプロピレン、ポリスチレンなどの合成樹脂、無機質発泡体など各種のものを用いることができるが、中でも発泡スチロール等の発泡合成樹脂が好適である。   Various materials such as synthetic resins such as polyethylene, polypropylene and polystyrene, and inorganic foams can be used as the material for the floatable filter medium. Among them, foamed synthetic resins such as expanded polystyrene are preferred.

大粒径濾材及び小粒径濾材は、表面に界面活性剤やポリビニルアルコールを担持させる等の表面親水化処理を施すことが好ましい。これにより、後述の逆洗後の静置時に、大粒径濾材と小粒径濾材との凝集が防止され、適切に大粒径層と小粒径層を形成することができる。   The large-diameter filter medium and the small-diameter filter medium are preferably subjected to a surface hydrophilization treatment such as carrying a surfactant or polyvinyl alcohol on the surface. Thereby, at the time of standing after backwashing mentioned below, aggregation of a large particle size filter material and a small particle size filter material is prevented, and a large particle size layer and a small particle size layer can be formed appropriately.

これら大粒径濾材及び小粒径濾材の充填量は、該濾過層13の下面が配管4の接続部よりも若干下位となるようにする。また、小粒径層11と大粒径層12との界面が配管4の接続部よりも所要距離上位となるようにする。   The filling amount of the large particle size filter medium and the small particle size filter medium is set such that the lower surface of the filter layer 13 is slightly lower than the connection portion of the pipe 4. Further, the interface between the small particle size layer 11 and the large particle size layer 12 is set higher than the connection portion of the pipe 4 by a required distance.

この原水導入用の配管4は、図3に示される通り、それから濾過塔10内に導入される原水の導入方向が円筒形濾過塔10の水平断面において旋回方向となるように接続されており、好ましくは該配管4は円筒形濾過塔10に対し接線方向に接続される。   As shown in FIG. 3, the raw water introduction pipe 4 is connected so that the introduction direction of the raw water introduced into the filtration tower 10 is a swirl direction in the horizontal section of the cylindrical filtration tower 10. Preferably, the pipe 4 is connected to the cylindrical filtration tower 10 in a tangential direction.

濾過塔10の側面には、濾過層13の下部より若干下方に、浮上性濾材と原水の混合物を取り出すための配管21が接続されている。この配管21は、上記配管2のうち原水ポンプPより下流の位置に接続されている。この配管21にはバルブVが設けられている。 A pipe 21 for taking out a mixture of the floatable filter medium and raw water is connected to the side surface of the filtration tower 10 slightly below the lower part of the filtration layer 13. The pipe 21 is connected to a position downstream of the raw water pump P in the pipe 2. Valve V 6 is provided in the pipe 21.

前記濾過水取り出し用の配管30には、該配管30内を大気に連通させるための大気開放用バルブVが設けられている。 The filtered water extraction pipe 30 is provided with an air release valve V 7 for communicating the inside of the pipe 30 with the atmosphere.

配管30からは配管32が分岐しており、該配管32はバルブVを介して汚泥貯槽60に導かれている。 A pipe 32 is branched from the pipe 30, and the pipe 32 is led to the sludge storage tank 60 through a valve V 8 .

濾過塔10の下部は下端に向かって縮径するテーパ形状となっている。   The lower part of the filtration tower 10 has a tapered shape that decreases in diameter toward the lower end.

濾過塔10の下端には、沈降した汚泥及び濾材を排出するための配管41が設けられ、この配管41にはバルブVが設けられている。配管41を介して排出された汚泥及び濾材は、沈降物受入槽50に導入される。この沈降物受入槽50内は、略逆円錐形のフィルタ51によって上室52と下室53とに区画されており、汚泥及び濾材は該上室52に導入される。このフィルタ51の開口の大きさは大粒径濾材よりも小さいが小粒径濾材よりも大きいものとなっている。なお、この沈降物受入槽50は、濾過塔10の下端より下の位置に設けられると、沈降物が濾過塔10から沈降物受入槽50に移行し易いので好ましい。 A pipe 41 for discharging the settled sludge and the filter medium is provided at the lower end of the filter tower 10, and a valve V 9 is provided in the pipe 41. Sludge and filter medium discharged through the pipe 41 are introduced into the sediment receiving tank 50. The sediment receiving tank 50 is partitioned into an upper chamber 52 and a lower chamber 53 by a substantially inverted conical filter 51, and sludge and filter medium are introduced into the upper chamber 52. The size of the opening of the filter 51 is smaller than that of the large particle size filter medium, but larger than that of the small particle size filter medium. The sediment receiving tank 50 is preferably provided at a position below the lower end of the filtration tower 10 because the sediment easily moves from the filtration tower 10 to the sediment receiving tank 50.

沈降物受入槽50の上端は、濾材の流出用の配管54、バルブV10及び配管55を介
して原水導入用配管3に接続されている。この配管55は、該配管3の下流側に向って徐々に配管3に接近するように該配管3に対し斜交している。このため、配管3内をポンプPから水が流れると、配管3と配管55と合流付近に対し配管55内の水がエゼクタ作用により配管3内に吸引されるようになっている。ただし、配管55を配管3に斜交させる代りにエゼクタを配管3に設け、このエゼクタに配管55を接続してもよい。
The upper end of the sediment receiving tank 50 is connected via a pipe 54 for discharging the filter medium, a valve V 10 and a pipe 55.
Then, it is connected to the raw water introduction pipe 3. The pipe 55 obliquely crosses the pipe 3 so as to gradually approach the pipe 3 toward the downstream side of the pipe 3. For this reason, when water flows from the pump P in the pipe 3, the water in the pipe 55 is sucked into the pipe 3 by the ejector action with respect to the vicinity of the pipe 3 and the pipe 55. However, instead of making the pipe 55 obliquely cross the pipe 3, an ejector may be provided in the pipe 3, and the pipe 55 may be connected to the ejector.

配管54からは、バルブV11付きの配管56が分岐している。 A pipe 56 with a valve V 11 branches from the pipe 54.

上室52内から汚泥を汚泥貯槽60へ排出するように、バルブV12付きの配管57が該沈降物受入槽50内に差し込まれている。この配管57は、フィルタ51の中央部から上方に立ち上げられている。 A pipe 57 with a valve V 12 is inserted into the sediment receiving tank 50 so that the sludge is discharged from the upper chamber 52 to the sludge storage tank 60. The pipe 57 is raised upward from the center of the filter 51.

下室53内から汚泥を汚泥貯槽60へ排出するように、バルブV13付きの配管58が沈降物受入槽50の底部に接続されている。 A pipe 58 with a valve V 13 is connected to the bottom of the sediment receiving tank 50 so that the sludge is discharged from the lower chamber 53 to the sludge storage tank 60.

この実施の形態では、下室53内に空気を吹き込むように、バルブV14付きの配管59が沈降物受入槽50に接続されている。 In this embodiment, a pipe 59 with a valve V 14 is connected to the sediment receiving tank 50 so as to blow air into the lower chamber 53.

なお、汚泥貯槽60内の汚泥は、ポンプを有する汚泥取り出し用配管(図示略)を介して汚泥処理工程へ送泥可能とされている。   The sludge in the sludge storage tank 60 can be sent to a sludge treatment process via a sludge extraction pipe (not shown) having a pump.

このように構成された浮上濾過装置を用いて浮上濾過運転を行う作動について次に説明する。   Next, an operation for performing a levitation filtration operation using the levitation filtration apparatus configured as described above will be described.

第1工程:水張り
先ず濾過運転の準備運転として、バルブV,V,V,V,V10を開とし、その他のバルブ(V〜V,V,V11〜V14)を閉として、ポンプPを駆動する。このポンプPを駆動することにより、原水槽1内の原水が配管2,3,4を介して濾過塔10内に導入され、この濾過塔10内の空気がバルブVから放出され、濾過塔10内が満水状態とされる。また、濾過塔10内の水の一部が配管41を介して沈降物受入槽50内に導入され、この沈降物受入槽50内が満水状態とされた後、余剰の原水は配管55を介して配管3に戻される。なお、この沈降物受入槽50への水張りの初期において、バルブV10を閉、バルブV11を開とし、沈降物受入槽50内の空気が配管56から放出されるようにしてもよい。
First step: water filling First, as a preparatory operation for the filtration operation, the valves V 1 , V 2 , V 7 , V 9 and V 10 are opened, and the other valves (V 3 to V 6 , V 8 , V 11 to V 14 are opened. ) Is closed and the pump P is driven. By driving the pump P, the raw water in the raw water tank 1 is introduced into the filtration tower 10 through the pipe 2, 3, 4, air filtration tower 10 is released from the valve V 7, filtration tower 10 is filled with water. Further, after a part of the water in the filtration tower 10 is introduced into the sediment receiving tank 50 through the pipe 41 and the inside of the sediment receiving tank 50 is filled with water, excess raw water is supplied through the pipe 55. And returned to the pipe 3. Incidentally, in the initial water filling into the sediment receiving tank 50, the valve V 10 closed, the valve V 11 is opened, air sediment receiving tank 50 may be released from the pipe 56.

第2工程:濾材撹拌
次に、バルブV,V,V,V,V10を開とし、その他のバルブV,V,V,V,V,V11〜V14を閉とし、ポンプPを作動させる。これにより、濾過塔10内の水が配管3,4,6及び配管21,41,55を介して循環し、濾過層13の濾材全体が撹拌される。
Second step: Filter media stirring Next, the valves V 2 , V 5 , V 6 , V 9 , V 10 are opened, and the other valves V 1 , V 3 , V 4 , V 7 , V 8 , V 11 to V 11 -V. 14 is closed and the pump P is operated. Thereby, the water in the filtration tower 10 circulates through the pipes 3, 4, 6 and the pipes 21, 41, 55, and the entire filter medium of the filter layer 13 is stirred.

第3工程:沈静
次に、ポンプPを停止すると共に、バルブV,V,V10を開とし、それ以外のすべてのバルブを閉とする。これにより、濾過塔10内の水が沈静化し、濾過塔10内に上側の小粒径層11及び下側の大粒径層12よりなる濾過層13が形成される。
Third step: Calm Next, the pump P is stopped, the valves V 2 , V 9 , and V 10 are opened, and all other valves are closed. Thereby, the water in the filtration tower 10 is settled, and the filtration layer 13 including the upper small particle diameter layer 11 and the lower large particle diameter layer 12 is formed in the filtration tower 10.

第4工程:濾材層洗浄
濾過運転を開始するに先立って、濾過層13の洗浄工程を行う。この洗浄工程にあっては、バルブV,V,V,V,V,V10を開、その他のバルブを閉とし、ポンプPを駆動する。これにより、原水槽1内の原水が配管3,4、濾過層13、配管32の
順に流れ、汚泥貯槽60へ排出される。この通水を継続すると、濾過層13の流出水水質が次第に良好になってくるので、流出水水質が規定よりも良好となった時点でこの洗浄工程を終了する。
4th process: Filter material layer washing | cleaning Prior to starting filtration operation, the washing process of the filtration layer 13 is performed. In this cleaning process, the valves V 1 , V 2 , V 6 , V 8 , V 9 , V 10 are opened, the other valves are closed, and the pump P is driven. Thereby, the raw water in the raw water tank 1 is supplied to the pipes 3 and 4, the filtration layer 13, and the pipe 32.
It flows in order and is discharged to the sludge storage tank 60. If this water flow is continued, the quality of the effluent water of the filtration layer 13 will gradually become better. Therefore, when the quality of the effluent water becomes better than specified, this washing step is terminated.

なお、この洗浄運転中には、大粒径層12の下部が配管4からの流入水により旋回流動し、旋回流動層12aを形成する。また、配管21と、配管41、沈降物受入槽50、配管55とを介して濾過塔10内の水の一部が配管3へ吸い出されて循環する。後述の第5工程においても同様である。   During this cleaning operation, the lower part of the large particle size layer 12 swirls and flows with the inflow water from the pipe 4 to form a swirling fluidized bed 12a. Further, a part of the water in the filtration tower 10 is sucked into the pipe 3 and circulated through the pipe 21, the pipe 41, the sediment receiving tank 50, and the pipe 55. The same applies to the fifth step described later.

第5工程:通水
そこで、第4工程の状態からバルブVを閉、バルブVを開とし(即ち、V〜V,V,V,V10を開、その他のバルブを閉とし)、ポンプPを駆動する。これにより、原水槽1内の原水が配管3,4、濾過塔10内の濾過層13、配管30,31の順に流れ、濾過水が濾過水槽33に導入される。
Step 5: passing water Therefore, the valve V 8 from the state of the fourth step closed, the valve V 3 opened (i.e., the V 1 ~V 3, V 6, V 9, V 10 open, the other valve The pump P is driven. Thereby, the raw water in the raw water tank 1 flows in the order of the pipes 3 and 4, the filtration layer 13 in the filtration tower 10, and the pipes 30 and 31, and the filtered water is introduced into the filtered water tank 33.

即ち、ポンプPを駆動することにより、原水槽1内の原水が配管2,3,4を介して濾過塔10内に旋回方向に導入されると共に、大粒径層12の下部の大粒径濾材の一部が水と共に配管21を介して配管2に導入され、さらにポンプP、配管3を介して循環する。このように、浮上濾過運転中は、この導入された原水及び循環浮上濾材により、大粒径層12の下部に旋回流動層12aが形成される。原水は、この旋回流動層12aを含む大粒径層12及び小粒径層11を通って濾過処理された後、集水管14を通り、配管30,31から濾過水槽33へ送られる。この濾過運転に際し、濾過層13の下部が旋回流動層12aを形成するため、濾過層13の下部での浮上性濾材の目詰りが抑制され、濾過層13の洗浄頻度を著しく少なくしても、低圧損にて連続して長期に亘り濾過運転を続行することができる。濾過層13のうち、目詰りが生じ易い下部は大粒径濾材よりなる流動層12a及び大粒径層12であるため目詰りが防止される。また、濾過層13の上部が小粒径層11となっているため、高精度の濾過が可能であり、これにより、高純度の濾過処理水を得ることができる。   That is, by driving the pump P, the raw water in the raw water tank 1 is introduced into the filtration tower 10 via the pipes 2, 3, and 4 in the swirling direction, and the large particle size below the large particle layer 12 Part of the filter medium is introduced into the pipe 2 through the pipe 21 together with water, and further circulated through the pump P and the pipe 3. Thus, during the floating filtration operation, the swirling fluidized bed 12a is formed in the lower part of the large particle size layer 12 by the introduced raw water and the circulating floating filter medium. The raw water is filtered through the large particle size layer 12 and the small particle size layer 11 including the swirling fluidized bed 12 a, and then sent to the filtered water tank 33 from the pipes 30 and 31 through the water collecting pipe 14. During this filtration operation, since the lower part of the filtration layer 13 forms the swirling fluidized bed 12a, clogging of the floating filter medium at the lower part of the filtration layer 13 is suppressed, and even if the washing frequency of the filtration layer 13 is significantly reduced, The filtration operation can be continued continuously for a long time with low pressure loss. Of the filtration layer 13, clogging is prevented because the lower portions where clogging is likely to occur are the fluidized bed 12 a and the large particle size layer 12 made of a large particle size filter medium. Moreover, since the upper part of the filtration layer 13 is the small particle diameter layer 11, highly accurate filtration is possible, and thereby high-purity filtered water can be obtained.

上述のように、原水が旋回方向に導入されることにより濾過層13下部に大粒径濾材の旋回流動層12aが形成されるが、この際、原水と共に旋回流動層12aに循環浮上性濾材も導入されるので、濾材が濾過層下表面へ衝突して濾過層下部を撹乱させ、旋回流動層12aの形成と更新を容易にする。また、濾材の衝突は濾材に付着している付着物を剥離させ、目詰りの抑制に寄与する。さらに、大粒径濾材で形成される固定層は旋回流の影響で逆円錐形となるので、最も目詰りの起こりやすい濾過層下面の面積が大きくなる。従って、この浮上濾過装置は、例えばSS1000mg/L以上のSS濃度が非常に高い原水を濾過することも可能である。   As described above, when the raw water is introduced in the swirling direction, the swirling fluidized bed 12a of the large particle size filter medium is formed at the lower part of the filter layer 13. At this time, the circulating and floating filter medium is also added to the swirling fluidized bed 12a together with the raw water. Since it is introduced, the filter medium collides with the lower surface of the filtration layer and disturbs the lower portion of the filtration layer, facilitating the formation and renewal of the swirling fluidized bed 12a. Moreover, the collision of the filter medium peels off the deposits adhering to the filter medium, contributing to suppression of clogging. Furthermore, since the fixed layer formed of the large-diameter filter medium has an inverted conical shape due to the swirling flow, the area of the lower surface of the filter layer that is most likely to be clogged increases. Therefore, this floating filtration device can also filter raw water having a very high SS concentration of, for example, SS 1000 mg / L or more.

そして、旋回流動が形成されることにより、濾過層下方の濾過塔10内の水も旋回し、原水に含有されている比較的重質の懸濁物質、旋回流動によって濾材から剥離した濾滓がサイクロン作用によって濾過塔10内中央部付近に集合して沈降しやすい状態になり、濾過塔10の底へ沈降する。濾過塔10の底部に沈降した汚泥は配管41から沈降物受入槽50へ排出される。   And by forming the swirl flow, the water in the filtration tower 10 below the filter layer also swirls, and the relatively heavy suspended matter contained in the raw water, the filter cake separated from the filter medium by the swirl flow The cyclone action collects in the vicinity of the central portion of the filtration tower 10 and tends to settle, and settles to the bottom of the filtration tower 10. The sludge that has settled at the bottom of the filtration tower 10 is discharged from the pipe 41 to the sediment receiving tank 50.

なお、原水導入用のポンプPを用いて浮上性濾材を循環させる実施例を示したが、濾過塔50の大きさ等の条件によっては、濾材循環専用のポンプを設置し、旋回流動をさらに強く起こすようにしてもよい。   In addition, although the example which circulates a floatable filter medium using the pump P for raw | natural water introduction was shown, depending on conditions, such as the magnitude | size of the filtration tower 50, the pump for filter medium circulation was installed and swirl flow was further strengthened. You may wake up.

浮上濾過運転中に沈降物受入槽50の下部に溜まった汚泥を抜き出す際には、バルブV13を開としてこの汚泥を配管58を介して汚泥貯槽60に抜き出す。 When withdrawing the sludge collected in the bottom sediment receiving tank 50 during the flight filtration operation, the sludge valve V 13 is opened via a pipe 58 extracting the sludge storage tank 60.

上記の如く、濾過運転を長期に亘り継続すると、次第に濾過圧損が増大してくるので、濾過層13の逆洗を行う。   As described above, if the filtration operation is continued for a long period of time, the filtration pressure loss gradually increases. Therefore, the filtration layer 13 is back-washed.

この逆洗に先立って、まず前記第3工程のバルブ状態として沈静化させるのが好ましい。これは、濾過層13の下部に混在することがある小粒径濾材をなるべく濾過層13の上側に戻し、次の排泥工程時に小粒径濾材が沈降物受入槽50へ流出しないようにするためである。ただし、この逆洗に先立って沈静化工程は省略されてもよい。   Prior to this backwashing, it is preferable to first calm down as the valve state of the third step. This is to return the small-diameter filter medium that may be mixed in the lower part of the filter layer 13 to the upper side of the filter layer 13 as much as possible, so that the small-diameter filter medium does not flow out to the sediment receiving tank 50 in the next sludge process. Because. However, the calming step may be omitted prior to this backwashing.

第6工程:排泥
ポンプPを停止した状態で、バルブV,V,V13を開、その他のバルブを閉とする。これにより、濾過塔10内の水が配管41、沈降物受入槽50及び配管58を介して汚泥貯槽60へ排出され、濾過塔10及び沈降物受入槽50内に沈積していた汚泥が汚泥貯槽60へ排出される。濾過塔10へは上部からバルブVを介して空気が導入される。
Step 6: Waste mud With the pump P stopped, the valves V 7 , V 9 , V 13 are opened and the other valves are closed. Thereby, the water in the filtration tower 10 is discharged to the sludge storage tank 60 through the pipe 41, the sediment receiving tank 50 and the pipe 58, and the sludge deposited in the filtration tower 10 and the sediment receiving tank 50 is sludge storage tank. It is discharged to 60. To the filtration tower 10 air is introduced through a valve V 7 from the top.

第7工程:水張り
次に、バルブV,V,V,V,V10を開、その他のバルブを閉とし、ポンプPを駆動し、濾過水槽33内の濾過水で濾過塔10内を満たす。濾過塔10内の空気はバルブVを介して大気へ放出される。
Seventh step: water filling Next, the valves V 2 , V 4 , V 7 , V 9 , V 10 are opened, the other valves are closed, the pump P is driven, and the filtration tower 10 is filtered with filtered water in the filtered water tank 33. Satisfy inside. Air filtration tower 10 is discharged through a valve V 7 to the atmosphere.

第8工程:逆洗
そこで、バルブV,V,V,V,V10を常開とし、その他のバルブを閉とし、ポンプPを駆動する。これにより、濾過塔10の下部及び底部からそれぞれ配管21及び配管41、沈降物受入槽50、配管55を介して水が抜き出されると共に、この水が配管8を介して濾過塔10の上部に導入され、濾過塔10内の水が循環され、濾過層13が逆洗される。なお、間欠的にバルブV又はV13を開弁させ、逆洗中に水の一部を配管32又は58を介して汚泥貯槽60へ排出する。このように水を汚泥貯槽60へ排出するときには濾過水槽33内の水が配管5,3,6,8を介して濾過塔10へ補充される。
Eighth step: backwashing Therefore, the valves V 4 , V 5 , V 6 , V 9 , V 10 are normally opened, the other valves are closed, and the pump P is driven. Thereby, water is extracted from the lower part and the bottom part of the filtration tower 10 through the pipe 21 and the pipe 41, the sediment receiving tank 50, and the pipe 55, respectively, and this water is supplied to the upper part of the filtration tower 10 through the pipe 8. The water in the filter tower 10 is circulated and the filter layer 13 is backwashed. Incidentally, intermittently to open the valve V 8 or V 13, a portion of the water through the pipe 32 or 58 is discharged into the sludge storage tank 60 during backwash. Thus, when discharging water to the sludge storage tank 60, the water in the filtration water tank 33 is replenished to the filtration tower 10 through the pipes 5, 3, 6, and 8.

バルブVを開閉すると、そのときの衝撃により集水管14も洗浄される。 Opening and closing the valves V 8, the water collecting pipe 14 by the impact at that time is also cleaned.

なお、このように濾過塔10内の水を循環させて逆洗する工程にあっては、大粒径濾材及び小粒径濾材は撹拌、混合される。この際、濾材同士が衝突し、濾材に付着した異物が剥離する。特に、濾材には比重の大きい大粒径濾材が含まれており、この大粒径濾材は衝突力が大きいことから、小粒径濾材のみしかない場合に比べて洗浄効果が大幅に向上する。   In the step of circulating the water in the filtration tower 10 and backwashing in this way, the large particle size filter medium and the small particle size filter medium are stirred and mixed. At this time, the filter media collide with each other, and the foreign matter attached to the filter media is peeled off. In particular, the filter medium includes a large particle size filter medium having a large specific gravity. Since the large particle size filter medium has a large impact force, the cleaning effect is greatly improved as compared with the case where only the small particle size filter medium is provided.

第9工程:フィルタ洗浄
その後、ポンプPを停止すると共にバルブV11,V12,V14を開、その他のバルブを閉とする。また、配管59を介して沈降物受入槽50内に空気を吹き込む。これにより、フィルタ51その他の沈降物受入槽50内部が洗浄される。空気混じりの水は配管57を介して排出される。このとき、沈降物に巻き付かれて小粒径濾材が下室53にまで落ちてしまったとしても、空気の吹き込み効果で沈降物が小粒径濾材から剥れ、この小粒径濾材がフィルタ51を通過して濾過塔10に返送可能となるので、小粒径濾材が汚泥貯槽60に排出される心配がない。なお、沈降物受入槽50に気体を供給する手段としてバルブV14付きの配管59を設けたが、この配管59に代えて又はこの配管59と共に、沈降物受入槽50に振動機を取り付けてもよい。この場合、振動機による効果で沈降物が小粒径濾材から剥れる。
Ninth step: Filter cleaning Thereafter, the pump P is stopped, the valves V 11 , V 12 and V 14 are opened, and the other valves are closed. Further, air is blown into the sediment receiving tank 50 through the pipe 59. Thereby, the inside of the filter 51 and other sediment receiving tank 50 is washed. The water mixed with air is discharged through the pipe 57. At this time, even if the small-diameter filter medium is wound around the sediment and falls to the lower chamber 53, the sediment is peeled off from the small-diameter filter medium by the air blowing effect, and the small-diameter filter medium is filtered. Since it can be returned to the filtration tower 10 through 51, there is no concern that the small-diameter filter medium is discharged into the sludge storage tank 60. Although provided a valve V 14 with the pipe 59 as a means for supplying a gas to precipitate the receiving tank 50, or in conjunction with the pipe 59 instead of the pipe 59, even if the vibrator attached to sediment receiving tank 50 Good. In this case, the sediment is peeled off from the small particle size filter medium by the effect of the vibrator.

第10工程:排泥
その後、バルブV,V,V13を開とし、その他のバルブを閉とする。これにより、濾過塔10内の水が配管41、沈降物受入槽50、配管58を介して汚泥貯槽60へ排出され、濾過塔10及び沈降物受入槽50内の汚泥も汚泥貯槽60へ排出される。
Tenth step: Waste mud Then, the valves V 7 , V 9 , V 13 are opened, and the other valves are closed. Thereby, the water in the filtration tower 10 is discharged to the sludge storage tank 60 through the pipe 41, the sediment receiving tank 50, and the pipe 58, and the sludge in the filtration tower 10 and the sediment receiving tank 50 is also discharged to the sludge storage tank 60. The

その後、好ましくは、上記第6工程〜第10工程の一連の工程を1〜5回繰り返す。   Thereafter, preferably, the series of steps from the sixth step to the tenth step is repeated 1 to 5 times.

その後、第1工程に復帰し、第2工程〜第4工程の各工程を経て第5工程の通水運転に移行し、濾過運転を行う。   Then, it returns to a 1st process, moves to the water flow operation of a 5th process through each process of a 2nd process-a 4th process, and performs a filtration operation.

以下に実験例及び実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples and examples.

実験例1
銅製品のバフ研磨工程から排出された表1に示す水質の銅粒子含有水を用いて、沈降性を調べる実験を行った。
Experimental example 1
An experiment was conducted to examine the sedimentation property using the water-containing copper particle-containing water shown in Table 1 discharged from the buffing process of the copper product.

この銅粒子含有水は、茶褐色の粒状銅を含む液体であり、その色より、銅は酸化銅(I)CuOの状態で存在していることがわかる。この銅粒子含有水中の銅粉は長時間静置で沈降するが、銅粒子の粒径がマチマチで沈降しないものは、いつまでも沈降しない。 This copper particle-containing water is a liquid containing brownish brown granular copper, and the color indicates that copper is present in the state of copper (I) Cu 2 O. The copper powder in the copper particle-containing water settles for a long time, but if the particle size of the copper particles does not settle due to gusset, it does not settle indefinitely.

Figure 2007083179
Figure 2007083179

<No.1,2>
銅イオン供給源として銅盤を硫酸で洗浄する洗浄工程から排出された、上記表1に示す水質の硫酸銅含有排水を添加して処理を行った。
<No. 1, 2>
The treatment was performed by adding the water-containing copper sulfate-containing waste water shown in Table 1 discharged from the washing step of washing the copper disk with sulfuric acid as a copper ion supply source.

硫酸銅含有排水をCu換算添加量として表2に示す量となるように銅粒子含有水に添加して1分撹拌した後、NaOHを添加して表2に示すpHに調整し、3分撹拌した。その後、高分子凝集剤として栗田工業(株)製アニオン系高分子凝集剤「PA−331」を表2に示す量添加し、1分撹拌した後静置して、フロックの9割が沈降するに要する時間を調べ、結果を表2に示した。   After adding copper sulfate-containing wastewater to the copper particle-containing water so as to be the amount shown in Table 2 as the amount of Cu-converted addition, the mixture is stirred for 1 minute, then adjusted to the pH shown in Table 2 by adding NaOH, and stirred for 3 minutes. did. Thereafter, an anionic polymer flocculant “PA-331” manufactured by Kurita Kogyo Co., Ltd. was added as a polymer flocculant in the amount shown in Table 2, and the mixture was stirred for 1 minute and allowed to stand, and 90% of the flock settled. The time required for this was investigated, and the results are shown in Table 2.

<No.3>
硫酸銅含有排水の代りに硫酸銅五水和物の1重量%水溶液を用い、その添加量、調整pHを表2に示す通りとした以外は、上記No.1と同様に処理を行い、結果を表2に示した。
<No. 3>
A 1 wt% aqueous solution of copper sulfate pentahydrate was used in place of the copper sulfate-containing waste water, and the addition amount and adjusted pH were as shown in Table 2 above. The same treatment as in 1 was performed, and the results are shown in Table 2.

<No.4>
銅粒子含有水をそのまま静置して沈降時間を調べ、結果を表2に示した。
<No. 4>
The copper particle-containing water was allowed to stand as it was, and the sedimentation time was examined. The results are shown in Table 2.

<No.5>
銅粒子含有水に高分子凝集剤を表2に示す量添加するのみで静置して沈降時間を調べ、結果を表2に示した。
<No. 5>
The amount of polymer flocculant shown in Table 2 was added to the copper particle-containing water and the mixture was allowed to stand and the sedimentation time was examined. The results are shown in Table 2.

<No.6,7>
銅粒子含有水に硫酸銅含有排水の代りに塩化第二鉄を表2に示す量添加したこと以外はNo.1と同様に処理を行い、結果を表2に示した。
<No. 6,7>
No. 2 except that ferric chloride was added to the copper particle-containing water in place of the copper sulfate-containing wastewater. The same treatment as in 1 was performed, and the results are shown in Table 2.

Figure 2007083179
Figure 2007083179

表2より、銅粒子含有水は沈降性が悪く、そのままでは銅粒子が沈降し得ず、また、高分子凝集剤を添加しても沈降性は改善されないことが分かる(No.4,5)。   From Table 2, it can be seen that the copper particle-containing water has poor sedimentation, and as such, the copper particles cannot settle, and even when a polymer flocculant is added, the sedimentation is not improved (No. 4, 5). .

塩化第二鉄を添加することにより沈降性は改善するが、十分ではなく、また、この場合には分離汚泥中に鉄が混入するという不具合がある(No.6,7)。   Addition of ferric chloride improves sedimentation, but it is not sufficient, and in this case, there is a problem that iron is mixed into the separated sludge (No. 6, 7).

これに対して、銅イオンを添加することにより沈降性が顕著に改善され1分程度の沈降時間でフロックを沈降させることができることが分かる(No.1〜3)。   On the other hand, it can be seen that by adding copper ions, the sedimentation property is remarkably improved and the floc can be sedimented in a sedimentation time of about 1 minute (No. 1 to 3).

なお、硫酸銅含有排水と高分子凝集剤を多量に添加したNo.2では、沈降時間は速いが沈降汚泥は水ぶくれ状態であった。これは過剰添加された高分子凝集剤が液中に残留したためと考えられる。   In addition, the No. which added the copper sulfate containing waste water and the polymer flocculent in large quantities. In No. 2, the sedimentation time was fast, but the sedimentation sludge was in a blistering state. This is presumably because the excessively added polymer flocculant remained in the liquid.

実施例1
表1に示す銅粒子含有水と銅イオン供給源としての硫酸銅含有排水と、高分子凝集剤として栗田工業(株)製アニオン系高分子凝集剤「PA−331」を用い、図1に示すフローで処理を行った。濾過装置としては図2,3に示す浮上濾過装置を用いた。この浮上濾過装置の仕様は下記の通りである。
Example 1
The copper particle-containing water shown in Table 1, copper sulfate-containing waste water as a copper ion supply source, and an anionic polymer flocculant “PA-331” manufactured by Kurita Kogyo Co., Ltd. as a polymer flocculant are shown in FIG. Processed with flow. As the filtration device, the floating filtration device shown in FIGS. The specifications of this floating filtration device are as follows.

<浮上濾過装置>
濾過塔10:直径300mm×高さ1000mmの円筒状
濾材層高:大粒径層(12,12a)250mm
小粒径層(11) 250mm
沈降物受入槽:直径150mm×高さ600mmの円筒状
<Floating filter device>
Filtration tower 10: cylindrical shape having a diameter of 300 mm × height of 1000 mm Filter medium layer height: large particle size layer (12, 12a) 250 mm
Small particle size layer (11) 250mm
Sediment receiving tank: cylindrical shape with diameter 150mm x height 600mm

混合槽61で銅粒子含有水に硫酸銅含有排水を銅イオン換算添加量が50mg−Cu/Lとなるように添加して1分間撹拌混合した後、pH調整槽62でNaOHを添加して3分間撹拌混合してpH9.26に調整し、その後高分子凝集剤を0.4mg/Lをライン注入して浮上濾過装置で固液分離した。このときの通水LVは10m/hrとした。   After adding copper sulfate-containing wastewater to the copper particle-containing water in the mixing tank 61 so that the added amount in terms of copper ion is 50 mg-Cu / L, the mixture is stirred and mixed for 1 minute, and then NaOH is added in the pH adjusting tank 62 to 3 After stirring and mixing for a minute, the pH was adjusted to 9.26, and then 0.4 mg / L of the polymer flocculant was line-injected, followed by solid-liquid separation with a flotation filter. The water flow LV at this time was 10 m / hr.

この結果、浮上濾過装置では半分以上のフロックは沈降し、残部が浮上濾材層に供給されて捕捉された。このときの浮上濾過装置における差圧の経時変化は図4に示す通りであった。また、得られた処理水(浮上濾過装置の濾過水)の水質と分離汚泥(浮上濾過装置の沈降物受入槽内に溜った汚泥)の濃度は表3に示す通りであった。   As a result, more than half of the flock settled in the floating filtration device, and the remainder was supplied to the floating filter media layer and captured. The time-dependent change of the differential pressure in the floating filtration device at this time was as shown in FIG. Further, the water quality of the obtained treated water (the filtered water of the floating filtration device) and the concentration of the separated sludge (sludge accumulated in the sediment receiving tank of the floating filtration device) were as shown in Table 3.

実施例2
実施例1において、浮上濾過装置の通水LVを20m/hrとしたこと以外は同様に処理を行った。このときの浮上濾過装置における差圧の経時変化は図5に示す通りであった。また、処理水の水質、汚泥濃度は表3に示す通りであった。
Example 2
In Example 1, it processed similarly except having set the water flow LV of the floating filtration apparatus to 20 m / hr. The time-dependent change of the differential pressure in the floating filtration device at this time was as shown in FIG. In addition, the quality of the treated water and the sludge concentration were as shown in Table 3.

Figure 2007083179
Figure 2007083179

実施例1,2の結果から次のことが分かる。   From the results of Examples 1 and 2, the following can be understood.

銅粒子含有水に硫酸銅含有排水を添加してpHアルカリ性に調整することにより、銅粒子を水酸化銅のフロックに取り込んで沈降性を改善することができ、これを固液分離することにより、良好な水質の処理水が得られるが、その際の浮上濾過装置の通水LVは処理効率に影響し、LV20m/hrで行った実施例2では、大部分のフロックは沈降せずに浮上濾材層に供給されるため、急速に差圧が上昇して濾過不能となった。また、汚泥濃度も低く、処理水への若干のSSの流出も認められた。   By adjusting the pH to alkaline by adding copper sulfate-containing wastewater to copper particle-containing water, the copper particles can be taken into the floc of copper hydroxide to improve sedimentation, and by solid-liquid separation, Although treated water with good water quality can be obtained, the flow rate LV of the flotation filter device at that time affects the treatment efficiency, and in Example 2 performed at LV 20 m / hr, most of the flocs do not settle and the flotation filter medium Since it was supplied to the bed, the differential pressure increased rapidly and filtration became impossible. Moreover, the sludge concentration was low, and a slight outflow of SS into the treated water was observed.

これに対して、通水LV10m/hrで処理した実施例1では、半分以上のフロックは沈降し、残りが浮上濾材層に供給されたため、差圧の上昇もそれほど大きくなく、30分以上の運転継続が可能であった。   On the other hand, in Example 1 treated with water flow LV 10 m / hr, more than half of the flock settled and the remainder was supplied to the floating filter media layer, so the increase in the differential pressure was not so great, and the operation was more than 30 minutes. It was possible to continue.

また、汚泥も高濃度に圧密されており、その後の脱水処理に有利であり、処理水のSS濃度も低く、良好な水質の処理水が得られた。   Moreover, the sludge is also consolidated at a high concentration, which is advantageous for the subsequent dehydration treatment, and the SS concentration of the treated water is low, so that treated water with good water quality is obtained.

本発明の銅粒子含有水の処理方法及び装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method and apparatus of the copper particle containing water of this invention. 本発明におけるフロックの固液分離に好適な濾過装置の一例を示す系統図である。It is a systematic diagram which shows an example of the filtration apparatus suitable for the solid-liquid separation of the floc in this invention. 図2の濾過塔の水平断面図である。It is a horizontal sectional view of the filtration tower of FIG. 実施例1における浮上濾過装置の濾過差圧の経時変化を示すグラフである。3 is a graph showing a change with time of the filtration differential pressure of the floating filtration device in Example 1. FIG. 実施例2における浮上濾過装置の濾過差圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the filtration differential pressure | voltage of the floating filtration apparatus in Example 2. FIG.

符号の説明Explanation of symbols

1 原水槽
10 濾過塔
11 小粒径層
12 大粒径層
12a 流動層
13 濾過層
33 濾過水槽
50 沈降物受入槽
60 汚泥貯槽
61 混合槽
62 pH調整槽
63 濾過装置
64 処理水層
65 汚泥槽
66 脱水機
DESCRIPTION OF SYMBOLS 1 Raw water tank 10 Filtration tower 11 Small particle size layer 12 Large particle size layer 12a Fluidized bed 13 Filtration layer 33 Filtration water tank 50 Sediment receiving tank 60 Sludge storage tank
61 Mixing tank 62 pH adjustment tank 63 Filtration device 64 Treated water layer 65 Sludge tank 66 Dehydrator

Claims (6)

銅粒子含有水に銅イオンを添加混合し、pHを8〜10に調整して水酸化銅のフロックを生成させるとともに、このフロック内に銅粒子を取り込ませ、次いで固液分離することを特徴とする銅粒子含有水の処理方法。   It is characterized in that copper ions are added to and mixed with copper particle-containing water, the pH is adjusted to 8 to 10 to produce copper hydroxide floc, copper particles are taken into the floc, and then solid-liquid separation is performed. To treat copper-containing water. 請求項1において、浮上濾材層を有する濾過装置を用いて前記固液分離を行うことを特徴とする銅粒子含有水の処理方法。   In Claim 1, the said solid-liquid separation is performed using the filtration apparatus which has a floating filter material layer, The processing method of the copper particle containing water characterized by the above-mentioned. 請求項2において、前記濾過装置が、
筒軸方向を上下方向とした筒形の濾過塔内に浮上濾材による濾過層が形成された浮上濾過装置であって、
該濾過層の下部に原水を旋回方向に導入して該濾過層下部に旋回流動を生じさせる原水導入配管と、
該濾過層下部から該浮上濾材の一部を取り出し再度該濾過層下部に導入する濾材循環手段と、
該濾過塔の底部から浮上濾材含有沈降物が導入され該浮上濾材含有沈降物から浮上濾材を分離するための沈降物受入槽と、
該沈降物受入槽内で固形分が分離された浮上濾材を前記原水導入配管に導く浮上濾材返送手段と、
を備えてなり、
該浮上濾材返送手段は、前記原水導入配管に設けられたエゼクタ式吸引手段を有し、該エゼクタ式吸引手段によって該沈降物受入槽から浮上濾材を吸引して該原水導入配管に返送するものであることを特徴とする銅粒子含有水の処理方法。
The filter device according to claim 2,
A flotation filtration device in which a filtration layer is formed by a flotation filter medium in a cylindrical filtration tower having a cylinder axis direction as a vertical direction,
Raw water introduction pipe for introducing raw water into the lower part of the filtration layer in a swirling direction to generate swirl flow in the lower part of the filtration layer;
A filter medium circulating means for taking out a part of the floating filter medium from the lower part of the filter layer and introducing it again into the lower part of the filter layer;
A sediment receiving tank for separating the floating filter medium from the floating filter medium-containing sediment, wherein the floating filter medium-containing sediment is introduced from the bottom of the filtration tower;
A flotation filter medium returning means for guiding the flotation filter medium from which the solid content has been separated in the sediment receiving tank to the raw water introduction pipe;
With
The floating filter return means has an ejector-type suction means provided in the raw water introduction pipe, and the floating filter medium is sucked from the sediment receiving tank by the ejector-type suction means and returned to the raw water introduction pipe. A method for treating water containing copper particles, characterized in that:
銅粒子含有水に銅イオンを添加混合する混合手段と、該混合手段で得られた混合水をpHを8〜10に調整して水酸化銅のフロックを生成させるとともに、このフロック内に銅粒子を取り込ませるpH調整手段と、該pH調整手段からの水を固液分離する手段とを備えることを特徴とする銅粒子含有水の処理装置。   Mixing means for adding and mixing copper ions to copper particle-containing water, and adjusting the pH of the mixed water obtained by the mixing means to 8 to 10 to produce copper hydroxide flocs, and copper particles in the flocs An apparatus for treating copper particle-containing water, comprising: pH adjusting means for taking in water; and means for solid-liquid separation of water from the pH adjusting means. 請求項4において、前記固液分離手段が、浮上濾材層を有する濾過装置であることを特徴とする銅粒子含有水の処理装置。   5. The treatment apparatus for water containing copper particles according to claim 4, wherein the solid-liquid separation means is a filtration device having a floating filter medium layer. 請求項5において、前記濾過装置が、
筒軸方向を上下方向とした筒形の濾過塔内に浮上濾材による濾過層が形成された浮上濾過装置であって、
該濾過層の下部に原水を旋回方向に導入して該濾過層下部に旋回流動を生じさせる原水導入配管と、
該濾過層下部から該浮上濾材の一部を取り出し再度該濾過層下部に導入する濾材循環手段と、
該濾過塔の底部から浮上濾材含有沈降物が導入され該浮上濾材含有沈降物から浮上濾材を分離するための沈降物受入槽と、
該沈降物受入槽内で固形分が分離された浮上濾材を前記原水導入配管に導く浮上濾材返送手段と、
を備えてなり、
該浮上濾材返送手段は、前記原水導入配管に設けられたエゼクタ式吸引手段を有し、該エゼクタ式吸引手段によって該沈降物受入槽から浮上濾材を吸引して該原水導入配管に返送するものであることを特徴とする銅粒子含有水の処理装置。
The filter device according to claim 5,
A flotation filtration device in which a filtration layer is formed by a flotation filter medium in a cylindrical filtration tower having a cylinder axis direction as a vertical direction,
Raw water introduction pipe for introducing raw water into the lower part of the filtration layer in a swirling direction to generate swirl flow in the lower part of the filtration layer;
A filter medium circulating means for taking out a part of the floating filter medium from the lower part of the filter layer and introducing it again into the lower part of the filter layer;
A sediment receiving tank for separating the floating filter medium from the floating filter medium-containing sediment, wherein the floating filter medium-containing sediment is introduced from the bottom of the filtration tower;
A flotation filter medium returning means for guiding the flotation filter medium from which the solid content has been separated in the sediment receiving tank to the raw water introduction pipe;
With
The floating filter return means has an ejector-type suction means provided in the raw water introduction pipe, and the floating filter medium is sucked from the sediment receiving tank by the ejector-type suction means and returned to the raw water introduction pipe. An apparatus for treating copper particle-containing water.
JP2005276054A 2005-09-22 2005-09-22 Treatment method and apparatus for copper particle-containing water Pending JP2007083179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276054A JP2007083179A (en) 2005-09-22 2005-09-22 Treatment method and apparatus for copper particle-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276054A JP2007083179A (en) 2005-09-22 2005-09-22 Treatment method and apparatus for copper particle-containing water

Publications (1)

Publication Number Publication Date
JP2007083179A true JP2007083179A (en) 2007-04-05

Family

ID=37970701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276054A Pending JP2007083179A (en) 2005-09-22 2005-09-22 Treatment method and apparatus for copper particle-containing water

Country Status (1)

Country Link
JP (1) JP2007083179A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674524A (en) * 2011-03-15 2012-09-19 株式会社东芝 Copper recovery apparatus and copper recovery method
JP2012224901A (en) * 2011-04-19 2012-11-15 Swing Corp Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
JP2012224902A (en) * 2011-04-19 2012-11-15 Swing Corp Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
CN102815779A (en) * 2011-06-08 2012-12-12 株式会社东芝 Copper recovery apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674524A (en) * 2011-03-15 2012-09-19 株式会社东芝 Copper recovery apparatus and copper recovery method
JP2012224901A (en) * 2011-04-19 2012-11-15 Swing Corp Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
JP2012224902A (en) * 2011-04-19 2012-11-15 Swing Corp Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
CN102815779A (en) * 2011-06-08 2012-12-12 株式会社东芝 Copper recovery apparatus
US8986541B2 (en) 2011-06-08 2015-03-24 Kabushiki Kaisha Toshiba Copper recovery apparatus
US9701553B2 (en) 2011-06-08 2017-07-11 Kabushiki Kaisha Toshiba Copper recovery apparatus

Similar Documents

Publication Publication Date Title
AU2014284885B2 (en) Dissolved air floatation device
US6919031B2 (en) Method of treating water and wastewater with a ballasted flocculation process and a chemical precipitation process
JP5827339B2 (en) Method for separating liquid from suspended matter in sludge and apparatus therefor
CN107082506B (en) Treatment method and process flow for oilfield produced water
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
US4772400A (en) Method and facility for removing sludge from water
US6197190B1 (en) Tapered flocculation water treatment
JP2013540585A5 (en)
JP4707752B2 (en) Water treatment method and water treatment system
WO2013040002A1 (en) Enhanced separation of nuisance materials from wastewater
JP2007083179A (en) Treatment method and apparatus for copper particle-containing water
JPH11319414A (en) Coagulator
JP3640285B2 (en) Coagulation sedimentation equipment
EP1197474A1 (en) Tapered flocculation water treatment
JP2003080007A (en) Method and apparatus for flocculation and settling
JPH06304411A (en) Cohesive sedimentation and treatment apparatus therefor
CN205258153U (en) Air supporting and filtration integrated device
JP4506217B2 (en) Flotation filtration device
JP2003265905A (en) Flocculating and settling apparatus
JP2003071201A (en) Method for disposing waste liquid containing a plurality of metals
JP4202924B2 (en) Raw water levitation separation treatment method and levitation separation treatment system
CN204369710U (en) Treatment of Phosphorus Containing Waste Water system
JP2001009472A (en) Granulating and dephosphorizing apparatus
JP3889254B2 (en) Solid-liquid separation method and apparatus for biological treatment liquid of organic wastewater
JP2008207062A (en) Electrolytic treatment apparatus and treatment method of organic matter-containing wastewater