JPH0483592A - Treatment of waste chemical washing solution - Google Patents

Treatment of waste chemical washing solution

Info

Publication number
JPH0483592A
JPH0483592A JP2196350A JP19635090A JPH0483592A JP H0483592 A JPH0483592 A JP H0483592A JP 2196350 A JP2196350 A JP 2196350A JP 19635090 A JP19635090 A JP 19635090A JP H0483592 A JPH0483592 A JP H0483592A
Authority
JP
Japan
Prior art keywords
waste liquid
added
air bubbling
cod
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2196350A
Other languages
Japanese (ja)
Other versions
JP2721740B2 (en
Inventor
Yukio Hayashi
林 行男
Taketoshi Furusawa
古澤 武敏
Mitsuhiko Ishida
石田 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2196350A priority Critical patent/JP2721740B2/en
Publication of JPH0483592A publication Critical patent/JPH0483592A/en
Application granted granted Critical
Publication of JP2721740B2 publication Critical patent/JP2721740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily remove COD by oxidative decomposition by together adding an alkali agent and activated carbon to a waste solution in the first treatment process. CONSTITUTION:The total amount of a waste acid washing solution and waste washing water whose quantity is twice that of said waste acid washing solution in quantity are received in a waste solution storage tank and an alkali agent and activated carbon are together added to said tank while air bubbling is carried out not only to remove hydrazine and an inhibitor at pH11 or more but also to precipitate an iron ion as hydroxide. The obtained supernatant solution is transferred to a separate waste solution tank and sulfuric acid is added to said tank while air bubbling is carried out to adjust pH to 1-2.5 to crystallize and precipitate EDTA. Subsequently, the supernatant solution is transferred to a separate waste solution tank in which waste washing water whose quantity is 6-8 times that of the waste acid washing solution is received and an alkali agent is added to said tank while air bubbling is carried out to adjust pH to 2-3.5 and, thereafter, ferrous sulfate is added thereto so that the concn. of a ferrous ion becomes about 100-200ppm and, next, hydrogen peroxide is added to COD in the waste solution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学洗浄廃液の処理方法に関し、化学洗浄液及
び化学洗浄後の水洗水廃液を放流するに際し、同廃液中
の重金属、COD、SS(固形浮遊物質)及び色調物な
どの有害物質を除去する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for treating chemical cleaning waste liquid, and when discharging chemical cleaning liquid and washing water waste liquid after chemical cleaning, heavy metals, COD, SS ( This invention relates to a method for removing harmful substances such as solid suspended solids) and colored substances.

〔従来の技術〕[Conventional technology]

火力プラントのボイラ過熱器管、主蒸気管、高温再熱蒸
気管等の高温蒸気管内面に生成した水蒸気酸化スケール
(主成分: Fe5Oa 、少量成分: Cr2O5、
MO02等)をエチレンジアミン四酢酸(以下、EDT
Aと略記する)にアンモニア、ヒドラジン及び腐食抑制
剤(以下インヒビタと略記する)を添加した溶液で除去
する化学洗浄において、例えば火力プラントの主蒸気管
に適用した場合の化学洗浄廃液の種類は、第1表に示す
ように酸洗浄廃液以外に酸洗浄後の管内に残存した酸液
を完全に排出除去するための水洗水廃液もある。その水
洗水廃液の量は酸洗浄廃液1容に対し8〜10容となる
が、初期の2容は一般的に酸洗浄廃液の処理用貯槽へ、
残りの6〜8容は酸洗浄廃液成分混入量も微量となるた
め、別の処理用貯槽へ受け入れている。
Steam oxidation scale (main component: Fe5Oa, minor component: Cr2O5,
MO02 etc.) to ethylenediaminetetraacetic acid (hereinafter referred to as EDT)
In chemical cleaning, in which ammonia, hydrazine, and a corrosion inhibitor (hereinafter abbreviated as inhibitor) are added to A), the types of chemical cleaning waste liquid when applied to the main steam pipe of a thermal power plant, for example, are as follows: As shown in Table 1, in addition to the acid washing waste liquid, there is also a washing water waste liquid for completely discharging and removing the acid liquid remaining in the pipe after acid washing. The amount of washing water waste liquid is 8 to 10 volumes per 1 volume of acid washing waste liquid, but the initial 2 volumes are generally sent to a storage tank for treatment of acid washing waste liquid.
The remaining 6 to 8 volumes contain a very small amount of acid washing waste liquid components, so they are received in another storage tank for treatment.

第1表から判るように処理前の混合廃液には、排水基準
項目であるpH,C0DSFeイオン、Crイオン、S
S等が多量含有されており、このような化学洗浄廃液は
公害防止上そのまま排出することはできない。排出する
場合の排水基準値は第2表に例示されるように地域自治
体との公害防止協定などで決められた基準値まで浄化処
理することが必要である。
As can be seen from Table 1, the mixed waste liquid before treatment contains wastewater standard items such as pH, CODSFe ion, Cr ion, S
Because it contains a large amount of S and the like, such chemical cleaning waste liquid cannot be discharged as is to prevent pollution. When discharging wastewater, it is necessary to purify it to a standard value determined by a pollution prevention agreement with the local government, as shown in Table 2.

第2表 排水基準値 (各地の例から引用) 従来は、このような化学洗浄廃液処理法として、焼却処
理又は湿式による化学的処理がある。
Table 2 Effluent standard values (quoted from examples in various regions) Conventionally, such chemical cleaning waste liquid treatment methods include incineration treatment or wet chemical treatment.

焼却処理は産廃業者に委託し、構外で焼却処理を行って
いるが、処理コストが高く、また構外への廃液移送時の
トラブル防止の観点からも湿式による化学的処理が好ま
しい。
Incineration treatment is outsourced to an industrial waste disposal company and incineration is carried out outside the premises, but wet chemical treatment is preferable from the viewpoint of high processing costs and prevention of troubles when transporting waste liquid outside the premises.

一方湿式による化学的処理法としては、EDTAと結合
した重金属イオン(Fe 、 Cu 、 Ni)を含む
化学洗浄液の処理方法において、該廃液にアルカリ剤(
苛性ソーダ、消石灰等)を添加してpH10以上で重金
属イオンを沈殿分離させる第1工程処理、前記第1工程
で得た分離液に酸く塩酸又は硫酸)を添加してEDTA
を結晶化させ、該結晶を分離、回収する第2工程処理及
び前記結晶を分離した分離液に過酸化水素を添加してC
ODを/低減化させる第3工程処理からなる方法が知ら
□れている(特開昭59−76593号公報) 〔発明が解決しようとする課題〕 上述したような方法では第1工程において、第1表に示
す化学洗浄液中のCOD負荷成分であるヒドラジン及び
インヒビターの除去効果が殆んどないので、第3工程の
COD酸化処理においてCODの酸化分解が十分でなく
、またCOD酸化のための過酸化水素添加要領の不具合
などもあってEDTAの酸化分解が不十分であり、酸化
未分解のEDTAとキレート化しているクロムイオン(
Cr34)の除去を不可能にする等の問題点がある。
On the other hand, as a wet chemical treatment method, an alkaline agent (
A first step treatment in which heavy metal ions are precipitated and separated at pH 10 or above by adding caustic soda, slaked lime, etc., and EDTA is added to the separated liquid obtained in the first step by adding acid (hydrochloric acid or sulfuric acid).
A second step of crystallizing, separating and recovering the crystals, and adding hydrogen peroxide to the separated liquid from which the crystals have been separated,
A method is known that includes a third step treatment for reducing OD (Japanese Unexamined Patent Publication No. 59-76593). [Problems to be Solved by the Invention] In the method described above, Since the chemical cleaning solution shown in Table 1 has almost no effect in removing hydrazine and inhibitors, which are COD loading components, the oxidative decomposition of COD is not sufficient in the third step of COD oxidation treatment, and the excess Due to problems with the hydrogen oxide addition procedure, the oxidative decomposition of EDTA is insufficient, and chromium ions (which are chelated with unoxidized and undecomposed EDTA)
There are problems such as making it impossible to remove Cr34).

本発明は上記技術水準に鑑み、前記従来方法におけるよ
うな不具合のない化学洗浄廃液の処理方法を提供しよう
とするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a method for treating chemical cleaning waste liquid that does not have the problems encountered in the conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、EDTAと反応結合した金属イオン(主成分
:鉄イオン、少量成分ニクロムイオン) アンモニア、
ヒドラジン、インヒビターを含む酸洗浄廃液及び酸洗浄
後の水洗水廃液の化学洗浄廃液処理方法において、酸洗
浄廃液の全量と酸洗浄廃液の2倍相当量の水洗水廃液を
廃液貯槽に受け入れた後、エアバブリング巳ながらアル
カリ剤及び活性炭を併用添加してpH11以上でヒドラ
ジン、インヒビターを除去するとともに鉄イオンを水酸
化物として沈殿生成させた後、沈殿物を沈降分離する第
1工程処理、前記第1工程処理で得られた上澄液を別の
廃液貯槽へ移した後、エアバブリングしながら硫酸又は
塩酸を添加してpH1〜2.5の範囲内に調整してED
TAを結晶化して沈降分離する第2工程処理及び第2工
程処理で得られた上澄液を、予め酸洗浄廃液量の6〜8
倍相当量の水洗水廃液を受け入れである更に別の廃液貯
槽へ移した後、エアバブリングしながらアルカリ剤を添
加してpH2〜3.5の範囲内に調整した後、第一鉄イ
オン(Fe”)濃度として100〜200ppmになる
よう硫酸第一鉄又は塩化第一鉄を添加し、次に該廃液中
のCODに対し過酸化水素2.5当量以上を4回に分け
て添加するが、2回目以降の添加は3日間毎とし、その
間のエアバブリングは停止してCODを酸化分解し、次
いでエアバブリングしながら該廃液にアルカリ土類金属
してpH6〜8.6の範囲内に調整して金属イオン(鉄
イオン、クロムイオン等)を水酸化物として沈殿分離す
る第3工程処理の3工程からなることを特徴とする化学
洗浄廃液の処理方法である。
The present invention consists of metal ions (main component: iron ion, minor component nichrome ion), ammonia,
In the chemical cleaning waste liquid treatment method for acid washing waste liquid containing hydrazine and inhibitors and washing water waste liquid after acid washing, after receiving the washing water waste liquid equivalent to the entire amount of the acid washing waste liquid and twice the amount of the acid washing waste liquid into the waste liquid storage tank, A first step treatment of removing hydrazine and inhibitors at pH 11 or higher by adding an alkaline agent and activated carbon together while air bubbling, and precipitating iron ions as hydroxide, followed by sedimentation and separation of the precipitate; After transferring the supernatant liquid obtained from the process treatment to another waste liquid storage tank, sulfuric acid or hydrochloric acid is added while air bubbling to adjust the pH to within the range of 1 to 2.5 and ED.
The second step treatment in which TA is crystallized and separated by sedimentation, and the supernatant liquid obtained in the second step treatment, are added in advance to 6 to 8 times the amount of acid washing waste liquid.
After transferring the washing water waste liquid equivalent to twice the amount to another waste liquid storage tank, the pH was adjusted to within the range of 2 to 3.5 by adding an alkaline agent while air bubbling, and then the ferrous ion (Fe ”) Add ferrous sulfate or ferrous chloride to a concentration of 100 to 200 ppm, then add 2.5 equivalents or more of hydrogen peroxide to the COD in the waste liquid in 4 parts, The second and subsequent additions are made every 3 days, during which air bubbling is stopped to oxidize and decompose COD, and then, while air bubbling, an alkaline earth metal is added to the waste liquid to adjust the pH to within the range of 6 to 8.6. This method of treating chemical cleaning waste liquid is characterized by comprising three steps: a third step treatment in which metal ions (iron ions, chromium ions, etc.) are precipitated and separated as hydroxides.

以下に本発明の方法を更に具体的に説明する。The method of the present invention will be explained in more detail below.

先ず、第1工程では第1工程処理用貯槽へ酸洗浄廃液の
全量(l容)と酸洗浄後の水洗水廃液2容を受け入れた
混合廃液にエアバブリングしながら水酸化ナトリウム、
水酸化カリウム、水酸化カルシウム等のアルカリ剤を1
種以上と活性炭(粉末状のものが好ましい)を併用添加
してpH11以上好ましくは11.5〜12の範囲に調
整し、4時間程度エアバブリングによる攪拌を行って該
廃液中のヒドラジン及びインヒビターを除去するととも
に、鉄イオンを完全に沈殿生成させた後、エアバブリン
グを停止して沈殿物を沈降分離する。
First, in the first step, sodium hydroxide, sodium hydroxide, and
Add alkaline agents such as potassium hydroxide and calcium hydroxide to 1
A combination of seeds and activated carbon (preferably powdered) is added to adjust the pH to 11 or more, preferably in the range of 11.5 to 12, and stirring is performed by air bubbling for about 4 hours to eliminate hydrazine and inhibitors in the waste liquid. After the iron ions are removed and the iron ions are completely precipitated, air bubbling is stopped and the precipitate is separated by sedimentation.

次に、第1工程処理で得られた上澄液を別の第2工程処
理用貯槽へ水中ポンプ等を介して移送した後、エアバブ
リングしながら硫酸又は塩酸を添加してpH1〜2.5
好ましくは1.7前後に調整し、1時間程度エアバブリ
ングによる・攪拌を行ってEDTAの結晶化を促進した
後、エアバブリングを停止して結晶析出物を沈降分離す
る。
Next, the supernatant liquid obtained in the first step treatment is transferred to another storage tank for the second step treatment via a submersible pump, etc., and then sulfuric acid or hydrochloric acid is added while air bubbling to bring the pH to 1 to 2.5.
It is preferably adjusted to around 1.7, and after promoting crystallization of EDTA by air bubbling and stirring for about 1 hour, air bubbling is stopped and crystal precipitates are separated by sedimentation.

次いで第2工程処理で得られた上澄液を予め酸洗後の水
洗水廃液(酸洗浄廃液量の6〜8倍容)を受け入れであ
る更に別の第3工程処理用貯槽へ氷中ポンプ等を介して
移送混合した後、エアバブリングしながら、水酸化ナト
リウム、水酸化カリウム、水酸化カルシウム等のアルカ
リ剤を1種以上添加してpH2〜3.5好ましくは2.
5〜3の範囲に調整した後、第1鉄イオン(pe2+)
濃度として100〜200ppmになるよう硫酸第一鉄
又は塩化第一鉄を添加し、次に該廃液中のCODに対し
過酸化水素2,5当量以上、好ましくは3当量をほぼ等
分に4回に分けて添加するが、2回目以降の添加は3日
間毎とし、その間のエアバブリングは過酸化水素添加時
の攪拌を除いて停止し、静置状態でCODを酸化分解す
る。次いでエアバブリングしながら該廃液に水酸化ナト
リウム、水酸化カリウム、水酸化カルシウム等のアルカ
リ剤を1種以上添加してpH6〜8.6の範囲内に調整
し、2時間程度エアバブリングによる攪拌を行って、金
属イオン(鉄イオン、クロムイオン)を水酸化物として
沈殿生成させた後、エアバブリングを停止して沈殿物を
沈降分離する。
Next, the supernatant liquid obtained in the second step treatment is sent to another storage tank for the third step treatment, which receives the washing water waste liquid (6 to 8 times the volume of the acid washing waste liquid volume) after being pickled in advance using an ice pump. After the mixture is transferred and mixed through a filter or the like, one or more alkaline agents such as sodium hydroxide, potassium hydroxide, calcium hydroxide, etc. are added while air bubbling to bring the pH to 2 to 3.5, preferably 2.
After adjusting to the range of 5 to 3, ferrous ion (pe2+)
Add ferrous sulfate or ferrous chloride so that the concentration is 100 to 200 ppm, and then add 2.5 equivalents or more, preferably 3 equivalents, of hydrogen peroxide to the COD in the waste liquid, approximately equally divided four times. The second and subsequent additions are made every three days, during which time air bubbling is stopped except for stirring when hydrogen peroxide is added, and COD is oxidized and decomposed in a stationary state. Next, while air bubbling, one or more alkaline agents such as sodium hydroxide, potassium hydroxide, calcium hydroxide, etc. are added to the waste liquid to adjust the pH to within the range of 6 to 8.6, and the mixture is stirred by air bubbling for about 2 hours. After the metal ions (iron ions, chromium ions) are precipitated as hydroxides, air bubbling is stopped and the precipitates are separated by sedimentation.

第3工程処理で得られた上澄液は、そのまま放流するこ
とが可能であり、第1〜第3工程処理時に生成沈降した
沈殿物及びEDTA結晶析出物は適当な脱水処理装置に
より脱水処理する。
The supernatant obtained in the third step can be discharged as is, and the precipitates and EDTA crystal precipitates generated during the first to third steps are dehydrated using an appropriate dehydration device. .

〔作用〕[Effect]

本発明の第1工程処理においてCOD負荷成分であるヒ
ドラジン(N2H,)及びインヒビターが有効に除去さ
れる機構あるいは作用は下記によるためと考えられる。
The mechanism or action by which hydrazine (N2H,), which is a COD loading component, and the inhibitor are effectively removed in the first step treatment of the present invention is considered to be due to the following.

即ち、N、H,についてはアルカリ剤添加によって沈殿
生成する水酸化第二鉄[Fe(DH)3〕とエアバブリ
ングによる酸素によって第1式に示す化学反応によりN
2及びN20に酸化分解され、その酸化分解反応はアル
カリ剤と併用添加した活性炭が反応触媒として促進作用
していると考えられる。
That is, for N and H, N is produced by the chemical reaction shown in the first equation between ferric hydroxide [Fe(DH)3], which is precipitated by adding an alkali agent, and oxygen by air bubbling.
It is thought that the activated carbon added together with the alkaline agent acts as a reaction catalyst to promote the oxidative decomposition reaction.

2Fe(OH)a 十N2 +382[]  ’−””
””’ (第1式)Fe(叶)、がヒドラジンによって
還元されて生成するFe(DH)2はエアバブリングに
よる酸素によって再びFe (DH) sに酸化される
2Fe(OH)a 10N2 +382[] '-""
""' (Formula 1) Fe(DH)2, which is produced by reduction with hydrazine, is oxidized to Fe(DH)s again by oxygen from air bubbling.

一方インヒビターの除去効果は活性炭による吸着作用で
あるが、アルカリ剤の添加によって沈殿生成する水酸化
第二鉄の相乗効果もあると考えられる。活性炭の添加量
は廃液1〜3に対し1〜1.5 kgの範囲で十分であ
る。
On the other hand, the inhibitor removal effect is due to the adsorption effect of activated carbon, but it is also thought that there is a synergistic effect of ferric hydroxide, which is precipitated by the addition of an alkaline agent. The amount of activated carbon added is sufficient in the range of 1 to 1.5 kg per waste liquid 1 to 3.

また廃液にアルカリ剤を添加してE DTAReキレー
トしている鉄を完全に水酸化物として沈殿生成させるた
めにはpH11以上、好マシ<はpH1,5〜12程度
に調整する必要がある。pH11以下ではEDTA−F
e’+キレート生成定数が鉄水酸化物[Fe([]H)
s 〕の溶解度より大きいので、鉄イオン(Fe”)を
完全に沈殿生成分離することができない。
Further, in order to completely precipitate the EDTARe-chelated iron as hydroxide by adding an alkaline agent to the waste liquid, it is necessary to adjust the pH to 11 or more, preferably about 1.5 to 12. EDTA-F at pH 11 or below
e' + chelate formation constant is iron hydroxide [Fe([]H)
s], iron ions (Fe'') cannot be completely separated by precipitation.

本発明の第2工程処理においてCOD負荷成分中95%
以上の負荷率を占めるEDTAを効果的に除去すること
は極めて重要であり、その除去方法として公知ではある
がEDTAの溶解度がpHに大きく依存することから、
その最適pHを検討した結果、pH1〜2.5好ましく
は1.7前後にEDTAの最小溶解度があり、不溶解分
は結晶化され全て析出する。pH調整剤としては硫酸あ
るいは塩酸でよいが、これらpl調整剤の添加要領でE
DTAの結晶析出物の沈降容積が大きく変わる。
95% of the COD loading components in the second step treatment of the present invention
It is extremely important to effectively remove EDTA, which accounts for the above loading rate, and there are known methods for removing it, but since the solubility of EDTA greatly depends on pH,
As a result of examining the optimum pH, it was found that the minimum solubility of EDTA is at pH 1 to 2.5, preferably around 1.7, and insoluble components are crystallized and all precipitated. Sulfuric acid or hydrochloric acid may be used as the pH adjuster, but E
The sedimentation volume of the DTA crystal precipitate varies greatly.

即ち、pH調整剤を短時間のうち添加する方法が、長時
間をかけて添加する方法により結晶析出物の沈降容積は
約2となり、沈降物の脱水処理上好ましい。
That is, a method in which the pH adjuster is added over a short period of time is preferable in terms of the method of adding the pH adjuster over a long period of time, since the sedimentation volume of the crystal precipitate becomes approximately 2, which is preferable for the dehydration treatment of the precipitate.

以上本発明の第1工程及び第2工程処理によって得られ
た廃液中には2000 ppm前後のCODが残留して
いる。この残留COD成分の殆んどはEDTA−Cr3
+キレ一ト化合物f7)EDTA分と遊離のEDTAで
ある。
As described above, approximately 2000 ppm of COD remains in the waste liquid obtained by the first and second step treatments of the present invention. Most of this residual COD component is EDTA-Cr3
+ chelate compound f7) EDTA component and free EDTA.

従って本発明の第3工程処理において残留COD成分で
あるEDTA (C1,HI6N20B)を効果的に除
去するためには過酸化水素(I(,0,)で酸化分解す
ることが必要であり、その酸化分解作用は下記に示す第
2式の化学反応によるためと考えられる。
Therefore, in order to effectively remove the residual COD component EDTA (C1, HI6N20B) in the third step of the present invention, it is necessary to oxidize and decompose it with hydrogen peroxide (I(,0,). It is thought that the oxidative decomposition effect is due to the chemical reaction of the second formula shown below.

10CO2+28)+20 +N2 +Fe3+   
第2式酸性域で過酸化水素と第一鉄イオン(Fe2+)
との混合溶液はフェントン試薬として酸化効果の高いこ
とが知られているが第2式のように過酸化水素によるE
DTAの酸化分解を効果的に促進させるための大きな要
素は過酸化水素の添加要領にあることを見いだした。
10CO2+28)+20 +N2 +Fe3+
Hydrogen peroxide and ferrous ion (Fe2+) in the acidic region of the second formula
It is known that a mixed solution of E with hydrogen peroxide has a high oxidizing effect as Fenton's reagent.
It has been found that a major factor in effectively promoting the oxidative decomposition of DTA is the manner in which hydrogen peroxide is added.

即ち、過酸化水素をCODに対し2.5当量以上添加す
るのに、その全量を一度に添加したのではCODの除去
効果は小さく排水基準値を大きく外れるが、過酸化水素
の最適添加要領として、例えば過酸化水素をCODに対
し2.5当量以上添加するに際し、はぼ等分に4回に分
けて添加し、2回目以降の添加は3日間毎とし、その間
静置状態でCODを酸化分解する方法によればCOD成
分であるEDTAを効果的に除去することができる。こ
のように過酸化水素の添加量を数回に分は間をおいてか
ら添加する方法がCODの除去効果を高めるのは次のこ
とが考えられる。
In other words, when adding 2.5 equivalents or more of hydrogen peroxide to COD, if the entire amount is added at once, the COD removal effect will be small and the wastewater standard value will be far exceeded, but as an optimal addition method for hydrogen peroxide, For example, when adding 2.5 equivalents or more of hydrogen peroxide to COD, it is added in 4 equal parts, and the second and subsequent additions are made every 3 days, during which time COD is oxidized while standing still. According to the decomposition method, EDTA, which is a COD component, can be effectively removed. The reason why the method of adding hydrogen peroxide several times at intervals increases the COD removal effect is considered to be as follows.

即ち、COD成分を過酸化水素で酸化分解するには、酸
化分解機構に関与する活性種(HD・ラジカル、HD2
・ラジカル)が必要とされている。この活性種生成には
第3式乃至第4式の反応で示すように第一鉄イオン(F
e”)の存在が必要不可欠であることから、本発明のC
OD成分を酸化分解して、さらにCODの除去率を高め
るためには酸化された第二鉄イオン(Fe”)を第一鉄
イオン(Fe”)に還元する必要がある。
That is, in order to oxidatively decompose COD components with hydrogen peroxide, active species (HD radicals, HD2
・Radicals) are required. As shown in the reactions of equations 3 and 4, ferrous ion (F
C”) of the present invention is essential.
In order to oxidize and decompose the OD component and further increase the removal rate of COD, it is necessary to reduce the oxidized ferric ions (Fe'') to ferrous ions (Fe'').

Fe”+ )+202  →Fe” +〇ft−+ H
D ・   第3式HD・+H2O2→H,0+HD・
    第4式還元反応(p e 3 + →p e 
2 + )はCOD成分が残存している間は廃液を静置
しておくことによって起こることを見いだし、2〜3日
間の静置で85〜100%還元されることを確認した。
Fe"+)+202 →Fe"+〇ft-+H
D. 3rd formula HD・+H2O2→H,0+HD・
Equation 4 reduction reaction (p e 3 + → p e
2 + ) was found to occur when the waste liquid was allowed to stand while the COD component remained, and it was confirmed that 85 to 100% reduction was achieved by allowing the waste liquid to stand for 2 to 3 days.

このように第一鉄イオン(Fe2“)に還元後、さらに
過酸化水素を添加することにより、前の添加で未分解で
あったCOD成分が第2式の反応で効果的に酸化分解除
去されていく。
By further adding hydrogen peroxide after reduction to ferrous ions (Fe2") in this way, the COD components that were not decomposed in the previous addition are effectively oxidized and decomposed and removed by the reaction of the second equation. To go.

またCOD成分の酸化分解処理時の適正p)l範囲は2
〜3.5が好ましく、その範囲を外れるとCOD除去率
は悪くなる。第一鉄イオン(Fe”)濃度は100〜2
00 ppm程度で十分であり、それ以上添加してもC
OD除去効果に変化はない。
In addition, the appropriate p)l range during oxidative decomposition treatment of COD components is 2
~3.5 is preferable, and COD removal rate deteriorates when outside this range. Ferrous ion (Fe”) concentration is 100-2
Approximately 0.00 ppm is sufficient, and even if more than 0.00 ppm is added, C
There is no change in the OD removal effect.

〔実施例〕〔Example〕

EDTAと反応結合した金属イオン(Re”[:r3+
)  アンモニア、ヒドラジン、インヒビタ−を含む酸
洗浄廃液及び酸洗浄後の水洗水廃液の化学洗浄廃液処理
方法において下記のような試験を行った。この試験は第
1表に示した組成及び性状の化学洗浄廃液を対象として
行ったもので、(C)混合廃液11をビー力に受け入れ
エアバブリングしながら、粉末状の活性炭1gと水酸化
す)IJウムを添加してpHを11,5〜12に調整し
たのち、4時間攪拌してエアバブリングを止め鉄の水酸
化物(沈殿物)を沈降分離した。沈殿物分離後の上澄液
(アルカリ性)はEDTA−Cr’+キレート化によっ
て緑色を呈していた。
Metal ion (Re”[:r3+
) The following tests were conducted in a chemical cleaning waste liquid treatment method for acid washing waste liquid containing ammonia, hydrazine, and inhibitors and washing water waste liquid after acid washing. This test was conducted using chemical cleaning waste liquids with the composition and properties shown in Table 1. (C) Mixed waste liquid 11 was received in a bee force and hydroxylated with 1 g of powdered activated carbon while air bubbling). After adjusting the pH to 11.5 to 12 by adding IJum, the mixture was stirred for 4 hours, air bubbling was stopped, and iron hydroxide (precipitate) was separated by sedimentation. The supernatant (alkaline) after separation of the precipitate had a green color due to EDTA-Cr'+ chelation.

この上澄液を第2工程用の廃液として別のビー力にとり
、エアバブリングしながら、97%硫酸を添加してpH
を1.9に調整したのち、1時間攪拌してエアバブリン
グを止めESTAの結晶析出物を沈降分離した。結晶析
出物(白色)沈降分離後の上澄液(酸性)はE D T
 A−C,r”キレート化によって紫色を呈していた。
This supernatant liquid was taken as a waste liquid for the second step in another beer, and while air bubbling, 97% sulfuric acid was added to adjust the pH.
After adjusting the temperature to 1.9, the mixture was stirred for 1 hour, air bubbling was stopped, and the ESTA crystal precipitate was separated by sedimentation. Crystal precipitate (white) The supernatant liquid (acidic) after sedimentation separation is E D T
The color was purple due to A-C,r'' chelation.

この処理液の性状は第3表(D)の第2工程処理後の上
澄液に示すように本発明法ではCOD2200mg/l
、Pe  0.2 mg/ 1以下、Cr 3493m
g/lであった。また比較のため第1工程処理での活性
炭無添加である従来法ではCOD2650mg/i’、
Fe  1mg/l以下、Cr”94■/I!であった
The properties of this treatment liquid are as shown in the supernatant liquid after the second step treatment in Table 3 (D).
, Pe 0.2 mg/1 or less, Cr 3493m
g/l. For comparison, the conventional method without the addition of activated carbon in the first step treatment had a COD of 2650 mg/i',
The Fe content was 1 mg/l or less, and the Cr value was 94■/I!.

上記(D)廃液150−に(E)廃液30〇−(酸洗後
の水洗水で第1表(A)廃液の6倍相当量)を混合した
(F)混合廃液450−を第3工程用の廃液として更に
別のビー力にとり、エアバブリングしながら48%水酸
化ナトリウム溶液を添加してpHを2〜3.5に調整し
たのち、第一鉄イオン(Fe’“)濃度として100〜
200ppmになるよう硫酸第一鉄を添加し、次に該廃
液中のCODに対し35%過酸化水素2.5〜3当量を
等分に4回に分けて添加した。ただし2回目以降の添加
は3日間毎とし、その間のエアバブリングは過酸化水素
添加時の攪拌を除いて停止し、静置状態でCODを酸化
分解した。次いでエアバブリングしながら該廃液に48
%水酸化ナトリウム溶液を添加してpH6〜8.6に調
整して金属イオン(鉄イオン、クロムイオン)を水酸化
物として沈殿生成させ、約2時間エアバブリングによる
攪拌を行った後、エアバブリングを止めて沈殿物を沈降
分離した。沈降分離後の上澄液のCOD、溶解鉄、全ク
ロム及びSSを測定し、第4表実施例の試験番号(2)
〜αQの如き結果を得た。また比較のため第3工程での
COD酸化処理時の過酸化水素を1度に添加して静置酸
化処理する従来法についても行い、試験番号面〜(ハ)
の如き結果を得た。
The above (D) waste liquid 150- is mixed with (E) waste liquid 300- (washing water after pickling, equivalent to 6 times the waste liquid in Table 1 (A)). (F) mixed waste liquid 450- is used in the third step. The ferrous ion (Fe'") concentration was adjusted to 100 to 3.5 by adding 48% sodium hydroxide solution while air bubbling.
Ferrous sulfate was added to give a concentration of 200 ppm, and then 2.5 to 3 equivalents of 35% hydrogen peroxide was added to the COD in the waste liquid in four equal portions. However, the second and subsequent additions were made every three days, during which time air bubbling was stopped except for stirring when hydrogen peroxide was added, and the COD was oxidized and decomposed in a stationary state. Then, while air bubbling, the waste liquid was heated for 48 hours.
% sodium hydroxide solution to adjust the pH to 6 to 8.6 to precipitate metal ions (iron ions, chromium ions) as hydroxides, stir by air bubbling for about 2 hours, then air bubbling. The precipitate was separated by sedimentation. The COD, dissolved iron, total chromium and SS of the supernatant liquid after sedimentation separation were measured, and the test number (2) in Table 4 Example was measured.
~αQ results were obtained. For comparison, we also conducted a conventional method in which hydrogen peroxide was added all at once during COD oxidation treatment in the third step and left for static oxidation treatment.
I got results like this.

試験番号(1)及び(社)は第3表に示す混合廃液(F
)であり、本発明法及び従来法での第3工程処理前の性
状を参考例として示した。
Test number (1) and (Company) are mixed waste liquid (F) shown in Table 3.
), and the properties before the third step treatment by the method of the present invention and the conventional method are shown as reference examples.

〔発明の効果〕〔Effect of the invention〕

(1)第1工程処理において廃液中にアルカリ剤と活性
炭を併用添加することによって該廃液中の鉄イオンを水
酸化第二鉄として沈殿除去するばかりでなく、ヒドラジ
ン、インヒビターをも効果−的に除去可能となったこと
から、第3工程処理でのCOD酸化分解除去が容易とな
った。
(1) By adding an alkaline agent and activated carbon together to the waste liquid in the first step treatment, not only iron ions in the waste liquid are precipitated and removed as ferric hydroxide, but also hydrazine and inhibitors are effectively removed. Since it became possible to remove the COD, it became easy to remove it by oxidation and decomposition of COD in the third step treatment.

(2)第3工程のCOD酸化分解処理において、過酸化
水素によるCOD成分(EDTA)の酸化分解するに当
って、過酸化水素をCODに対して2.5当量以上添加
するに際し、はぼ等分に4回に分けて添加し、2回目以
降の添加は3日間毎とし、その間静置状態でCODを酸
化分解する方法によればEDTAがクロムイオン([r
3+)とキレート化(EDTA−Cr”)しているED
TAをも効果的に酸化分解除去されるので、キレート化
していたクロムも遊離のクロムイオン(Cr”)となり
、COD酸化処理後のアルカリ剤による中和処理によっ
てクロムイオンは水酸化クロム[Cr(0)1)s ]
として沈殿除去することが可能となった。
(2) In the third step of COD oxidative decomposition treatment, when hydrogen peroxide is used to oxidize and decompose the COD component (EDTA), when adding 2.5 equivalents or more of hydrogen peroxide to COD, According to a method in which COD is oxidized and decomposed by adding it in 4 parts per minute, and the second and subsequent additions are made every 3 days, and COD is oxidized and decomposed while standing, EDTA is added to chromium ions ([r
3+) and chelated (EDTA-Cr”) ED
Since TA is also effectively oxidized and decomposed, the chelated chromium becomes free chromium ions (Cr"), and the chromium ions are converted to chromium hydroxide [Cr" by neutralization treatment with an alkaline agent after COD oxidation treatment. 0)1)s ]
It became possible to remove the precipitate as

(3)最終処理工程である第3工程処理後の処理水は第
2表の全項目とも排水基準値を十分満足するので、放流
に際しては何ら調整することなく、そのまま放流できる
(3) Since the treated water after the third step, which is the final treatment step, fully satisfies the wastewater standard values for all items in Table 2, it can be discharged as is without any adjustment.

Claims (1)

【特許請求の範囲】[Claims] エチレンジアミン四酢酸と反応結合した金属イオン、ア
ンモニア、ヒドラジン、腐食抑制剤を含む酸洗浄廃液及
び酸洗浄後の水洗水廃液の化学洗浄廃液処理方法におい
て、酸洗浄廃液の全量と酸洗浄廃液の2倍相当量の水洗
水廃液を廃液貯槽に受け入れた後、エアバブリングしな
がらアルカリ剤及び活性炭を併用添加してpH11以上
でヒドラジン腐食抑制剤を除去するとともに鉄イオンを
水酸化物として沈殿生成させた後、沈殿物を沈降分離す
る第1工程処理、前記第1工程処理で得られた上澄液を
別の廃液貯槽へ移した後、エアバブリングしながら硫酸
又は塩酸を添加してpH1〜2.5の範囲内に調整して
エチレンジアミン四酢酸を結晶化して沈降分離する第2
工程処理および前記第2工程処理で得られた上澄液を、
予め酸洗浄廃液量の6〜8倍相当量の水洗水廃液を受け
入れてある更に別の廃液貯槽へ移した後、エアバブリン
グしながらアルカリ剤を添加してpH2〜3.5の範囲
内に調整した後、第一鉄イオン濃度として100〜20
0ppmになるよう硫酸第一鉄又は塩化第一鉄を添加し
、次に該廃液中のCODに対し過酸化水素2.5当量以
上を4回に分けて添加するが、2回目以降の添加は3日
間毎としその間のエアバブリングは停止してCODを酸
化分解し、次いでエアバブリングしながら該廃液にアル
カリ剤を添加してpH6〜8.6の範囲内に調整して金
属イオンを水酸化物として沈殿分離する第3工程処理か
らなることを特徴とする化学洗浄廃液の処理方法。
In a chemical cleaning waste liquid treatment method for pickling waste liquid containing metal ions, ammonia, hydrazine, and corrosion inhibitors reactively bound to ethylenediaminetetraacetic acid and washing water waste liquid after acid washing, the total amount of pickling waste liquid and twice the amount of pickling waste liquid are used. After receiving a considerable amount of washing water waste liquid into a waste liquid storage tank, alkali agent and activated carbon are added together while air bubbling is performed to remove the hydrazine corrosion inhibitor at pH 11 or higher and to precipitate iron ions as hydroxide. , a first step treatment in which the precipitate is separated by sedimentation, the supernatant liquid obtained in the first step treatment is transferred to another waste liquid storage tank, and then sulfuric acid or hydrochloric acid is added while air bubbling to adjust the pH to 1 to 2.5. The second step is to crystallize ethylenediaminetetraacetic acid and separate it by precipitation.
The supernatant obtained in the step treatment and the second step treatment,
After receiving washing water waste liquid in an amount equivalent to 6 to 8 times the amount of acid washing waste liquid in advance and transferring it to another waste liquid storage tank, an alkaline agent is added while air bubbling to adjust the pH to within the range of 2 to 3.5. After that, the ferrous ion concentration is 100-20
Add ferrous sulfate or ferrous chloride so that the concentration is 0 ppm, and then add 2.5 equivalents or more of hydrogen peroxide to the COD in the waste liquid in 4 parts. Every 3 days, air bubbling is stopped and COD is oxidized and decomposed, and then, while air bubbling, an alkaline agent is added to the waste liquid to adjust the pH within the range of 6 to 8.6, and metal ions are converted into hydroxides. A method for treating chemical cleaning waste liquid, comprising a third step of precipitation separation.
JP2196350A 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method Expired - Lifetime JP2721740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196350A JP2721740B2 (en) 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196350A JP2721740B2 (en) 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method

Publications (2)

Publication Number Publication Date
JPH0483592A true JPH0483592A (en) 1992-03-17
JP2721740B2 JP2721740B2 (en) 1998-03-04

Family

ID=16356382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196350A Expired - Lifetime JP2721740B2 (en) 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP2721740B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039084A (en) * 2001-07-31 2003-02-12 Kurita Water Ind Ltd Treatment method for wastewater containing hydrazine and ammonia
JP2006205287A (en) * 2005-01-27 2006-08-10 Toppan Printing Co Ltd Metallic roller blade for processing roughened surface
CN103910428A (en) * 2014-03-21 2014-07-09 华泰集团有限公司 Comprehensive utilization method of titanium dioxide waste acid
CN106242114A (en) * 2016-08-24 2016-12-21 厦门嵩湖环保股份有限公司 A kind of high-concentration organic industrial waste water processing system and processing method
CN112295610A (en) * 2020-10-24 2021-02-02 李通 Chelate resin regeneration process in secondary brine refining process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039084A (en) * 2001-07-31 2003-02-12 Kurita Water Ind Ltd Treatment method for wastewater containing hydrazine and ammonia
JP2006205287A (en) * 2005-01-27 2006-08-10 Toppan Printing Co Ltd Metallic roller blade for processing roughened surface
CN103910428A (en) * 2014-03-21 2014-07-09 华泰集团有限公司 Comprehensive utilization method of titanium dioxide waste acid
CN106242114A (en) * 2016-08-24 2016-12-21 厦门嵩湖环保股份有限公司 A kind of high-concentration organic industrial waste water processing system and processing method
CN106242114B (en) * 2016-08-24 2022-12-27 厦门嵩湖环保股份有限公司 High-concentration organic industrial wastewater treatment system and treatment method
CN112295610A (en) * 2020-10-24 2021-02-02 李通 Chelate resin regeneration process in secondary brine refining process

Also Published As

Publication number Publication date
JP2721740B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
EA200000437A1 (en) METHOD FOR REMOVING SELENIUM FROM TECHNOLOGICAL WATER FLOWS AND DEVICE FOR ITS IMPLEMENTATION
JPS5948155B2 (en) Waste liquid treatment method
EP0166557A2 (en) Process for Waste Treatment
JP2008036608A (en) Method and apparatus for treating cyanide-containing wastewater
JPH04349997A (en) Treatment of organic waste water
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JPH0483592A (en) Treatment of waste chemical washing solution
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JP2004249258A (en) Wastewater treatment method
JP4552164B2 (en) Waste liquid treatment method
JPH01194997A (en) Treatment of cyanide-containing solution and aerobe obtained by conditioning of facultative anaerobe
JPS5976593A (en) Treatment of chemical washing waste liquor containing edta
JPH0141115B2 (en)
JP2002282874A (en) Wastewater treating device
JPS5813230B2 (en) Treatment method for water containing fluoride ions
JPS62247809A (en) Iron processing agent in form of solution
JPH0714514B2 (en) Chemical cleaning waste liquid treatment method
JPS63264194A (en) Treatment of chemical cleaning waste solution
JP7454096B1 (en) Wastewater treatment method
JPS6216153B2 (en)
JP7353619B2 (en) Treatment method for cyanide-containing wastewater
JPH038492A (en) Treatment of waste chemical cleaning solution
JPS6111193A (en) Treatment of waste liquid of chemical cleaning