JP2012224902A - Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same - Google Patents

Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same Download PDF

Info

Publication number
JP2012224902A
JP2012224902A JP2011092555A JP2011092555A JP2012224902A JP 2012224902 A JP2012224902 A JP 2012224902A JP 2011092555 A JP2011092555 A JP 2011092555A JP 2011092555 A JP2011092555 A JP 2011092555A JP 2012224902 A JP2012224902 A JP 2012224902A
Authority
JP
Japan
Prior art keywords
copper
waste liquid
containing acidic
acidic waste
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092555A
Other languages
Japanese (ja)
Other versions
JP5808132B2 (en
Inventor
Takuya Kobayashi
琢也 小林
Atsushi Kobayashi
厚史 小林
Kazunori Kano
一憲 加納
Toshihiro Suzuki
利宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011092555A priority Critical patent/JP5808132B2/en
Publication of JP2012224902A publication Critical patent/JP2012224902A/en
Application granted granted Critical
Publication of JP5808132B2 publication Critical patent/JP5808132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for treatment that treats a copper-containing acidic waste liquid, such as a copper chloride-containing etching waste liquid and a renewal waste liquid of an electrolytic copper foil plating bath, without requiring complex equipment and simultaneously obtains treated water with good water quality.SOLUTION: The method for neutralization of a copper-containing acidic waste liquid and recovery of copper is provided, in which the copper-containing acidic waste liquid is poured and mixed into an alkaline solution having an amount not less than a neutralization equivalent relative to the copper-containing acidic waste liquid, producing a suspension that contains a solid material including copper oxide as a main component, and the solid material is separated from the suspension; wherein (1) the copper-containing acidic waste liquid is poured and mixed into the alkaline solution after mixed with an oxidant until 70-90% of the total pouring amount of the copper-containing acidic waste liquid relative to the alkaline solution is poured from the start of the reaction, and (2) after the total pouring amount of the copper-containing acidic waste liquid exceeds the amount, the copper-containing acidic waste liquid is poured and mixed into the alkaline solution without being mixed with the oxidant. The apparatus used for the method is also provided.

Description

本発明は、銅含有酸性廃液の処理・回収法に関し、更に詳細には、例えば銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液、多層プリント基板生産の積層工程において基板表面の粗化処理で発生するエッチング廃液など、高濃度銅イオンを含有する銅含有酸性廃液を中和処理し、溶液中から銅を除去し、これを回収する方法及びそのための装置に関する。   The present invention relates to a method for treating and recovering a copper-containing acidic waste liquid, and more specifically, for example, an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant, or a plating bath liquid in electrolytic copper foil production. Neutralizing copper-containing acidic waste liquid containing high-concentration copper ions, such as renewed waste liquid and etching waste liquid generated by roughening the substrate surface in the lamination process of multi-layer printed circuit board production, removes copper from the solution. And a device for the same.

銅イオンを高濃度で含有する酸性の廃液(以下、「銅含有酸性廃液」という)としては、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液、多層プリント基板生産の積層工程において基板表面の粗化処理で発生するエッチング廃液などが知られている。これらの廃液は、銅濃度が5〜20質量%(以下、単に「%」で示す)程度と高い一方で、共存する塩素イオンや硫酸イオンの濃度も通常5〜30%と高い。   As an acidic waste liquid containing copper ions at a high concentration (hereinafter referred to as “copper-containing acidic waste liquid”), an etching waste liquid produced when etching a copper printed circuit board with a cupric chloride etchant, or in electrolytic copper foil production A renewal waste solution of a plating bath, an etching waste solution generated by a roughening process of a substrate surface in a lamination process of multilayer printed circuit board production, and the like are known. These waste liquids have a high copper concentration of about 5 to 20% by mass (hereinafter simply referred to as “%”), while the concentration of coexisting chlorine ions and sulfate ions is usually as high as 5 to 30%.

このような銅含有酸性廃液を対象にした銅の回収処理方法としては、イオン化傾向の差を利用し、例えば鉄スクラップと反応させて金属銅を析出させて回収する方法が一部で行われているが、この方法では廃液からの銅回収率が低いという問題がある。また、銅イオンとの反応により溶出した鉄イオンと残留した銅イオンが含まれる廃液が残るため、この廃液の処理が別途必要になり効率的な処理方法とは言いがたい。   As a copper recovery treatment method for such a copper-containing acidic waste liquid, a method of using a difference in ionization tendency, for example, reacting with iron scrap to deposit and recovering metallic copper is performed in part. However, this method has a problem that the copper recovery rate from the waste liquid is low. Further, since a waste liquid containing iron ions eluted by the reaction with copper ions and residual copper ions remains, it is difficult to say that this waste liquid needs to be treated separately and is an efficient treatment method.

ところで、本発明者らは先に、銅含有酸性廃液と酸化剤を混合した後、アルカリ溶液に添加することで、酸化銅を効率よく回収できる方法を見出し、特許出願した(特許文献1)。この方法によれば、銅含有酸性廃液と酸化剤の混合液をアルカリ溶液中に滴下することで、酸化銅を主成分とする固形物が得られる。これは、銅含有酸性廃液を酸化剤と共に、少量ずつアルカリ剤に混合することで、適切な希釈効果を得ながら銅含有酸性廃液を中和し、銅含有酸性廃液に含まれる銅イオンを酸化し、酸化銅とすることができるためである。   By the way, the present inventors previously found out a method for efficiently recovering copper oxide by mixing a copper-containing acidic waste liquid and an oxidizing agent and then adding it to an alkaline solution, and filed a patent application (Patent Document 1). According to this method, the solid substance which has a copper oxide as a main component is obtained by dripping the liquid mixture of a copper containing acidic waste liquid and an oxidizing agent in an alkaline solution. This is because the copper-containing acidic waste liquid is mixed with the oxidizing agent together with the oxidizing agent little by little to neutralize the copper-containing acidic waste liquid while obtaining an appropriate dilution effect, and oxidize the copper ions contained in the copper-containing acidic waste liquid. This is because copper oxide can be used.

ここで、特許文献1の方式は、回収した酸化銅の再利用に重点を置いた方式であり、高純度の酸化銅を回収できる特長がある。しかし、この方式では、生成した固形成分の沈降分離性にやや難があり、固液分離のための沈殿槽を大きくしなければならないものであった。また、固液分離の際に、上澄液側に生成した固形成分の一部が残留し、処理水水質の悪化が起こりうる場合があった。高純度の酸化銅の回収が求められる場合の廃液処理設備として運用する場合には、これに対応した設備はやむを得ないが、余り高純度の酸化銅の回収まで求めない場合には、設備が過大になるという問題がある。   Here, the method of Patent Document 1 is a method that places emphasis on the reuse of recovered copper oxide, and has a feature that high-purity copper oxide can be recovered. However, in this method, there is some difficulty in sedimentation and separation of the generated solid components, and the sedimentation tank for solid-liquid separation has to be enlarged. Moreover, in the case of solid-liquid separation, a part of solid component produced | generated by the supernatant liquid side may remain, and the deterioration of treated water quality may occur. When operating as a waste liquid treatment facility when recovery of high-purity copper oxide is required, it is inevitable that the equipment corresponding to this will be used. There is a problem of becoming.

従って、高純度の回収酸化銅の必要がない場合の銅含有酸性廃液の廃液処理においては、銅含有酸性廃液を中和処理すると同時に、良好な水質の処理水と取り扱いやすい銅含有汚泥を得ることができる簡易な銅含有酸性廃液の処理方法の提供が求められている。   Therefore, in the waste liquid treatment of copper-containing acidic waste liquid when there is no need for high-purity recovered copper oxide, neutralize the copper-containing acidic waste liquid, and at the same time, obtain treated water with good water quality and easy-to-handle copper-containing sludge There is a need to provide a simple treatment method for copper-containing acidic waste liquid that can be used.

特開2009−167462JP2009-167462

本発明は、上記実情に鑑みなされたものであり、塩化銅含有エッチング廃液や電解銅箔メッキ浴の更新廃液、多層プリント基板表面の粗化処理でのエッチング廃液などの銅含有酸性廃液を、過大、複雑な設備を要することなく処理し、同時に良好な水質の処理水が得られる処理方法及び装置を提供することをその課題とするものである。   The present invention has been made in view of the above circumstances, and copper-containing acidic waste liquid such as copper chloride-containing etching waste liquid, electrolytic copper foil plating bath renewal waste liquid, etching waste liquid in the roughening treatment of the multilayer printed circuit board surface, etc. It is an object of the present invention to provide a treatment method and apparatus that can perform treatment without requiring complicated facilities and at the same time obtain treated water with good water quality.

本発明者らは、銅含有酸性廃液の処理方法に関し検討したところ、処理対象液である銅イオンを高濃度で含有する酸性廃液を、ある程度以上の温度に加熱したアルカリ溶液に注加、混合すると、アルカリ溶液に注加された酸性廃液中の銅イオンは、水酸化銅を経て酸化銅まで自己酸化されることを知った。しかし、この方法では微細な酸化銅が生成するため、反応終了後の酸化銅を含むスラリーの沈降性が悪いなど、取扱に問題が残った。   When the present inventors examined about the processing method of copper-containing acidic waste liquid, when the acidic waste liquid containing the copper ion which is a process target liquid in high concentration is poured into the alkaline solution heated to a certain temperature or more, and mixed. It was found that the copper ions in the acidic waste liquid poured into the alkaline solution were auto-oxidized to copper oxide via copper hydroxide. However, since fine copper oxide is generated by this method, problems remain in handling such as poor sedimentation of the slurry containing copper oxide after the reaction is completed.

そこで、更に発明者らは研究を進め、銅含有酸性廃液をアルカリ溶液に注加する操作の途中で、アルカリ溶液の温度を低下させ、水酸化銅生成させると、析出した粒子が粗大化し、スラリーの上澄液中の浮遊物質濃度や銅イオン濃度が低下することを見出し、本発明を完成した。   Therefore, the inventors further researched, during the operation of pouring the copper-containing acidic waste liquid into the alkaline solution, when the temperature of the alkaline solution was lowered and copper hydroxide was generated, the precipitated particles were coarsened and the slurry As a result, the present inventors have found that the suspended solid concentration and copper ion concentration in the supernatant liquid are reduced.

すなわち本発明は、銅含有酸性廃液を、当該銅含有酸性廃液に対して中和当量以上のアルカリ性溶液中に注加、混合して、酸化銅および水酸化銅を主成分とする固形物を含有する懸濁液を生成させ、当該懸濁液中から当該固形物を分離する銅含有酸性廃液の中和および銅の回収法であって、
(1)反応開始時から、アルカリ性溶液に対する銅含有酸性廃液の全注加量の70ない
し90%までは、アルカリ性溶液への銅含有酸性廃液の注加、混合を少なくとも50
℃以上の温度で行い、
(2)銅含有酸性廃液の全注加量が上記量を越えた後は、アルカリ性溶液への銅含有酸性
廃液の注加、混合を少なくとも40℃以下の温度で行う
ことを特徴とする銅含有酸性廃液の中和および銅の回収法である。
That is, the present invention includes a solid containing copper oxide and copper hydroxide as a main component by adding and mixing the copper-containing acidic waste liquid into an alkaline solution having a neutralization equivalent or more with respect to the copper-containing acidic waste liquid. A method of neutralizing a copper-containing acidic waste liquid and separating copper from the suspension,
(1) From the start of the reaction, at least 50 to 90% of the total amount of copper-containing acidic waste liquid added to the alkaline solution is poured and mixed with the copper-containing acidic waste liquid into the alkaline solution.
At a temperature of ℃ or more,
(2) After the total amount of the copper-containing acidic waste liquid exceeds the above amount, the copper-containing acidic waste liquid is added to the alkaline solution and mixed at a temperature of at least 40 ° C. This is a method for neutralizing acidic waste liquid and recovering copper.

また本発明は、アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、加熱手段、冷却手段および混合手段を有し、アルカリ性水溶液と銅含有酸性廃液を反応させ、アルカリ性懸濁液を生成する混合反応槽と;
当該銅含有酸性廃液の積算注加量を計量する手段と;
および当該銅含有酸性廃液の積算注加量に対応し、前記混合反応槽の加熱手段および/または冷却手段を制御する制御機構と
を含有する銅含有酸性廃液の中和、回収処理装置である。
The present invention also has means for supplying an alkaline aqueous solution, means for pouring a copper-containing acidic waste liquid, heating means, cooling means and mixing means, and reacting the alkaline aqueous solution with the copper-containing acidic waste liquid to produce an alkaline suspension. A mixed reactor;
Means for measuring the cumulative amount of the copper-containing acidic waste liquid;
And an apparatus for neutralizing and recovering a copper-containing acidic waste liquid containing a control mechanism for controlling the heating means and / or the cooling means of the mixed reaction tank, corresponding to the cumulative amount of the copper-containing acidic waste liquid.

更に本発明は、アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、加熱手段、冷却手段および混合手段を有し、アルカリ性水溶液と銅含有酸性廃液が反応してアルカリ性懸濁液を生成する第一の混合反応槽と;
第一の混合反応槽と連通し、第一の混合反応槽から送液されたアルカリ性懸濁液の温度を下げる放冷ないし冷却手段と;
銅含有酸性廃液の注加手段および混合手段を有すると共に、放冷ないし冷却手段と連通し、放冷ないし冷却手段からのアルカリ性懸濁液剤を収容し、注加された銅含有酸性廃液と該アルカリ性懸濁液を反応させる第二の混合反応槽と
を備えた銅含有酸性廃液の中和、回収処理装置である。
Furthermore, the present invention has means for supplying alkaline aqueous solution, means for adding copper-containing acidic waste liquid, heating means, cooling means and mixing means, and the alkaline aqueous solution and copper-containing acidic waste liquid react to produce an alkaline suspension. A first mixing reactor;
A cooling or cooling means that communicates with the first mixing reaction vessel and lowers the temperature of the alkaline suspension fed from the first mixing reaction vessel;
It has a means for adding and mixing copper-containing acidic waste liquid, and communicates with the cooling or cooling means, contains an alkaline suspension from the cooling or cooling means, and adds the poured copper-containing acidic waste liquid and the alkaline A copper-containing acidic waste liquid neutralization and recovery treatment apparatus provided with a second mixing reaction tank for reacting a suspension.

本発明によれば、これまでの処理技術では複塩の生成などにより処理が困難であった、銅イオンの含有濃度が5〜20%という高濃度の銅含有酸性廃液を希釈することなく直接処理することができ、粒径が大きく、沈降性の良好な生成物を回収できる。また、浮遊物質や銅イオンの少ない良好な処理水を得ることができる。さらに、水酸化銅の自己酸化作用を利用するため、処理に必要な薬品はアルカリ剤のみであり経済性が高いという特長を持つ。   According to the present invention, direct treatment without diluting a high-concentration copper-containing acidic waste liquid having a copper ion content concentration of 5 to 20%, which has been difficult to process by the generation of double salts, etc. with conventional treatment techniques. A product having a large particle size and good sedimentation can be recovered. In addition, it is possible to obtain good treated water with less suspended substances and copper ions. Furthermore, since the self-oxidation action of copper hydroxide is used, the chemical necessary for the treatment is only an alkaline agent, which has a feature of high economic efficiency.

そして、本発明方法で得られる回収物は、単純な水酸化物沈殿方式と比較して含水率が低いため、汚泥排出量を低減することが可能となる。また、回収物は酸化銅を主体とする化合物のため、脱水後は、回収物を銅精錬の原料として利用することも可能である。   And since the collection | recovery obtained by this invention method has a low moisture content compared with a simple hydroxide precipitation system, it becomes possible to reduce sludge discharge. Further, since the recovered material is a compound mainly composed of copper oxide, the recovered material can be used as a raw material for copper refining after dehydration.

実施例1における銅エッチング廃液と水酸化ナトリウム溶液の中和曲線Neutralization curve of copper etching waste solution and sodium hydroxide solution in Example 1 本発明で用いる、混合反応槽を1つ有する銅含有酸性廃液の中和、回収処理装置の一態様を示す模式図Schematic diagram showing one embodiment of the neutralization and recovery treatment device for copper-containing acidic waste liquid having one mixed reaction tank used in the present invention. 本発明で用いる、混合反応槽を2つ有する銅含有酸性廃液の中和、回収処理装置の一態様を示す模式図Schematic diagram showing one embodiment of a neutralization and recovery treatment device for copper-containing acidic waste liquid having two mixed reaction tanks used in the present invention.

本発明の銅含有酸性廃液からの銅の回収方法(以下、「本発明方法」という)による処理プロセスでは、処理銅含有酸性廃液の中和当量に対して過剰量のアルカリ性溶液が供給された混合反応槽中に、銅含有酸性廃液を、最初からの大部分は高温で、最後の一部は低温で、それぞれ徐々に注加するというものである。   In the treatment process by the method for recovering copper from the copper-containing acidic waste liquid of the present invention (hereinafter referred to as “method of the present invention”), a mixture in which an excessive amount of alkaline solution is supplied relative to the neutralization equivalent of the treated copper-containing acidic waste liquid The copper-containing acidic waste liquid is gradually poured into the reaction vessel, mostly from the beginning at a high temperature and the last part at a low temperature.

より詳しくは、銅含有酸性廃液を、最初からの大部分は加熱されたアルカリ性溶液中に注加、混合することで酸化銅を主成分とする固形物を含有する懸濁液を生成させる。そして、所定量の銅含有酸性廃液の注加が終了した後は、反応液であるアルカリ性懸濁液の温度を放冷ないし冷却させた後に、残量の銅含有酸性廃液の注加、混合を行い、酸化銅と水酸化銅を主成分とする固形物を析出させる。   More specifically, a suspension containing a solid containing copper oxide as a main component is generated by pouring and mixing a copper-containing acidic waste liquid into a heated alkaline solution mostly from the beginning. After the addition of the predetermined amount of copper-containing acidic waste liquid is completed, the temperature of the alkaline suspension that is the reaction liquid is allowed to cool or cool, and then the remaining copper-containing acidic waste liquid is poured and mixed. And solid matter mainly composed of copper oxide and copper hydroxide is deposited.

本発明方法においては、基本的に銅含有酸性廃液とアルカリ性溶液の中和を、中和点よりアルカリ側で実施することが重要である。従って、本発明方法を実施するには、アルカリ性溶液が過剰の状態、例えば、中和量に対して1.2倍程度過剰な状態で中和を行うことが必要であり、アルカリ性水溶液中に、銅含有酸性廃液(および酸化剤)を徐々に、十分に撹拌しつつ加えていく必要がある。また、反応中は常にアルカリ性溶液が中和当量より過剰にあることが必要である。   In the method of the present invention, it is important to neutralize the copper-containing acidic waste liquid and the alkaline solution basically on the alkali side from the neutralization point. Therefore, in order to carry out the method of the present invention, it is necessary to carry out neutralization with an alkaline solution in an excess state, for example, an excess of about 1.2 times the neutralization amount. It is necessary to add the copper-containing acidic waste liquid (and the oxidizing agent) gradually and with sufficient stirring. In addition, it is necessary that the alkaline solution is always in excess of the neutralization equivalent during the reaction.

また、本発明において重要なことは、銅含有酸性廃液の注加を、
(1)50℃以上でのアルカリ性溶液と混合、
(2)40℃以下でのアルカリ性溶液との混合
をこの順序で組み合わせて行うことである。
Moreover, what is important in the present invention is the addition of the copper-containing acidic waste liquid,
(1) mixed with an alkaline solution at 50 ° C or higher,
(2) Mixing with an alkaline solution at 40 ° C. or lower is performed in this order.

すなわち、処理すべき銅含有酸性廃液の積算注入量が、全注入量の70ないし90%となるまで(以下、この時点を「切替時点」ということがある)は、50℃以上でアルカリ性溶液と注加、混合し、この量を超えた時点からは、40℃以下でアルカリ性溶液と注加、混合することが好ましい。   That is, until the cumulative injection amount of the copper-containing acidic waste liquid to be treated reaches 70 to 90% of the total injection amount (hereinafter, this time point may be referred to as “switching time point”), the alkaline solution It is preferable to add and mix with an alkaline solution at 40 ° C. or less from the point of addition and mixing and exceeding this amount.

この切替時点より早く、40℃以下でのアルカリ性溶液との混合を行うと、固形物中の酸化銅の割合が低く、水酸化銅の割合が増加し、スラッジの沈降性の悪化やスラッジの含水率が増加する。逆に、切替時点より銅含有酸性廃液だけの注入が遅い場合は、スラッジの沈降性は良いものの、固形物を除去した処理水中の懸濁物や、懸濁質の銅含有成分濃度が増えたりする問題が生じることがある。   When mixing with an alkaline solution at 40 ° C. or less earlier than the switching point, the proportion of copper oxide in the solid matter is low, the proportion of copper hydroxide is increased, sludge sedimentation is deteriorated, and the sludge is hydrated. The rate increases. Conversely, if the injection of only the copper-containing acidic waste liquid is slower than the switching point, the sludge sedimentation is good, but the suspension in the treated water from which the solids have been removed and the concentration of the copper-containing component in the suspended matter increase. Problems may occur.

従って、本発明方法を実施するに当たっては、処理する銅含有酸性廃液や、使用するアルカリ性溶液について予め実験を行い、反応系の温度を切り替える適切なタイミング(切替時点)を調べておくことが好ましい。   Therefore, in carrying out the method of the present invention, it is preferable to conduct an experiment in advance on the copper-containing acidic waste liquid to be treated and the alkaline solution to be used, and to investigate an appropriate timing (switching time) for switching the temperature of the reaction system.

本発明方法で処理対象となる銅含有酸性廃液としては、銅をイオン状態で含有する酸性廃液であり、銅含有酸性廃液中の銅イオン濃度や、陰イオン濃度は特に制約されない。本発明方法で特に好適に処理できる銅含有酸性廃液の具体例として、銅プリント基板を塩化第二銅エッチング液でエッチングする際に生じるエッチング廃液や、電解銅箔製造におけるメッキ浴液の更新廃液、多層プリント基板生産の積層工程において基板表面の粗化処理で発生するエッチング廃液など、銅イオン濃度及び塩素イオン濃度、硫酸イオン濃度等陰イオン濃度の高い廃液が挙げられる。   The copper-containing acidic waste liquid to be treated by the method of the present invention is an acidic waste liquid containing copper in an ionic state, and the copper ion concentration and the anion concentration in the copper-containing acidic waste liquid are not particularly limited. As a specific example of the copper-containing acidic waste liquid that can be particularly suitably treated by the method of the present invention, an etching waste liquid generated when etching a copper printed board with a cupric chloride etchant, or a renewed waste liquid of a plating bath liquid in electrolytic copper foil production, Examples include a waste liquid having a high anion concentration such as a copper ion concentration, a chlorine ion concentration, and a sulfate ion concentration, such as an etching waste solution generated in a roughening process of a substrate surface in a lamination process of multilayer printed circuit board production.

また、本発明方法でのアルカリ性溶液の調製に利用されるアルカリ剤としては、種々のアルカリ剤を使用することができ、その形態としては、固体状でも液体状でもよい。しかし、具体的なアルカリ剤の選定は、銅含有酸性廃液中に共存する可能性がある陰イオンと沈降性の塩を形成しないアルカリ金属の水酸化物が適当である。一方、使用するアルカリ剤量は、処理する銅含有酸性廃液の銅イオン濃度、陰イオン濃度および液量によって決定される。従って、予め小スケールの実験で、処理すべき銅含有酸性廃液を中和するのに必要なアルカリ剤量を予め求め、実際の処理では、この量を元に必要なアルカリ剤量を決めると良い。   Moreover, as an alkaline agent utilized for preparation of the alkaline solution by the method of the present invention, various alkaline agents can be used, and the form thereof may be solid or liquid. However, for the selection of a specific alkaline agent, an alkali metal hydroxide that does not form a sedimentary salt with an anion that may coexist in the copper-containing acidic waste liquid is appropriate. On the other hand, the amount of the alkaline agent to be used is determined by the copper ion concentration, the anion concentration and the liquid amount of the copper-containing acidic waste liquid to be treated. Therefore, in a small scale experiment, the amount of alkali agent necessary to neutralize the copper-containing acidic waste liquid to be treated is obtained in advance, and in actual treatment, the amount of alkali agent required may be determined based on this amount. .

なお、アルカリ剤として固体状のアルカリを使用する場合は、廃液量の増加を抑制できる利点がある。固体状のアルカリ剤を用いる場合、固体状のアルカリ剤を水等で予め溶解させてから混合反応槽に供給しても良く、混合反応槽内に固体状のまま供給して混合反応槽で溶解させても良い。更に、固体状のアルカリ剤を溶解させる水としては後記する固液分離により固形物から分離された分離液、分離された固形物の洗浄処理で生じた洗浄処理排水等を用いることもできる。一方、アルカリ剤としてアルカリ性溶液を用いる場合は、使用するアルカリ剤量の制御が容易である点や、薬剤の補充が容易、溶解操作が不要であるなどの取り扱い面での利点がある。   In addition, when using a solid alkali as an alkali agent, there exists an advantage which can suppress the increase in the amount of waste liquids. When a solid alkaline agent is used, the solid alkaline agent may be dissolved in water or the like before being supplied to the mixing reaction tank, or supplied as a solid in the mixing reaction tank and dissolved in the mixing reaction tank. You may let them. Furthermore, as the water for dissolving the solid alkaline agent, a separation liquid separated from the solid by solid-liquid separation described later, a washing waste water generated by the washing treatment of the separated solid, and the like can also be used. On the other hand, when an alkaline solution is used as the alkaline agent, there are advantages in terms of handling such as easy control of the amount of alkaline agent used, easy replenishment of chemicals, and no dissolution operation.

本発明方法では、アルカリ剤として比較的安価で入手が容易なことから水酸化ナトリウムが好ましい。水酸化ナトリウムを用いる場合は、フレーク状、粒状等固体や溶液を利用できる。水酸化ナトリウム溶液を用いる場合は、濃度は特に限定されないが、例えば、25%程度の濃度の水酸化ナトリウム溶液が利用できる。   In the method of the present invention, sodium hydroxide is preferred because it is relatively inexpensive and easily available as an alkaline agent. When sodium hydroxide is used, a solid or solution such as flakes or granules can be used. In the case of using a sodium hydroxide solution, the concentration is not particularly limited. For example, a sodium hydroxide solution having a concentration of about 25% can be used.

以上まとめた形態を踏まえ、プリント基板製造工程から排出される酸性の銅エッチング廃液とアルカリ性溶液として水酸化ナトリウム溶液を用いる場合を例にとり、銅含有酸性廃液の処理を以下に説明する。   Based on the form summarized above, the case of using an acidic copper etching waste liquid discharged from the printed circuit board manufacturing process and a sodium hydroxide solution as an alkaline solution will be described as an example, and the treatment of the copper-containing acidic waste liquid will be described below.

本発明方法による処理プロセスにおいては、まず、処理すべき銅エッチング廃液の中和当量を超える量の水酸化ナトリウム水溶液を準備し、混合反応槽に入れ、その温度を少なくとも50℃以上、好ましくは、60から80℃に加熱、維持する。次いで、銅含有酸性廃液を、混合反応槽中に少量ずつ注加して行く。この注加は、連続的でも間欠的もかまわないが、好ましくは間欠的に行う。   In the treatment process according to the method of the present invention, first, an aqueous sodium hydroxide solution in an amount exceeding the neutralization equivalent of the copper etching waste liquid to be treated is prepared and placed in a mixed reaction tank, and the temperature is at least 50 ° C. or higher, preferably Heat and maintain at 60-80 ° C. Next, the copper-containing acidic waste liquid is poured into the mixed reaction tank little by little. This addition may be continuous or intermittent, but is preferably performed intermittently.

次いで、銅エッチング廃液の積算の注加量が、全エッチング液量の、70ないし90%に達した時点(切替時点)で、銅エッチング廃液の注加を停止し、混合反応槽中のアルカリ性懸濁液の温度を少なくとも40℃以下まで低下させる。この温度を低下させる手段としては、単に放冷しても良いし、また混合反応槽中に冷却装置を設置し、これを作動させても良い。あるいは、最初に用いた混合反応槽とは別の混合反応槽を準備し、この間に必要に応じて冷却装置を設置し、アルカリ性懸濁液を移送することで温度を下げても良い。   Next, when the total amount of the copper etching waste liquid reached 70 to 90% of the total amount of the etching liquid (switching point), the copper etching waste liquid injection was stopped and the alkaline suspension in the mixing reaction tank was stopped. Reduce the temperature of the suspension to at least 40 ° C. or less. As a means for lowering the temperature, it may be simply allowed to cool, or a cooling device may be installed in the mixing reaction tank and operated. Alternatively, a temperature may be lowered by preparing a mixing reaction tank different from the mixing reaction tank used first, installing a cooling device between them, and transferring the alkaline suspension.

そして、温度が40℃以下、好ましくは、30℃に低下したアルカリ性懸濁液中に、再度、残量の酸エッチング廃液を徐々に注加し、混合し、反応を終了する。なお、切替時点以後のアルカリ性懸濁液の温度の下限は、特に制約されないが、冷却のコスト等経済面を考えれば、周囲の温度(環境温度)程度までとすることが好ましい。   Then, the remaining amount of the acid etching waste liquid is gradually poured again into the alkaline suspension whose temperature is lowered to 40 ° C. or less, preferably 30 ° C., and the reaction is completed. In addition, the lower limit of the temperature of the alkaline suspension after the switching point is not particularly limited, but it is preferable to set the temperature to the ambient temperature (environmental temperature) in consideration of the economic aspect such as the cooling cost.

本発明方法において、最初の高温度条件での水酸化ナトリウム水溶液と酸エッチング液の混合では、銅エッチング廃液中の銅イオンは、最初に水酸化銅に変化するが、次いで自己酸化により、速やかに酸化銅へ変化する。すなわち、酸化剤を用いることなく、加熱により酸化銅を主成分とする微粒子が懸濁するアルカリ性懸濁液(以下、「アルカリ性懸濁液」と略称する)が生成するのである。   In the method of the present invention, in the mixing of the aqueous sodium hydroxide solution and the acid etching solution at the first high temperature condition, the copper ions in the copper etching waste solution are first changed to copper hydroxide, but then rapidly by auto-oxidation. Change to copper oxide. That is, without using an oxidizing agent, an alkaline suspension in which fine particles containing copper oxide as a main component are suspended by heating (hereinafter, abbreviated as “alkaline suspension”) is generated.

また、切替時点後の低温度条件での、アルカリ性懸濁液中への酸エッチングの混合では、銅エッチング廃液中の銅イオンは、アルカリの作用により、水酸化銅に変化する。しかし、温度が低いため、酸化銅にまで完全には酸化されない。すなわち、この反応でアルカリ性懸濁液中に、酸化銅と少量の水酸化銅が存在することになる。   Moreover, in the mixing of the acid etching into the alkaline suspension under the low temperature condition after the switching time, the copper ions in the copper etching waste liquid are changed to copper hydroxide by the action of the alkali. However, due to the low temperature, it is not completely oxidized to copper oxide. That is, in this reaction, copper oxide and a small amount of copper hydroxide are present in the alkaline suspension.

そして大量に存在すると水で膨潤し、取り扱いにくい汚泥となる水酸化銅であるが、本発明のように、他の微粒子が存在する懸濁液中に少量存在すると、これが微細な浮遊物質を取り込む凝集剤の役割を果たし、懸濁液中の粒径が増し、生成物の沈降性や固液分離後の処理水の性状を改善するのである。   And if it is present in a large amount, it is copper hydroxide that swells with water and becomes sludge that is difficult to handle, but as in the present invention, if it is present in a small amount in a suspension in which other fine particles are present, this takes in fine suspended matter It acts as a flocculant and increases the particle size in the suspension, improving the sedimentation properties of the product and the properties of the treated water after solid-liquid separation.

なお、何れの反応でも反応中に、銅エッチング廃液の注加量が、混合反応槽内の水酸化ナトリウム溶液の中和当量を超えると、混合反応槽内の懸濁液のpHが7未満となり、銅がCu2+の形態で再溶解し、処理水中の銅濃度が上昇する。そして、銅エッチング廃液(銅含有酸性廃液)からの銅の除去・回収である本発明の目的から、このような現象は好ましいことでなく、銅含有酸性廃液の注加、混合に当たり、反応系内において、一時的にでもまた部分的にでもpHが中和点より酸性側にならないよう管理することも重要である。具体的には、反応中、混合反応槽のpHを測定し、反応中の液のpHを7以上、好ましくは8以上を維持するよう管理することで、銅がCu2+の形態で再溶解することを抑制することが望ましい。 In any reaction, if the amount of the copper etching waste liquid exceeds the neutralization equivalent of the sodium hydroxide solution in the mixing reaction tank, the pH of the suspension in the mixing reaction tank becomes less than 7 during the reaction. Copper re-dissolves in the form of Cu 2+ and the copper concentration in the treated water increases. And, for the purpose of the present invention, which is removal / recovery of copper from the copper etching waste liquid (copper-containing acidic waste liquid), such a phenomenon is not preferable, and in the addition and mixing of the copper-containing acidic waste liquid, It is also important to control the pH so that it does not become acidic from the neutralization point, either temporarily or partially. Specifically, during the reaction, the pH of the mixed reaction tank is measured, and the pH of the liquid during the reaction is controlled to maintain 7 or more, preferably 8 or more, so that copper is redissolved in the form of Cu 2+. It is desirable to suppress this.

本発明方法を実施するための中和、回収処理装置(以下、「装置」と略称する)としては、アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、加熱手段、冷却手段および混合手段を有し、アルカリ性水溶液と銅含有酸性廃液を反応させ、アルカリ性懸濁液を生成する混合反応槽と;
当該銅含有酸性廃液の積算注加量を計量する手段と;
および当該銅含有酸性廃液の積算注加量に対応し、前記混合反応槽の加熱手段および/または冷却手段を制御する制御機構と
を含有する装置が挙げられる。
The neutralization and recovery treatment apparatus (hereinafter referred to as “apparatus”) for carrying out the method of the present invention includes alkaline aqueous solution supply means, copper-containing acidic waste liquid pouring means, heating means, cooling means, and mixing means. A mixed reaction tank for reacting an alkaline aqueous solution with a copper-containing acidic waste liquid to produce an alkaline suspension;
Means for measuring the cumulative amount of the copper-containing acidic waste liquid;
And an apparatus containing a control mechanism for controlling the heating means and / or the cooling means of the mixed reaction tank corresponding to the cumulative amount of the copper-containing acidic waste liquid.

この装置の一態様を図2に模式的に示す。図2において、1は銅含有酸性廃液、2はアルカリ性溶液、3はアルカリ性懸濁液、4は酸化銅ケーキ、12は混合反応槽、13は脱水装置、14は制御装置、15は加熱手段をそれぞれ示す。   One embodiment of this apparatus is schematically shown in FIG. In FIG. 2, 1 is a copper-containing acidic waste liquid, 2 is an alkaline solution, 3 is an alkaline suspension, 4 is a copper oxide cake, 12 is a mixing reaction tank, 13 is a dehydrator, 14 is a controller, and 15 is a heating means. Each is shown.

図2に示す装置では、銅含有酸性廃液1は、あらかじめ50℃以上に加温されたアルカリ性溶液2が供給された混合反応槽12に少量ずつ注加される。注加の際、銅含有酸性廃液1の注加量は、制御装置14にて積算される。制御装置14では、銅含有酸性廃液1の注加量が、反応開始時からアルカリ性溶液2に対する銅含有酸性廃液の全注加量の70ない90%までは、混合反応槽12内のアルカリ性溶液2の温度を少なくとも50℃以上に保つ制御を行う。また、制御装置14では、銅含有酸性廃液1の全注加量が上記量を越えた後は、一旦、注加操作を中断し、混合反応槽12内のアルカリ性懸濁液3を40℃以下に冷却後、残りの銅含有酸性廃液1を注加する制御を行う。反応終了後、アルカリ性懸濁液3は脱水装置13に移送され、固液分離後、酸化銅ケーキ4が回収される。   In the apparatus shown in FIG. 2, the copper-containing acidic waste liquid 1 is poured little by little into a mixed reaction tank 12 supplied with an alkaline solution 2 that has been heated to 50 ° C. or higher in advance. At the time of the addition, the amount of the copper-containing acidic waste liquid 1 added is integrated by the control device 14. In the control device 14, the alkaline solution 2 in the mixed reaction tank 12 is added from the start of the reaction to 90% of the total amount of the copper-containing acidic waste solution added to the alkaline solution 2 until 90%. The temperature is controlled to be at least 50 ° C. or higher. Moreover, in the control apparatus 14, after the total injection amount of the copper-containing acidic waste liquid 1 exceeds the said amount, injection | pouring operation is once interrupted and the alkaline suspension 3 in the mixing reaction tank 12 is 40 degrees C or less. After cooling, the remaining copper-containing acidic waste liquid 1 is controlled to be poured. After completion of the reaction, the alkaline suspension 3 is transferred to the dehydrator 13 and the copper oxide cake 4 is recovered after solid-liquid separation.

上記の装置は、1つの混合反応槽のみを使用し、その槽内において温度を変更するものであるため、機構的に単純であり、設備費は低廉であるが、同一反応槽中で、加熱と冷却を行うため、エネルギー的には不利である。   Since the above apparatus uses only one mixing reaction tank and changes the temperature in the tank, the mechanism is simple and the equipment cost is low. Because of cooling, it is disadvantageous in terms of energy.

また別の装置としては、アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、加熱手段、冷却手段および混合手段を有し、アルカリ性水溶液と銅含有酸性廃液が反応してアルカリ性懸濁液を生成する第一の混合反応槽と;
第一の混合反応槽と連通し、第一の混合反応槽から送液されたアルカリ性懸濁液の温度を下げる放冷ないし冷却手段と;
銅含有酸性廃液の注加手段および混合手段を有すると共に、放冷ないし冷却手段と連通し、放冷ないし冷却手段からのアルカリ性懸濁液を収容し、注加された銅含有酸性廃液と該アルカリ性懸濁液を反応させる第二の混合反応槽と
を備えた装置が挙げられる。
As another apparatus, there is a supply means for an alkaline aqueous solution, a pouring means for a copper-containing acidic waste liquid, a heating means, a cooling means, and a mixing means. A first mixing reactor to produce;
A cooling or cooling means that communicates with the first mixing reaction vessel and lowers the temperature of the alkaline suspension fed from the first mixing reaction vessel;
It has a means for pouring and mixing copper-containing acidic waste liquid, communicates with the cooling or cooling means, contains an alkaline suspension from the cooling or cooling means, and adds the poured copper-containing acidic waste liquid and the alkaline An apparatus provided with a second mixing reaction tank for reacting the suspension may be mentioned.

この装置の別の一態様を、図3に模式的に示す。図3において、18は液移送ポンプ、19は放冷・冷却手段、20は第二混合反応槽を示し、それ以外は図2とほぼ同じである。   Another embodiment of this apparatus is schematically shown in FIG. In FIG. 3, 18 is a liquid transfer pump, 19 is a cooling / cooling means, 20 is a second mixing reaction tank, and the rest is substantially the same as FIG.

図3に示す装置では、銅含有酸性廃液1は、あらかじめ50℃以上に加温されたアルカリ性水溶液2が供給された第一混合反応槽12に少量ずつ注加される。注加の際、銅含有酸性廃液1の注加量は、制御装置14にて積算される。制御装置14は、銅含有酸性廃液1の注加量が、反応開始時からアルカリ性溶液に対する銅含有酸性廃液の全注加量の70ない90%までは、少なくとも50℃以上に保たれた状態で銅含有酸性廃液1が第一混合反応槽12に注加されるように制御する。   In the apparatus shown in FIG. 3, the copper-containing acidic waste liquid 1 is poured little by little into the first mixed reaction tank 12 to which the alkaline aqueous solution 2 previously heated to 50 ° C. or higher is supplied. At the time of the addition, the amount of the copper-containing acidic waste liquid 1 added is integrated by the control device 14. The controller 14 is in a state where the amount of the copper-containing acidic waste liquid 1 added is maintained at least at 50 ° C. or more from the start of the reaction to 90% of the total amount of the copper-containing acidic waste liquid added to the alkaline solution, which is not 70%. Control is performed so that the copper-containing acidic waste liquid 1 is poured into the first mixing reaction tank 12.

そして、制御装置14は、銅含有酸性廃液の全注加量が上記量を越えた後、一旦、注加操作を中断し、液移送ポンプ18を運転し、混合反応槽12内のアルカリ性懸濁液3を第二混合反応槽20に移送する制御を行う。この時、移送の途中で放冷・冷却手段19によって、アルカリ性懸濁液3は40℃以下まで冷却される。上記放冷・冷却手段として熱交換器を使用すれば、上述のようにアルカリ性懸濁液3の冷却で回収された熱を、次回の反応時に混合反応槽12に供給するアルカリ性水溶液2の加温に用いることができ、エネルギー消費量が減るため好ましい。冷却されたアルカリ性懸濁液3は、第二混合反応槽20に供給され、残りの銅含有酸性廃液1が注加され、反応が完結する。反応終了後、アルカリ性懸濁液3は脱水装置13に移送され、固液分離後、酸化銅ケーキ4が回収される。   Then, after the total amount of the copper-containing acidic waste liquid exceeds the above amount, the control device 14 temporarily stops the pouring operation, operates the liquid transfer pump 18, and alkaline suspension in the mixing reaction tank 12. Control to transfer the liquid 3 to the second mixing reaction tank 20 is performed. At this time, the alkaline suspension 3 is cooled to 40 ° C. or lower by the cooling / cooling means 19 during the transfer. If a heat exchanger is used as the cooling and cooling means, the heating of the alkaline aqueous solution 2 that supplies the heat recovered by cooling the alkaline suspension 3 to the mixed reaction tank 12 during the next reaction as described above. This is preferable because it can reduce the energy consumption. The cooled alkaline suspension 3 is supplied to the second mixed reaction tank 20, and the remaining copper-containing acidic waste liquid 1 is poured to complete the reaction. After completion of the reaction, the alkaline suspension 3 is transferred to the dehydrator 13 and the copper oxide cake 4 is recovered after solid-liquid separation.

上記の装置は、2つの混合反応槽を使用し、一方の反応槽で常に加熱を行うものであって連続処理に対応した、エネルギー的に無駄が少ないものである。しかも、中間の放冷、冷却手段15として熱交換機を使用し、第一の混合反応槽12に注加する水、例えばアルカリ性水溶液2を、この手段において第一の混合反応槽12からのアルカリ性懸濁液3と熱交換すれば、更に熱効率が上がり、有利である。   The above apparatus uses two mixed reaction tanks and always heats in one of the reaction tanks, and is low in energy waste corresponding to continuous processing. In addition, a heat exchanger is used as the intermediate cooling and cooling means 15, and water to be poured into the first mixing reaction tank 12, for example, the alkaline aqueous solution 2, is passed through the alkaline suspension from the first mixing reaction tank 12 in this means. Heat exchange with the turbid liquid 3 is advantageous because it further increases the thermal efficiency.

また、第一の混合槽12と第二の混合槽20の容量を、それらの比で70〜90:10〜30とし、第一の混合槽で生成したアルカリ性懸濁液を連続的に第二の混合槽に送り込むようにすれば、銅含有酸性廃液1を連続処理することも可能となる。   Moreover, the capacity | capacitance of the 1st mixing tank 12 and the 2nd mixing tank 20 shall be 70-90: 10-30 in those ratio, and the alkaline suspension produced | generated by the 1st mixing tank is continuously made into 2nd. It is possible to continuously treat the copper-containing acidic waste liquid 1 by feeding it into the mixing tank.

以上説明した本発明方法では、銅含有酸性廃液の注加操作において、反応温度を変化させることで、酸化銅を主成分とする生成物と、水酸化銅をも含む生成物を得ることが重要である。このためには、反応開始時点では反応温度を少なくとも50℃以上、好ましくは60ないしは80℃程度に設定することが必要であり、反応の後半で、アルカリ性懸濁液の温度を少なくとも40℃以下の温度、好ましくは30℃以下にまで下げることが必要となる。例えば、銅含有酸性廃液の積算の注加量が少ない時点で、アルカリ性懸濁液の温度を低下させると、膨潤しやすい水酸化銅の生成量が多くなり、結果として、回収物の取扱が困難になる。従って、アルカリ性懸濁液の放冷ないし冷却は、注加操作の後半、具体的には前記の切替時点以降とすることで、微細な浮遊物を取り込むのに十分な量の水酸化銅が生成するよう管理することが望ましい。   In the method of the present invention described above, it is important to obtain a product containing copper oxide as a main component and a product containing copper hydroxide by changing the reaction temperature in the pouring operation of the copper-containing acidic waste liquid. It is. For this purpose, it is necessary to set the reaction temperature to at least 50 ° C. or more, preferably about 60 to 80 ° C. at the start of the reaction. In the latter half of the reaction, the temperature of the alkaline suspension is at least 40 ° C. or less. It is necessary to lower the temperature, preferably below 30 ° C. For example, if the temperature of the alkaline suspension is reduced when the cumulative amount of copper-containing acidic waste liquid is low, the amount of copper hydroxide that tends to swell increases, resulting in difficult handling of the recovered material. become. Therefore, the cooling or cooling of the alkaline suspension is performed in the latter half of the pouring operation, specifically after the switching point, to produce a sufficient amount of copper hydroxide to take in fine suspended matters. It is desirable to manage to

以上のような反応終了後、酸化銅を主成分とする固形物を含有するアルカリ性懸濁液を引き抜き、これを固形物(主に酸化銅)と、分離液(上澄液)に固液分離する。固液分離には、公知の手段、例えば、ろ過分離、遠心分離、沈降分離等が適用可能である。こうすることにより、資源として再利用可能な酸化銅を主成分とする固形物と、懸濁物や懸濁性の銅含有成分の含量の少ない分離液を得ることができる。   After completion of the reaction as described above, an alkaline suspension containing a solid containing copper oxide as a main component is drawn, and this is solid-liquid separated into a solid (mainly copper oxide) and a separated liquid (supernatant). To do. For the solid-liquid separation, known means such as filtration separation, centrifugation, sedimentation separation, etc. can be applied. By doing so, it is possible to obtain a solid having a copper oxide as a main component, which can be reused as a resource, and a separated liquid having a low content of a suspension or a suspendable copper-containing component.

一般に、水酸化銅は高濃度で存在すると、含水率が高く、難脱水性のスラッジとなることが知られている。しかしながら、本発明のように既に固形物(酸化銅粒子)が多く含まれる懸濁液中において、これが少量存在すればその凝集作用によって、この固形物を凝集させて酸化銅粒子を粗大化させ、固液分離性を改善する。   In general, it is known that when copper hydroxide is present at a high concentration, the moisture content is high and it becomes a hardly dewatering sludge. However, in a suspension already containing a large amount of solids (copper oxide particles) as in the present invention, if present in a small amount, the agglomeration action causes the solids to agglomerate and coarsen the copper oxide particles, Improve solid-liquid separation.

本発明は、このような原理と、反応温度によって銅イオンの反応が異なることを利用し、銅含有酸性廃液とアルカリ性溶液の中和反応中において意識的に反応温度を制御することで、少量の水酸化銅を生成させ、効率の良い銅の回収と、処理性の高い上澄液を得ることを可能としたのである。   The present invention utilizes this principle and the fact that the reaction of copper ions differs depending on the reaction temperature, and by controlling the reaction temperature consciously during the neutralization reaction of the copper-containing acidic waste liquid and the alkaline solution, a small amount of By producing copper hydroxide, it was possible to efficiently collect copper and obtain a supernatant with high processability.

次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

実 施 例 1
実施例1では、処理終了(反応終了)時点の混合反応槽pHを7以上とするため、使用した25%水酸化ナトリウムをpH7に中和するのに必要な銅エッチング廃液量に対し、銅エッチング廃液の積算の注加量が0.95当量となる量を混合反応槽に供給することとした。また、水酸化ナトリウム溶液を中和するために必要な銅エッチング廃液量の0.9当量までの注加操作では、混合反応槽内のアルカリ性懸濁液の温度を80℃以上に維持し、9回に分けて銅エッチング廃液を注加した。さらに、0.95当量の注加操作(注加10回目)は、アルカリ性懸濁液の温度を26℃まで冷却してから、実施し、反応を終了した。
Example 1
In Example 1, in order to set the mixed reaction tank pH at the end of the treatment (reaction) to 7 or more, the amount of copper etching waste liquid required to neutralize the 25% sodium hydroxide used to pH 7 was reduced by copper etching. An amount of 0.95 equivalent of the total amount of waste liquid added was supplied to the mixing reaction tank. In addition, in the pouring operation up to 0.9 equivalent of the amount of copper etching waste liquid necessary for neutralizing the sodium hydroxide solution, the temperature of the alkaline suspension in the mixing reaction tank is maintained at 80 ° C. or higher. The copper etching waste liquid was poured into portions. Furthermore, a 0.95 equivalent pouring operation (10 th pouring) was performed after the temperature of the alkaline suspension was cooled to 26 ° C., and the reaction was completed.

<予備試験>
処理の前に、処理予定の銅エッチング廃液量に対する必要最低限の25%水酸化ナトリウム溶液量を求めるため、小スケールで中和処理を行った。25%水酸化ナトリウム溶液に銅エッチング廃液を少量ずつ添加し、銅エッチング廃液の添加量に対するpHを測定したところ、図1のような中和曲線が得られた。図1より1mLの25%水酸化ナトリウム溶液を中和してpH7とするための銅エッチング廃液量を求めると(図1中の太線)約1.15mLであった。この結果より、本実施例で使用する銅エッチング廃液と25%水酸化ナトリウム溶液量を混合してpH7とするための混合比率は、容積比で1.15:1であるとした。
<Preliminary test>
Prior to the treatment, neutralization treatment was performed on a small scale in order to obtain the minimum amount of 25% sodium hydroxide solution relative to the amount of copper etching waste liquid to be treated. When the copper etching waste solution was added to the 25% sodium hydroxide solution little by little and the pH with respect to the added amount of the copper etching waste solution was measured, a neutralization curve as shown in FIG. 1 was obtained. From FIG. 1, the amount of copper etching waste solution for neutralizing 1 mL of 25% sodium hydroxide solution to pH 7 (thick line in FIG. 1) was about 1.15 mL. From this result, the mixing ratio for mixing the copper etching waste solution used in this example with the amount of 25% sodium hydroxide solution to pH 7 was assumed to be 1.15: 1 in volume ratio.

<処理操作>
2リットルのビーカーに25%水酸化ナトリウム溶液を500mL添加し、マグネティックスターラーで撹拌しながら、加熱した。水酸化ナトリウム溶液の温度が80℃に達した後、銅エッチング廃液58mLを2リットルビーカー内を撹拌しながら、3分かけて水酸化ナトリウム溶液に添加した。銅エッチング廃液の注加終了後は、2リットルビーカーを撹拌しながら3分間放置した。その後、再び、銅エッチング廃液を58mLを2リットルビーカーに注加し、3分間放置する操作を計9回繰り返した。この9回の注加操作中、2リットルビーカーは常時撹拌し、ビーカー中の反応液の温度は、80〜90℃に維持した。
<Processing operations>
500 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and heated while stirring with a magnetic stirrer. After the temperature of the sodium hydroxide solution reached 80 ° C., 58 mL of the copper etching waste solution was added to the sodium hydroxide solution over 3 minutes while stirring in the 2 liter beaker. After pouring of the copper etching waste liquid, the 2-liter beaker was left for 3 minutes with stirring. Thereafter, again, 58 mL of the copper etching waste solution was poured into a 2 liter beaker and allowed to stand for 3 minutes, which was repeated a total of 9 times. During the nine injection operations, the 2 liter beaker was constantly stirred, and the temperature of the reaction solution in the beaker was maintained at 80 to 90 ° C.

9回目の注加操作が終了した後、撹拌を継続しながらアルカリ性懸濁液の温度が26℃になるまで冷却した。その後、10回目の注加操作では、撹拌を継続しながら銅エッチング廃液29mLを、2リットルビーカーに注加し、注加操作を終了した。その後、注加終了後に30分撹拌を継続し、反応を終了した。以上の操作より、やや灰色を帯びた黒色の固形物を含む懸濁液が生成した。   After the ninth addition operation was completed, the alkaline suspension was cooled to 26 ° C. while continuing stirring. Thereafter, in the tenth pouring operation, 29 mL of copper etching waste liquid was poured into a 2 liter beaker while continuing stirring, and the pouring operation was terminated. Thereafter, stirring was continued for 30 minutes after the end of pouring, and the reaction was completed. Through the above operation, a suspension containing a slightly grayish black solid was produced.

実 施 例 2
<処理操作>
2リットルのビーカーに25%水酸化ナトリウム溶液を500mL添加し、マグネティックスターラーで撹拌しながら、加熱した。水酸化ナトリウム溶液の温度が50℃に達した後、銅エッチング廃液58mLを3分かけて水酸化ナトリウム溶液に添加した。銅エッチング廃液の注加終了後は、2リットルビーカーの撹拌を3分間継続した。撹拌終了後、再び、銅エッチング廃液を58mLを2リットルビーカーに注加する操作を計9回繰り返した。
Example 2
<Processing operation>
500 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and heated while stirring with a magnetic stirrer. After the temperature of the sodium hydroxide solution reached 50 ° C., 58 mL of copper etching waste solution was added to the sodium hydroxide solution over 3 minutes. After the addition of the copper etching waste liquid, stirring of the 2 liter beaker was continued for 3 minutes. After the stirring, the operation of pouring 58 mL of the copper etching waste solution into the 2 liter beaker was repeated 9 times.

9回目の注加操作が終了した後、アルカリ性懸濁液の温度が26℃になるまで冷却した。その後、10回目の注加操作では、銅エッチング廃液29mLを、2リットルビーカーに注加し、注加操作を終了した。その後、注加終了後に30分撹拌を継続し、反応を終了した。以上の操作より、やや灰色を帯びた黒色の固形物を含む懸濁液が生成した。   After the ninth pouring operation was completed, the alkaline suspension was cooled until the temperature reached 26 ° C. Thereafter, in the tenth pouring operation, 29 mL of copper etching waste liquid was poured into a 2 liter beaker, and the pouring operation was terminated. Thereafter, stirring was continued for 30 minutes after the end of pouring, and the reaction was completed. Through the above operation, a suspension containing a slightly grayish black solid was produced.

なお、本発明の作用機序は、混合の最終段階で、温度の低い状態で銅エッチング廃液を水酸化ナトリウム溶液中に注加することで、酸化銅以外に水酸化銅を生成させ、この水酸化銅がそれ以前に生成した酸化銅が主成分の生成物の沈澱剤として作用するというものである。従って、注加操作7回目以降(注加全量の70%以降)で銅エッチング廃液とアルカリ性懸濁液に混合すれば、生成する量は別として水酸化銅を含む生成物が生成し、実施例と同じ効果が得られことは明らかである。   The action mechanism of the present invention is that, in the final stage of mixing, the copper etching waste liquid is poured into a sodium hydroxide solution in a low temperature state to produce copper hydroxide in addition to copper oxide. The copper oxide previously formed by copper oxide acts as a precipitant for the main product. Accordingly, if the copper etching waste liquid and the alkaline suspension are mixed in the seventh and subsequent pouring operations (after 70% of the total amount of pouring), a product containing copper hydroxide is produced apart from the amount produced. It is clear that the same effect can be obtained.

比 較 例 1
<処理操作>
2リットルのビーカーに25%水酸化ナトリウム溶液を500mL添加し、マグネティックスターラーで撹拌しながら加熱した。水酸化ナトリウム溶液の液温が80℃に達した後、銅エッチング廃液58mLを3分かけて添加した。その後、3分間撹拌を継続し、再び銅エッチング廃液58mLを注加した。この注加操作を9回繰り返した後、10回目には、銅エッチング廃液29mLを注加し、30分撹拌後反応を終了した。以上の操作より、やや灰色を帯びた黒色の固形物を含む懸濁液が生成した。
Comparative Example 1
<Processing operation>
500 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and heated while stirring with a magnetic stirrer. After the liquid temperature of the sodium hydroxide solution reached 80 ° C., 58 mL of copper etching waste liquid was added over 3 minutes. Thereafter, stirring was continued for 3 minutes, and 58 mL of copper etching waste liquid was again poured. After repeating this pouring operation 9 times, in the 10th time, 29 mL of copper etching waste liquid was poured, and the reaction was terminated after stirring for 30 minutes. Through the above operation, a suspension containing a slightly grayish black solid was produced.

比 較 例 2
<処理操作>
2リットルのビーカーに25%水酸化ナトリウム溶液を500mL添加し、マグネティックスターラーで撹拌した。この時の水酸化ナトリウムの水温は26℃であった。次に、水酸化ナトリウム溶液に銅エッチング廃液を58mLを3分かけて注加した。注加終了後、3分間撹拌を継続し、再び銅エッチング廃液58mLを注加した。
Comparative Example 2
<Processing operation>
500 mL of 25% sodium hydroxide solution was added to a 2 liter beaker and stirred with a magnetic stirrer. The water temperature of sodium hydroxide at this time was 26 ° C. Next, 58 mL of a copper etching waste solution was poured into the sodium hydroxide solution over 3 minutes. After completion of the addition, stirring was continued for 3 minutes, and 58 mL of copper etching waste liquid was added again.

最初の注加直後は、ビーカー無いのアルカリ性溶液は濃青色に変化した。その後、注加操作を継続すると、水色のスラッジ状の物質が生成した。このスラッジ状の物質は、注加回数の増加に従い、徐々にビーカーを満たし、撹拌が困難な状態になった。また、注加操作終了後にビーカーを放置しても上澄液は分離せず、含水率の高い汚泥が生成した。   Immediately after the first addition, the alkaline solution without the beaker turned dark blue. Thereafter, when the pouring operation was continued, a light blue sludge-like substance was produced. This sludge-like substance gradually filled the beaker as the number of injections increased, and it became difficult to stir. Moreover, even if the beaker was left after the pouring operation, the supernatant liquid was not separated, and sludge having a high water content was generated.

試 験 例
実施例及び比較例で得られた各スラリーについて、汚泥の沈降性、上澄水の濁度およびSS、上澄水中銅濃度を測定した。この結果を表1に示す。
Test Example For each of the slurries obtained in Examples and Comparative Examples, sludge sedimentation, turbidity and SS of the supernatant water, and copper concentration of the supernatant water were measured. The results are shown in Table 1.

Figure 2012224902
Figure 2012224902

この結果から明らかなように、実施例1及び2のスラリーは、比較例1のものと比較して、沈降性の指標であるSV30がやや高いものの、生成物の粒径が大きく、上澄水の濁度や上澄水の銅濃度が低く、良好な上澄水が得られるものであった。なお、比較例2は膨潤した汚泥状の物質が生成したため、固液分離操作が行えず、上澄水の濁度およびSS、上澄水中の銅濃度は測定できなかった。   As is clear from this result, the slurry of Examples 1 and 2 has a slightly higher particle size of the product, although the SV30, which is a sedimentation index, is slightly higher than that of Comparative Example 1, and the supernatant water The turbidity and the copper concentration of the supernatant water were low, and good supernatant water was obtained. In Comparative Example 2, since a swollen sludge-like substance was generated, solid-liquid separation operation could not be performed, and the turbidity and SS of the supernatant water and the copper concentration in the supernatant water could not be measured.

以上の結果より、本発明方法は、銅含有酸性廃液の処理方法として、有効であることが確認された。   From the above results, it was confirmed that the method of the present invention is effective as a method for treating a copper-containing acidic waste liquid.

本発明方法によれば、これまでの処理技術では複塩の生成などにより処理が困難であった、銅イオンの含有濃度が5〜20%という高濃度の銅含有酸性廃液を希釈することなく、直接処理することができる。また、本発明方法で得られる回収物は、酸化銅の含量が多いため、単純な水酸化物沈殿方式と比較して含水率が低く、沈降、分離性が良く、容易に酸化銅を主体とする固形物を回収することもできる。   According to the method of the present invention, it is difficult to treat with conventional treatment techniques due to the formation of double salts, etc., without diluting a high concentration copper-containing acidic waste liquid with a copper ion content concentration of 5 to 20%, Can be processed directly. In addition, since the recovered product obtained by the method of the present invention has a high content of copper oxide, it has a low water content compared to a simple hydroxide precipitation method, has good sedimentation and separability, and is easily composed mainly of copper oxide. It is also possible to recover the solid matter.

従って、本発明方法は、高濃度で銅を含有するエッチング廃液、めっき更新廃液などの酸性廃液の処理方法として、有用なものである。   Therefore, the method of the present invention is useful as a method for treating acidic waste liquid such as etching waste liquid and plating renewal waste liquid containing copper at a high concentration.

1:銅含有酸性廃液
2:アルカリ性溶液
3:酸化銅含有アルカリ性懸濁液
4:酸化銅ケーキ
5:上澄液
12:(第一)混合反応槽
13:脱水装置
14:制御装置
15:加熱手段
16:銅含有酸性廃液供給ポンプ
18:液移送ポンプ
19:放冷・冷却手段
20:第二混合反応槽
21:バルブ
1: Copper-containing acidic waste liquid 2: Alkaline solution 3: Copper oxide-containing alkaline suspension 4: Copper oxide cake 5: Supernatant liquid 12: (First) mixing reaction tank 13: Dehydrator 14: Controller 15: Heating means 16: Copper-containing acidic waste liquid supply pump 18: Liquid transfer pump 19: Cooling / cooling means 20: Second mixing reaction tank 21: Valve

Claims (6)

銅含有酸性廃液を、当該銅含有酸性廃液に対して中和当量以上のアルカリ性溶液中に注加、混合して、酸化銅および水酸化銅を主成分とする固形物を含有する懸濁液を生成させ、当該懸濁液中から当該固形物を分離する銅含有酸性廃液の中和および銅の回収法であって、
(1)反応開始時から、アルカリ性溶液に対する銅含有酸性廃液の全注加量の70ない
し90%までは、アルカリ性溶液への銅含有酸性廃液の注加、混合を少なくとも50
℃以上の温度で行い、
(2)銅含有酸性廃液の全注加量が上記量を越えた後は、アルカリ性溶液への銅含有酸性
廃液の注加、混合を少なくとも40℃以下の温度で行う
ことを特徴とする銅含有酸性廃液の中和および銅の回収法。
A copper-containing acidic waste liquid is poured into an alkaline solution having a neutralization equivalent or higher with respect to the copper-containing acidic waste liquid and mixed to obtain a suspension containing a solid containing copper oxide and copper hydroxide as main components. A method of neutralizing a copper-containing acidic waste liquid and recovering copper, which is generated and separates the solid matter from the suspension,
(1) From the start of the reaction, at least 50 to 90% of the total amount of copper-containing acidic waste liquid added to the alkaline solution is poured and mixed with the copper-containing acidic waste liquid into the alkaline solution.
At a temperature of ℃ or more,
(2) After the total amount of the copper-containing acidic waste liquid exceeds the above amount, the copper-containing acidic waste liquid is added to the alkaline solution and mixed at a temperature of at least 40 ° C. Neutralizing acidic waste liquid and recovering copper.
アルカリ性溶液の、銅含有酸性廃液に対する量が、中和当量の1ないし1.2倍である請求項1記載の銅含有酸性廃液の中和および銅の回収法。   The method for neutralizing a copper-containing acidic waste liquid and recovering copper according to claim 1, wherein the amount of the alkaline solution relative to the copper-containing acidic waste liquid is 1 to 1.2 times the neutralization equivalent. 銅含有酸性廃液の注加、混合に当たり、反応系内において、一時的にでもまた部分的にでもpHが中和点より酸性側にならないよう管理する請求項1または2記載の銅含有酸性廃液の中和および銅の回収法。   The copper-containing acidic waste liquid according to claim 1 or 2, wherein the pH is controlled so that the pH does not become more acidic than the neutralization point, either temporarily or partially, in the reaction system when adding or mixing the copper-containing acidic waste liquid. Neutralization and copper recovery methods. 相対的に容量の大きな混合反応槽と、容量の小さな混合反応槽とその間に通液可能に設けた冷却ないし放冷装置を用い、相対的に容量の大きな混合反応槽には、アルカリ性水溶液を収容し、浴温を少なくとも50℃以上に維持した状態で銅含有酸性廃液を注加、混合し、これにより得られたアルカリ性懸濁液は、冷却ないし放冷装置を介し、液温を少なくとも40℃以下とした状態で、相対的に容量の小さな混合反応槽に送液し、当該混合反応槽内において、再度銅含有酸性廃液を注加することを特徴とする請求項1ないし3のいずれかの項記載の銅含有廃液の中和および銅の回収法。   Using a relatively large volume mixing reaction tank, a small volume mixing reaction tank, and a cooling or cooling device provided between the reaction tanks so that liquid can pass between them, the relatively large volume mixing reaction tank contains an alkaline aqueous solution. Then, the copper-containing acidic waste liquid is poured and mixed in a state where the bath temperature is maintained at 50 ° C. or more, and the resulting alkaline suspension is cooled to at least 40 ° C. via a cooling or cooling apparatus. 4. In the state described below, the solution is fed to a relatively small volume mixing reaction tank, and the copper-containing acidic waste liquid is poured again in the mixing reaction tank. A method for neutralizing a copper-containing waste liquid and recovering copper. アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、加熱手段、冷却手段および混合手段を有し、アルカリ性水溶液と銅含有酸性廃液を反応させ、アルカリ性懸濁液を生成する混合反応槽と;
当該銅含有酸性廃液の積算注加量を計量する手段と;
および当該銅含有酸性廃液の積算注加量に対応し、前記混合反応槽の加熱手段および/または冷却手段を制御する制御機構と
を含有する銅含有酸性廃液の中和、回収処理装置。
A mixing reaction tank that has an alkaline aqueous solution supply means, a copper-containing acidic waste liquid pouring means, a heating means, a cooling means, and a mixing means, and reacts the alkaline aqueous solution with the copper-containing acidic waste liquid to produce an alkaline suspension;
Means for measuring the cumulative amount of the copper-containing acidic waste liquid;
And a copper-containing acidic waste liquid neutralization and recovery treatment apparatus that includes a control mechanism that controls the heating means and / or the cooling means of the mixed reaction tank in response to the cumulative amount of the copper-containing acidic waste liquid.
アルカリ性水溶液の供給手段、銅含有酸性廃液の注加手段、加熱手段、冷却手段および混合手段を有し、アルカリ性水溶液と銅含有酸性廃液が反応してアルカリ性懸濁液を生成する第一の混合反応槽と;
第一の混合反応槽と連通し、第一の混合反応槽から送液されたアルカリ性懸濁液の温度を下げる放冷ないし冷却手段と;
銅含有酸性廃液の注加手段および混合手段を有すると共に、放冷ないし冷却手段と連通し、放冷ないし冷却手段からのアルカリ性懸濁液剤を収容し、注加された銅含有酸性廃液と該アルカリ性懸濁液を反応させる第二の混合反応槽と
を備えた銅含有酸性廃液の中和、回収処理装置。
A first mixing reaction in which an alkaline aqueous solution supply means, a copper-containing acidic waste liquid pouring means, a heating means, a cooling means, and a mixing means are included, and an alkaline aqueous solution and a copper-containing acidic waste liquid react to form an alkaline suspension. A tank;
A cooling or cooling means that communicates with the first mixing reaction vessel and lowers the temperature of the alkaline suspension fed from the first mixing reaction vessel;
It has a means for adding and mixing copper-containing acidic waste liquid, and communicates with the cooling or cooling means, contains an alkaline suspension from the cooling or cooling means, and adds the poured copper-containing acidic waste liquid and the alkaline The copper-containing acidic waste liquid neutralization and recovery processing apparatus provided with the 2nd mixing reaction tank which makes suspension react.
JP2011092555A 2011-04-19 2011-04-19 Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor Active JP5808132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092555A JP5808132B2 (en) 2011-04-19 2011-04-19 Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092555A JP5808132B2 (en) 2011-04-19 2011-04-19 Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor

Publications (2)

Publication Number Publication Date
JP2012224902A true JP2012224902A (en) 2012-11-15
JP5808132B2 JP5808132B2 (en) 2015-11-10

Family

ID=47275394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092555A Active JP5808132B2 (en) 2011-04-19 2011-04-19 Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor

Country Status (1)

Country Link
JP (1) JP5808132B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350678A (en) * 2016-08-30 2017-01-25 盛隆资源再生(无锡)有限公司 Method of recycling corrosion inhibitor and copper from brownification waste liquid
CN112209543A (en) * 2020-09-03 2021-01-12 深圳市深投环保科技有限公司 Composite treatment method of complex copper waste liquid and microetching waste liquid
CN112941562A (en) * 2021-01-13 2021-06-11 湖南埃格环保科技有限公司 Combined treatment method for copper-containing sludge and copper-containing etching waste liquid
CN114162848A (en) * 2021-06-02 2022-03-11 王水平 Method for preparing copper oxide by indirectly treating waste acidic etching solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083179A (en) * 2005-09-22 2007-04-05 Kurita Water Ind Ltd Treatment method and apparatus for copper particle-containing water
JP2009167462A (en) * 2008-01-15 2009-07-30 Ebara Corp Method for recovering copper from copper-containing acid waste liquid, and device therefor
JP2010047799A (en) * 2008-08-21 2010-03-04 Ebara Engineering Service Co Ltd Method and apparatus for recovering copper-containing solid matter from copper-containing acidic waste solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083179A (en) * 2005-09-22 2007-04-05 Kurita Water Ind Ltd Treatment method and apparatus for copper particle-containing water
JP2009167462A (en) * 2008-01-15 2009-07-30 Ebara Corp Method for recovering copper from copper-containing acid waste liquid, and device therefor
JP2010047799A (en) * 2008-08-21 2010-03-04 Ebara Engineering Service Co Ltd Method and apparatus for recovering copper-containing solid matter from copper-containing acidic waste solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350678A (en) * 2016-08-30 2017-01-25 盛隆资源再生(无锡)有限公司 Method of recycling corrosion inhibitor and copper from brownification waste liquid
CN106350678B (en) * 2016-08-30 2018-08-17 盛隆资源再生(无锡)有限公司 A method of recycling corrosion inhibiter and copper from brown oxide waste liquid
CN112209543A (en) * 2020-09-03 2021-01-12 深圳市深投环保科技有限公司 Composite treatment method of complex copper waste liquid and microetching waste liquid
CN112941562A (en) * 2021-01-13 2021-06-11 湖南埃格环保科技有限公司 Combined treatment method for copper-containing sludge and copper-containing etching waste liquid
CN114162848A (en) * 2021-06-02 2022-03-11 王水平 Method for preparing copper oxide by indirectly treating waste acidic etching solution

Also Published As

Publication number Publication date
JP5808132B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5808131B2 (en) Process and recovery method for copper-containing acidic waste liquid and apparatus therefor
US9243307B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid and method for producing copper-containing substance
JP5431998B2 (en) Method and apparatus for recovering copper from acidic waste liquid containing copper
JP5307478B2 (en) Method and apparatus for recovering copper-containing solid from copper-containing acidic waste liquid
JP5102157B2 (en) Method and apparatus for removing and recovering copper from copper-containing acidic waste liquid
US20130168314A1 (en) Method for Treating Wastewater Containing Copper Complex
JP4947640B2 (en) Waste acid solution treatment method
JP6511040B2 (en) Method of treating copper-containing acidic waste solution and copper recovery apparatus from copper-containing acidic waste solution
CN101948133B (en) Method for co-producing sodium stannate and stannic oxide by solder removing liquid
JP5808132B2 (en) Treatment and recovery method for copper-containing acidic waste liquid and equipment therefor
JP2010077521A (en) Method and apparatus for recovering copper from acidic waste fluid containing copper
WO2007113926A1 (en) Method of purifying copper salt solution, purification apparatus and copper salt solution
JP2013244430A (en) Method and apparatus for treating copper chloride-containing acidic waste liquid
JP6597349B2 (en) Blast furnace wastewater treatment method
JP2008127266A (en) Method for producing cupric oxide from copper etching waste liquid
JP5965213B2 (en) Method and apparatus for recovering copper oxide from copper-containing acidic waste liquid
TWI285632B (en) Sewage treatment-recycling system for PCB manufacturing process and method thereof
JP2005042183A (en) Treatment method for waste solution of electroless plating
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2010075928A (en) Treatment method and treatment device for fluorine-containing waste water
JP2008149222A (en) Removal method of fluorine ions in hot spring water
JP2000167569A (en) Method and equipment for treating copper-containing acidic waste water
CN112831786B (en) Regeneration method for extracting copper from ferric trichloride copper-containing etching waste liquid
JP2006231265A (en) Method for treating sewage by waste acid
JP2003260475A (en) Method for removing and recovering copper by treating wastewater and chemical agent used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150908

R150 Certificate of patent or registration of utility model

Ref document number: 5808132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250