JP2721740B2 - Chemical cleaning waste liquid treatment method - Google Patents

Chemical cleaning waste liquid treatment method

Info

Publication number
JP2721740B2
JP2721740B2 JP2196350A JP19635090A JP2721740B2 JP 2721740 B2 JP2721740 B2 JP 2721740B2 JP 2196350 A JP2196350 A JP 2196350A JP 19635090 A JP19635090 A JP 19635090A JP 2721740 B2 JP2721740 B2 JP 2721740B2
Authority
JP
Japan
Prior art keywords
waste liquid
acid
added
air bubbling
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2196350A
Other languages
Japanese (ja)
Other versions
JPH0483592A (en
Inventor
行男 林
武敏 古澤
光彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2196350A priority Critical patent/JP2721740B2/en
Publication of JPH0483592A publication Critical patent/JPH0483592A/en
Application granted granted Critical
Publication of JP2721740B2 publication Critical patent/JP2721740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学洗浄廃液の処理方法に関し、化学洗浄液
及び化学洗浄後の水洗水廃液を放流するに際し、同廃液
中の重金属、COD、SS(固形浮遊物質)及び色調物など
の有害物質を除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating a chemical cleaning waste liquid, and when discharging a chemical cleaning liquid and a washing water waste liquid after the chemical cleaning, the heavy metals, COD, SS ( The present invention relates to a method for removing harmful substances such as solid suspended solids) and color tones.

〔従来の技術〕[Conventional technology]

火力プラントのボイラ過熱器管、主蒸気管、高温再熱
蒸気管等の高温蒸気管内面に生成した水蒸気酸化スケー
ル(主成分:Fe3O4、少量成分:Cr2O3,MoO2等)をエチレ
ンジアミン四酢酸(以下、EDTAと略記する)にアンモニ
ア、ヒドラジン及び腐食抑制剤(以下インヒビターと略
記する)を添加した溶液で除去する化学洗浄において、
例えば火力プラントの主蒸気管に適用した場合の化学洗
浄廃液の種類は、第1表に示すように酸洗浄廃液以外に
酸洗浄後の管内に残存した酸液を完全に排出除去するた
めの水洗水廃液もある。その水洗水廃液の量は酸洗浄廃
液1容に対し8〜10容となるが、初期の2容は一般的に
酸洗浄廃液の処理用貯槽へ、残りの6〜8容は酸洗浄廃
液成分混入量も微量となるため、別の処理用貯槽へ受け
入れている。
Steam oxidation scale (main component: Fe 3 O 4 , minor components: Cr 2 O 3 , MoO 2, etc.) generated on the inner surface of high-temperature steam pipes such as boiler superheater pipes, main steam pipes, and high-temperature reheat steam pipes of thermal power plants In a chemical cleaning to remove ethylenediaminetetraacetic acid (hereinafter abbreviated as EDTA) with a solution obtained by adding ammonia, hydrazine and a corrosion inhibitor (hereinafter abbreviated as an inhibitor),
For example, when applied to a main steam pipe of a thermal power plant, the type of chemical cleaning waste liquid is, as shown in Table 1, water washing for completely discharging and removing the acid liquid remaining in the pipe after acid cleaning in addition to the acid cleaning waste liquid. There is also water waste. The amount of the washing water waste liquid is 8 to 10 volumes per 1 volume of the acid washing waste liquid. Since the amount of contamination is very small, it is accepted in another processing tank.

第1表から判るように処理前の混合廃液には、排水基
準項目であるpH、COD、Feイオン、Crイオン、SS等が多
量含有されており、このような化学洗浄廃液は公害防止
上そのまま排出することはできない。排出する場合の排
水基準値は第2表に例示されるように地域自治体との公
害防止協定などで決められた基準値まで浄化処理するこ
とが必要である。
As can be seen from Table 1, the mixed effluent before treatment contains a large amount of pH, COD, Fe ion, Cr ion, SS, etc., which are wastewater standard items. It cannot be discharged. As shown in Table 2, it is necessary to purify effluent standard values to the standard values determined by a pollution prevention agreement with a local government as shown in Table 2.

従来は、このような化学洗浄廃液処理法として、焼却
処理又は湿式による化学的処理がある。焼却処理は産業
廃棄物業者に委託し、構外では焼却処理を行っている
が、処理コストが高く、また構外への廃液移送時のトラ
ブル防止の観点からも湿式による化学的処理が好まし
い。
Conventionally, as such a chemical cleaning waste liquid treatment method, there is an incineration treatment or a wet chemical treatment. The incineration is outsourced to an industrial waste contractor, and the incineration is performed off-premises. However, from the viewpoint of high disposal costs and prevention of trouble when transferring waste liquid to off-premises, wet chemical treatment is preferable.

一方湿式による化学的処理法としては、EDTAと結合し
た重金属イオン(Fe,Cu,Ni)を含む化学洗浄液の処理方
法において、該廃液にアルカリ剤(苛性ソーダ、消石灰
等)を添加してpH10以上で重金属イオンを沈殿分離させ
る第1工程処理、前記第1工程で得た分離液に酸(塩酸
又は硫酸)を添加してEDTAを結晶化させ、該結晶を分
離、回収する第2工程処理及び前記結晶を分離した分離
液に過酸化水素を添加してCODを低減化させる第3工程
処理からなる方法が知られている(特開昭59−76593号
公報) 〔発明が解決しようとする課題〕 上述したような方法では第1工程において、第1表に
示す化学洗浄液中のCOD負荷成分であるヒドラジン及び
インヒビターの除去効果が殆んどないので、第3工程の
COD酸化処理においてCODの酸化分解が十分でなく、また
COD酸化のための過酸化水素添加要領の不具合などもあ
ってEDTAの酸化分解が不十分であり、酸化未分解のEDTA
とキレート化しているクロムイオン(Cr3+)の除去を不
可能にする等の問題点がある。
On the other hand, as a wet chemical treatment method, in a treatment method of a chemical cleaning solution containing heavy metal ions (Fe, Cu, Ni) combined with EDTA, an alkaline agent (caustic soda, slaked lime, etc.) is added to the waste solution to adjust the pH to 10 or more. A first step treatment of precipitating and separating heavy metal ions, a second step treatment of adding an acid (hydrochloric acid or sulfuric acid) to the separated solution obtained in the first step to crystallize EDTA, separating and collecting the crystals, and There is known a method comprising a third step treatment for reducing COD by adding hydrogen peroxide to a separated liquid from which crystals have been separated (Japanese Patent Laid-Open No. 59-76593). In the method as described above, in the first step, there is almost no effect of removing the hydrazine and the inhibitor which are the COD load components in the chemical cleaning solution shown in Table 1;
Oxidative decomposition of COD is not sufficient in COD oxidation treatment.
Insufficient oxidative decomposition of EDTA due to problems such as the procedure for adding hydrogen peroxide for COD oxidation, and undecomposed EDTA
There is a problem that chromium ions (Cr 3+ ) chelated cannot be removed.

本発明は上記技術水準に鑑み、前記従来方法における
ような不具合のない化学洗浄廃液の処理方法を提供しよ
うとするものである。
The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a method for treating a chemical cleaning waste liquid which does not have a problem as in the conventional method.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、EDTAと反応結合した金属イオン(主成分:
鉄イオン、少量成分:クロムイオン)、アンモニア、ヒ
ドラジン、インヒビターを含む酸洗浄廃液及び酸洗浄後
の水洗水廃液の化学洗浄廃液処理方法において、酸洗浄
廃液の全量と酸洗浄廃液の2倍相当量の水洗水廃液を廃
液貯槽に受け入れた後、エアバブリングしながらアルカ
リ剤及び活性炭を併用添加してpH11以上でヒドラジン、
インヒビターを除去するとともに鉄イオンを水酸化物と
して沈殿生成させた後、沈殿物を沈降分離する第1工程
処理、前記第1工程処理で得られた上澄液を別の廃液貯
槽へ移した後、エアバブリングしながら硫酸又は塩酸を
添加してpH1〜2.5の範囲内に調整してEDTAを結晶化して
沈降分離する第2工程処理及び第2工程処理で得られた
上澄液を、予め酸洗浄廃液量の6〜8倍相当量の水洗水
廃液を受け入れてある更に別の廃液貯槽へ移した後、エ
アバブリングしながらアルカリ剤を添加してpH2〜3.5の
範囲内に調整した後、第一鉄イオン(Fe2+)濃度として
100〜200ppmになるよう硫酸第一鉄又は塩化第一鉄を添
加し、次に該廃液中のCODに対し過酸化水素2.5当量以上
を4回に分けて添加するが、2回目以降の添加は3日間
毎とし、その間のエアバブリングは停止してCODを酸化
分解し、次いでエアバブリングしながら該廃液にアルカ
リ剤を添加してpH6〜8.6の範囲内に調整して金属イオン
(鉄イオン、クロムイオン等)を水酸化物として沈殿分
離する第3工程処理の3工程からなることを特徴とする
化学洗浄廃液の処理方法である。
The present invention relates to a metal ion reactively bonded to EDTA (main component:
In the chemical cleaning wastewater treatment method of the acid washing wastewater containing the iron ion, the small amount component: chromium ion), ammonia, hydrazine, and the inhibitor and the washing water wastewater after the acid washing, the total amount of the acid washing wastewater and twice the amount of the acid washing wastewater. After receiving the washing water wastewater into the wastewater storage tank, hydrazine is added at pH 11 or higher by adding an alkali agent and activated carbon together while air bubbling.
After the inhibitor is removed and the iron ions are precipitated as hydroxides, the precipitate is separated into a first step, and the supernatant obtained in the first step is transferred to another waste liquid storage tank. Then, sulfuric acid or hydrochloric acid is added while air bubbling to adjust the pH to a range of 1 to 2.5 to crystallize and precipitate EDTA, and the supernatant obtained in the second step is subjected to acid treatment in advance. After transferring to a further waste liquid storage tank which has received a washing water waste liquid equivalent to 6 to 8 times the washing waste liquid amount, an alkali agent is added while air bubbling, and the pH is adjusted to a range of 2 to 3.5. As ferrous ion (Fe 2+ ) concentration
Ferrous sulfate or ferrous chloride is added so as to have a concentration of 100 to 200 ppm, and then 2.5 equivalents or more of hydrogen peroxide is added to COD in the waste liquid in four divided portions. Every three days, air bubbling is stopped during that time, COD is oxidized and decomposed, and then an alkaline agent is added to the waste solution while air bubbling to adjust the pH to a range of 6 to 8.6 to adjust metal ions (iron ions, chromium ions). (Ion etc.) as a hydroxide in a third step of a process for treating and separating a chemical cleaning waste liquid.

以下に本発明の方法を更に具体的に説明する。 Hereinafter, the method of the present invention will be described more specifically.

先ず、第1工程では第1工程処理用貯槽へ酸洗浄廃液
の全量(1容)と酸洗浄後の水洗水廃液2容を受け入れ
た混合廃液にエアバブリングしながら水酸化ナトリウ
ム、水酸化カリウム、水酸化カルシウム等のアルカリ剤
を1種以上と活性炭(粉末状のものが好ましい)を併用
添加してpH11以上好ましくは11.5〜12の範囲に調整し、
4時間程度エアバブリングによる撹拌を行って該廃液中
のヒドラジン及びインヒビターを除去するとともに、鉄
イオンを完全に沈殿生成させた後、エアバブリングを停
止して沈降物を沈殿分離する。
First, in the first step, sodium hydroxide, potassium hydroxide, and sodium hydroxide, potassium hydroxide, and the like are mixed into the storage tank for the first step treatment while the entire amount (1 volume) of the acid washing waste liquid and 2 volumes of the washing water waste liquid after the acid washing are received. One or more alkaline agents such as calcium hydroxide and activated carbon (preferably in powder form) are added in combination to adjust the pH to 11 or more, preferably in the range of 11.5 to 12,
Stirring by air bubbling is performed for about 4 hours to remove hydrazine and the inhibitor in the waste liquid, and to completely precipitate iron ions. Then, air bubbling is stopped to precipitate and separate the sediment.

次に、第1工程処理で得られた上澄液を別の第2工程
処理用貯槽へ水中ポンプ等を介して移送した後、エアバ
ブリングしながら硫酸又は塩酸を添加してpH1〜2.5好ま
しくは1.7前後に調整し、1時間程度エアバブリングに
よる撹拌を行ってEDTAの結晶化を促進した後、エアバブ
リングを停止して結晶析出物を沈降分離する。
Next, after transferring the supernatant obtained in the first step treatment to another storage tank for the second step treatment using a submersible pump or the like, sulfuric acid or hydrochloric acid is added while air bubbling, and the pH is 1 to 2.5, preferably After adjusting to around 1.7 and stirring by air bubbling for about 1 hour to promote the crystallization of EDTA, the air bubbling is stopped and the crystal precipitate is settled and separated.

次いで第2工程処理で得られた上澄液を予め酸洗浄の
水洗水廃液(酸洗浄廃液量の6〜8倍容)を受け入れて
ある更に別の第3工程処理用貯槽へ水中ポンプ等を介し
て移送混合した後、エアバブリングしながら、水酸化ナ
トリウム、水酸化カリウム、水酸化カルシウム等のアル
カリ剤を1種以上添加してph2〜3.5好ましくは2.5〜3
の範囲に調整した後、第1鉄イオン(Fe2+)濃度として
100〜200ppmになるよう硫酸第一鉄又は塩化第一鉄を添
加し、次に該廃液中のCODに対し過酸化水素2.5当量以
上、好ましくは3当量をほぼ等分に4回に分けて添加す
るが、2回目以降の添加は3日間毎とし、その間のエア
バブリングは過酸化水素添加時の撹拌を除いて停止し、
静置状態でCODを酸化分解する。次いでエアバブリング
しながら該廃液に水酸化ナトリウム、水酸化カリウム、
水酸化カルシウム等のアルカリ剤を1種以上添加してph
6〜8.6の範囲内に調整し、2時間程度エアバブリングに
よる撹拌を行って、金属イオン(鉄イオン、クロムイオ
ン)を水酸化物として沈殿生成させた後、エアバブリン
グを停止して沈殿物を沈降分離する。
Next, the supernatant obtained in the second step treatment is transferred to another storage tank for the third step treatment, which has previously received a washing water waste liquid for acid washing (6 to 8 times the amount of the acid washing waste liquid) by an underwater pump or the like. After transfer and mixing, one or more alkali agents such as sodium hydroxide, potassium hydroxide, calcium hydroxide and the like are added while air bubbling, and the pH is 2 to 3.5, preferably 2.5 to 3
After adjusting to the range, the concentration of ferrous ion (Fe 2+ )
Add ferrous sulfate or ferrous chloride to 100-200 ppm, then add 2.5 equivalents or more, preferably 3 equivalents of hydrogen peroxide to the COD in the waste liquid in four equal portions. However, the second and subsequent additions are made every three days, during which time air bubbling is stopped except for stirring when hydrogen peroxide is added.
Oxidatively decomposes COD in a stationary state. Next, sodium hydroxide, potassium hydroxide,
Add at least one alkali agent such as calcium hydroxide
Adjusted within the range of 6 to 8.6, stirring by air bubbling for about 2 hours to precipitate metal ions (iron ions, chromium ions) as hydroxide, and then stop air bubbling to remove precipitates. Settle and separate.

第3工程処理で得られた上澄液は、そのまま放流する
ことが可能であり、第1〜第3工程処理時に生成沈降し
た沈殿物及びEDTA結晶析出物は適当な脱水処理装置によ
り脱水処理する。
The supernatant obtained in the third step treatment can be discharged as it is, and the precipitate formed and settled during the first to third step treatment and the EDTA crystal precipitate are subjected to dehydration treatment by an appropriate dehydration treatment device. .

〔作用〕 本発明の第1工程処理においてCOD負荷成分であるヒ
ドラジン(N2H4)及びインヒビターが有効に除去される
機構あるいは作用は下記によるためと考えられる。
[Action] It is considered that the mechanism or action by which hydrazine (N 2 H 4 ) and the inhibitor, which are COD loading components, are effectively removed in the first step treatment of the present invention is as follows.

即ち、N2H4についてはアルカリ剤添加によって沈殿生
成する水酸化第二鉄〔Fe(OH)〕とエアバブリングに
よる酸素によって第1式に示す化学反応によりN2及びH2
Oに酸化分解され、その酸化分解反応はアルカリ剤と併
用添加した活性炭が反応触媒として促進作用していると
考えられる。
That, N 2 H 4 N 2 and H 2 by a chemical reaction shown in the first equation by oxygen by air bubbling with ferric hydroxide [Fe (OH) 3] to produce precipitated by addition alkali agent for
It is considered that the oxidative decomposition reaction is oxidatively decomposed into O, and the oxidative decomposition reaction is promoted by activated carbon added in combination with the alkali agent as a reaction catalyst.

Fe(OH)がヒドラジンによって還元されて生成する
Fe(OH)はエアバブリングによる酸素によって再びFe
(OH)に酸化される。
Fe (OH) 3 is produced by reduction with hydrazine
Fe (OH) 2 is re-emitted by oxygen by air bubbling.
It is oxidized to (OH) 3 .

一方インヒビターの除去効果は活性炭による吸着作用
であるが、アルカリ剤の添加によって沈殿生成する水酸
化第二鉄の相乗効果もあると考えられる。活性炭の添加
量は廃液1m3に対し1〜1.5kgの範囲で十分である。
On the other hand, the inhibitor removing effect is an adsorption effect by activated carbon, but it is considered that there is also a synergistic effect of ferric hydroxide generated by precipitation by addition of an alkali agent. The addition amount of the activated carbon is sufficient to waste 1 m 3 in the range of 1~1.5Kg.

また廃液にアルカリ剤を添加してEDTA−Feキレートし
ている鉄を完全に水酸化物として沈殿生成させるために
はpH11以上、好ましくはpH11.5〜12程度に調整する必要
がある。pH11以上ではEDTA−Fe3+キレート生成定数が鉄
水酸化物〔Fe(OH)〕の溶解度より大きいので、鉄イ
オン(Fe3+)を完全に沈殿生成分離することができな
い。
Further, in order to add an alkaline agent to the waste liquid to completely precipitate the iron that has been chelated with EDTA-Fe as a hydroxide, it is necessary to adjust the pH to 11 or more, preferably to about 11.5 to 12. At a pH of 11 or more, the EDTA-Fe 3+ chelate formation constant is larger than the solubility of iron hydroxide [Fe (OH) 3 ], so that iron ions (Fe 3+ ) cannot be completely precipitated and separated.

本発明の第2工程処理においてCOD負荷成分中95%以
上の負荷率を占めるEDTAを効果的に除去することは極め
て重要であり、その除去方法として公知ではあるがEDTA
の溶解度がpHに大きく依存することから、その最適pHを
検討した結果、pH1〜2.5好ましくは1.7前後にEDTAの最
小溶解度があり、不溶解分は結晶化され全て析出する。
pH調整剤としては硫酸あるいは塩酸でよいが、これらpH
調整剤の添加要領でEDTAの結晶析出物の沈降容積が大き
く変わる。
In the second step treatment of the present invention, it is extremely important to effectively remove EDTA occupying 95% or more of the COD load component.
Since the solubility of EDTA greatly depends on the pH, the optimum pH was examined. As a result, the minimum solubility of EDTA was found at pH 1 to 2.5, preferably around 1.7, and the insoluble matter was crystallized and all precipitated.
Sulfuric acid or hydrochloric acid may be used as the pH adjuster.
The settling volume of the crystalline precipitate of EDTA changes greatly depending on the method of adding the modifier.

即ち、pH調整剤を短時間のうち添加する方法が、長時
間をかけて添加する方法よりも結晶析出物の沈降容積は
約1/2となり、沈降物の脱水処理上好ましい。
That is, the method in which the pH adjuster is added in a short period of time has a sedimentation volume of the crystalline precipitate of about 1/2 compared to the method in which the pH adjuster is added over a long period of time, which is preferable in the dehydration treatment of the precipitate.

以上本発明の第1工程及び第2工程処理によって得ら
れた廃液中には2000ppm前後のCODが残留している。この
残留COD成分の殆んどはEDTA−Cr3+キレート化合物のEDT
A分と遊離のEDTAである。
As described above, about 2000 ppm of COD remains in the waste liquid obtained by the first and second steps of the present invention. Most of this residual COD component is EDTA of EDTA-Cr3 + chelate compound.
A minutes and free EDTA.

従って本発明の第3工程処理において残留COD成分で
あるEDTA(C10H16N2O8)を効果的に除去するためには過
酸化水素(H2O2)で酸化分解することが必要であり、そ
の酸化分解作用は下記に示す第2式の化学反応によるた
めと考えられる。
Therefore, in order to effectively remove the residual COD component EDTA (C 10 H 16 N 2 O 8 ) in the third step treatment of the present invention, it is necessary to oxidatively decompose with hydrogen peroxide (H 2 O 2 ). It is considered that the oxidative decomposition action is due to the chemical reaction of the second formula shown below.

酸性域で過酸化水素と第一鉄イオン(Fe2+)との混合
溶液はフェントン試薬として酸化効果の高いことが知ら
れているが第2式のように過酸化水素によるEDTAの酸化
分解を効果的に促進させるための大きな要素は過酸化水
素の添加要領にあることを見いだした。
It is known that a mixed solution of hydrogen peroxide and ferrous ion (Fe 2+ ) in the acidic region has a high oxidizing effect as a Fenton's reagent. A major factor for effective promotion is found in the way of adding hydrogen peroxide.

即ち、過酸化水素をCODに対し2.5当量以上添加するの
に、その全量を一度に添加したのではCODの除去効果は
小さく排水基準値を大きく外れるが、過酸化水素の最適
添加要領として、例えば過酸化水素をCODに対し2.5当量
以上添加するに際し、ほぼ等分に4回に分けて添加し、
2回目以降の添加は3日間毎とし、その間静置状態でCO
Dを酸化分解する方法によればCOD成分であるEDTAを効果
的に除去することができる。このように過酸化水素の添
加量を数回に分け間をおいてから添加する方法がCODの
除去効果を高めるのは次のことが考えられる。
In other words, if hydrogen peroxide is added in an amount of 2.5 equivalents or more to COD, but the entire amount is added at once, the COD removal effect is small and greatly deviates from the wastewater standard value, but as an optimal addition point of hydrogen peroxide, for example, When adding more than 2.5 equivalents of hydrogen peroxide to COD, add 4 times in almost equal parts,
The second and subsequent additions are made every three days, during which time the CO
According to the method of oxidatively decomposing D, EDTA, which is a COD component, can be effectively removed. It is conceivable that the method of adding the amount of hydrogen peroxide to be added after several times and then adding the hydrogen peroxide to enhance the COD removal effect is as follows.

即ち、COD成分を過酸化水素で酸化分解するには、酸
化分解機構に関与する活性種(HO・ラジカル、HO2・ラ
ジカル)が必要とされている。この活性種生成には第3
式乃至第4式の反応で示すように第一鉄イオン(Fe2+
の存在が必要不可欠であることから、本発明のCOD成分
を酸化分解して、さらにCODの除去率を高めるためには
酸化された第二鉄イオン(Fe3+)を第一鉄イオン(F
e2+)に還元する必要がある。
That is, in order to oxidatively decompose the COD component with hydrogen peroxide, active species (HO radical, HO 2 radical) involved in the oxidative decomposition mechanism are required. Third generation of this active species
Ferrous ion (Fe 2+ )
Is essential, the COD component of the present invention is oxidized and decomposed, and in order to further increase the COD removal rate, the oxidized ferric ion (Fe 3+ ) is converted to the ferrous ion (F
e 2+ ).

Fe2++H2O2→Fe2++OH-+HO・ …第3式 HO・+H2O2→H2O+HO・ …第4式 還元反応(Fe3+→Fe2+)はCOD成分が残存している間
は廃液を静置しておくことによって起こることを見いだ
し、2〜3日間の静置で85〜100%還元されることを確
認した。
Fe 2+ + H 2 O 2 → Fe 2+ + OH + HO ..... the third formula HO ・ + H 2 O 2 → H 2 O + HO .... the fourth formula The COD component remains in the reduction reaction (Fe 3+ → Fe 2+ ) It was found that this occurred when the waste liquid was allowed to stand for a while, and it was confirmed that 85 to 100% reduction was achieved by standing for a few days.

このように第一鉄イオン(Fe2+)に還元後、さらに過
酸化水素を添加することにより、前の添加で未分解であ
ったCOD成分が第2式の反応で効果的に酸化分解除去さ
れていく。
By reducing the ferrous ion (Fe 2+ ) and adding hydrogen peroxide in this way, the COD component that has not been decomposed by the previous addition is effectively oxidatively decomposed and removed by the reaction of the second formula. Will be done.

またCOD成分の酸化分解処理時の適正pH範囲は2〜3.5
が好ましく、その範囲を外れるとCOD除去率は悪くな
る。第一鉄イオン(Fe2+)濃度は100〜200ppm程度で十
分であり、それ以上添加してもCOD除去効果に変化はな
い。
The appropriate pH range during the oxidative decomposition treatment of the COD component is 2 to 3.5.
If the ratio is outside the range, the COD removal rate deteriorates. A ferrous ion (Fe 2+ ) concentration of about 100 to 200 ppm is sufficient, and the addition of more than that does not change the COD removal effect.

〔実施例〕〔Example〕

EDTAと反応結合した金属イオン(Fe3+,Cr3+)、アン
モニア、ヒドラジン、インヒビターを含む酸洗浄廃液及
び酸洗浄後の水洗水廃液の化学洗浄廃液処理方法におい
て下記のような試験を行った。この試験は第1表に示し
た組成及び性状の化学洗浄廃液を対象として行ったもの
で、(C)混合廃液1をビーカに受け入れエアバブリ
ングしながら、粉末状の活性炭1gと水酸化ナトリウムを
添加してpHを11.5〜12に調整したのち、4時間撹拌して
エアバブリングを止め鉄の水酸化物(沈殿物)を沈降分
離した。沈殿物分離後の上澄液(アルカリ性)はEDTA−
Cr3+キレート化によって緑色を呈していた。
The following tests were conducted in the chemical cleaning wastewater treatment method for the acid washing wastewater containing the metal ions (Fe3 + , Cr3 + ), ammonia, hydrazine, and the inhibitor that had reacted with EDTA, and the washing water wastewater after the acid washing. . This test was conducted on the chemical cleaning waste liquid having the composition and properties shown in Table 1. (C) While receiving the mixed waste liquid 1 in a beaker, adding 1 g of powdered activated carbon and sodium hydroxide while air bubbling. After adjusting the pH to 11.5 to 12 by stirring, the mixture was stirred for 4 hours to stop air bubbling and sedimentation and separation of iron hydroxide (precipitate). The supernatant (alkaline) after separation of the precipitate is EDTA-
It was green due to Cr 3+ chelation.

この上澄液を第2工程用の廃液として別のビーカにと
り、エアバブリングしながら、97%硫酸を添加してpHを
1.9に調整したのち、1時間撹拌してエアバブリングを
止めEDTAの結晶析出物を沈降分離した。結晶析出物(白
色)沈降分離後の上澄液(酸性)はEDTA−Cr3+キレート
化によって紫色を呈していた。
Take the supernatant as a waste liquid for the second step in a separate beaker and add 97% sulfuric acid while bubbling air to adjust the pH.
After adjusting to 1.9, the mixture was stirred for 1 hour to stop air bubbling, and the crystal precipitate of EDTA was separated by settling. The supernatant (acid) after sedimentation and separation of the crystalline precipitate (white) was purple due to EDTA-Cr 3+ chelation.

この処理液の性状は第3表(D)の第2工程処理後の
上澄液に示すように本発明法ではCOD2200mg/、Fe0.2m
g/以下、Cr3+93mg/であった。また比較のため第1
工程処理での活性炭無添加である従来法ではCOD2650mg/
、Fe1mg/以下、Cr3+94mg/であった。
As shown in the supernatant after the second step treatment in Table 3 (D), the properties of this treatment solution were COD2200 mg / Fe0.2m
g / or less, and Cr 3+ 93 mg /. Also for comparison
COD2650mg /
, Fe 1 mg / or less, and Cr 3+ 94 mg /.

上記(D)廃液150mlに(E)廃液300ml(酸洗後の水
洗水で第1表(A)廃液の6倍相当量)を混合した
(F)混合廃液450mlを第3工程用の廃液として更にビ
ーカにとり、エアバブリングしながら48%水酸化ナトリ
ウム溶液を添加してpHを2〜3.5に調整したのち、第一
鉄イオン(Fe2+)濃度として100〜200ppmになるよう硫
酸第一鉄を添加し、次に該廃液中のCODに対し35%過酸
化水素2.5〜3当量を等分に4回に分けて添加した。た
だし2回目以降の添加は3日間毎とし、その間のエアバ
ブリングは過酸化水素添加時の撹拌を除いて停止し、静
置状態でCODを酸化分解した。次いでエアバブリングし
ながら該廃液に48%水酸化ナトリウム溶液を添加してpH
6〜8.5に調整して金属イオン(鉄イオン、クロムイオ
ン)を水酸化物として沈殿生成させ、約2時間エアバブ
リングによる撹拌を行った後、エアバブリングを止めて
沈殿物を沈降分離した。沈降分離後の上澄液のCOD、溶
解鉄、全クロム及びSSを測定し、第4表実施例の試験番
号(2)〜(10)の如き結果を得た。また比較のため第
3工程でのCOD酸化処理時の過酸化水素を1度に添加し
て静置酸化処理する従来法についても行い、試験番号
(12)〜(15)の如き結果を得た。
The above (D) 150 ml of the waste liquid was mixed with 300 ml of the (E) waste liquid (equivalent to 6 times the amount of the waste liquid in Table 1 (A) with washing water after pickling). (F) 450 ml of the mixed waste liquid was used as the waste liquid for the third step. Further, in a beaker, add 48% sodium hydroxide solution while adjusting the pH to 2 to 3.5 while air bubbling, and then ferrous sulfate to a ferrous ion (Fe 2+ ) concentration of 100 to 200 ppm. Then, 2.5 to 3 equivalents of 35% hydrogen peroxide based on COD in the waste liquid were added in four equal portions. However, the second and subsequent additions were made every three days, during which time air bubbling was stopped except for stirring during the addition of hydrogen peroxide, and COD was oxidatively decomposed in a stationary state. Then, 48% sodium hydroxide solution was added to the waste liquid while air bubbling to adjust the pH.
The mixture was adjusted to 6 to 8.5 to precipitate metal ions (iron ions and chromium ions) as hydroxides. After stirring by air bubbling for about 2 hours, the air bubbling was stopped and the precipitates were separated by settling. After the sedimentation and separation, the supernatant was measured for COD, dissolved iron, total chromium, and SS, and the results as shown in Test Nos. (2) to (10) in Table 4 were obtained. For comparison, a conventional method in which hydrogen peroxide was added at once during the COD oxidation treatment in the third step, and then subjected to static oxidation treatment was also performed, and the results such as test numbers (12) to (15) were obtained. .

試験番号(1)及び(11)は第3表に示す混合廃液
(F)であり、本発明法及び従来法での第3工程処理前
の性状を参考例として示した。
Test Nos. (1) and (11) are mixed waste liquids (F) shown in Table 3, and the properties before the third step treatment in the method of the present invention and the conventional method are shown as reference examples.

〔発明の効果〕 (1) 第1工程処理において廃液中にアルカリ剤と活
性炭を併用添加すると同時にエアバブリングすることに
よって該廃液中の鉄イオンを水酸化第二鉄として沈殿除
去するばかりでなく、ヒドラジン、インヒビターをも効
果的に除去可能となったことから、第3工程処理でのCO
D酸化分解除去が容易となった。
[Effects of the Invention] (1) In the first step treatment, not only the iron agent in the waste liquid is precipitated and removed as ferric hydroxide, but also by adding an alkali agent and activated carbon to the waste liquid at the same time and performing air bubbling at the same time. Hydrazine and inhibitors can also be removed effectively, so CO
D Easily removed by oxidative decomposition.

(2) 第3工程のCOD酸化分解処理において、過酸化
水素によるCOD成分(EDTA)の酸化分解するに当って、
過酸化水素をCODに対して2.5当量以上添加するに際し、
ほぼ等分に4回に分けて添加し、2回目以降の添加は3
日間毎とし、その間静置状態でCODを酸化分解する方法
によればEDTAがクロムイオン(Cr3+)とキレート化(ED
TA−Cr3+)しているEDTAをも効果的に酸化分解除去され
るので、キレート化していたクロムも遊離のクロムイオ
ン(Cr3+)となり、COD酸化処理後のアルカリ剤による
中和処理によってクロムイオンは水酸化クロム〔Cr(O
H)〕として沈殿除去することが可能となる。
(2) In the COD oxidative decomposition treatment of the third step, when the COD component (EDTA) is oxidatively decomposed by hydrogen peroxide,
When adding more than 2.5 equivalents of hydrogen peroxide to COD,
Add 4 times almost equally and add 3 times after the first
According to the method in which COD is oxidized and decomposed in a stationary state during the day, EDTA is chelated with chromium ion (Cr 3+ ) (ED
TA-Cr 3+ ) is also effectively oxidatively decomposed and removed, so chromium that has been chelated becomes free chromium ions (Cr 3+ ), and is neutralized with an alkaline agent after COD oxidation. The chromium ion is changed to chromium hydroxide [Cr (O
H) 3 ].

(3) 最終処理工程である第3工程処理後の処理水は
第2表の全項目とも排水基準値を十分満足するので、放
流に際しては何ら調整することなく、そのまま放流でき
る。
(3) The treated water after the third step treatment, which is the final treatment step, sufficiently satisfies the drainage standard values for all items in Table 2 and can be discharged without any adjustment at the time of discharge.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/72 ZAB C02F 1/72 ZABZ 9/00 502 9/00 502P 502R 503 503C ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C02F 1/72 ZAB C02F 1/72 ZABZ 9/00 502 9/00 502P 502R 503 503C

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エチレンジアミン四酢酸と反応結合した金
属イオン、アンモニア、ヒドラジン、腐食抑制剤を含む
酸洗浄廃液及び酸洗浄後の水洗水廃液の化学洗浄廃液処
理方法において、酸洗浄廃液の全量と酸洗浄廃液の2倍
相当量の水洗水廃液を廃液貯槽に受け入れた後、エアバ
ブリングしながらアルカリ剤及び活性炭を併用添加して
pH11以上でヒドラジン、腐食抑制剤を除去するとともに
鉄イオンを水酸化物として沈殿生成させた後、沈殿物を
沈降分離する第1工程処理、前記第1工程処理で得られ
た上澄液を別の廃液貯槽へ移した後、エアバブリングし
ながら硫酸又は塩酸を添加してpH1〜2.5の範囲内に調整
してエチレンジアミン四酢酸を結晶化して沈降分離する
第2工程処理および前記第2工程処理で得られた上澄液
を、予め酸洗浄廃液量の6〜8倍相当量の水洗水廃液を
受け入れてある更に別の廃液貯槽へ移した後、エアバブ
リングしながらアルカリ剤を添加してpH2〜3.5の範囲内
に調整した後、第一鉄イオン濃度として100〜200ppmに
なるよう硫酸第一鉄又は塩化第一鉄を添加し、次に該廃
液中のCODに対し過酸化水素2.5当量以上を4回に分けて
添加するが、2回目以降の添加は3日間毎としその間の
エアバブリングは停止してCODを酸化分解し、次いでエ
アバブリングしながら該廃液にアルカリ剤を添加してpH
6〜8.6の範囲内に調整して金属イオンを水酸化物として
沈殿分離する第3工程処理からなることを特徴とする化
学洗浄廃液の処理方法。
1. A method for treating an acid washing waste liquid containing metal ions, ammonia, hydrazine, and a corrosion inhibitor, which are reactively bound to ethylenediaminetetraacetic acid, and a washing water waste liquid after acid washing, wherein the total amount of the acid washing waste liquid and the acid After receiving the washing water waste liquid equivalent to twice the amount of the washing waste liquid into the waste liquid storage tank, add the alkaline agent and activated carbon together while air bubbling.
After removing hydrazine and the corrosion inhibitor at pH 11 or more and causing iron ions to precipitate as hydroxides, a first step treatment in which the precipitate is separated by sedimentation, and the supernatant obtained in the first step treatment is separated. After transfer to the waste liquid storage tank, sulfuric acid or hydrochloric acid is added while air bubbling to adjust the pH to within the range of 1 to 2.5 to crystallize ethylenediaminetetraacetic acid and precipitate and separate the second step processing and the second step processing. The obtained supernatant is transferred to another waste liquid storage tank that has previously received a washing water waste liquid equivalent to 6 to 8 times the amount of the acid washing waste liquid, and then an alkaline agent is added while air bubbling to adjust the pH to 2 to 10. After adjusting to a range of 3.5, ferrous sulfate or ferrous chloride is added so that the ferrous ion concentration becomes 100 to 200 ppm, and then 2.5 equivalents or more of hydrogen peroxide to COD in the waste liquid is added. Add four times, but add after the second Every 3 days, during which time air bubbling is stopped and COD is oxidized and decomposed, and then an alkaline agent is added to the waste liquid while air bubbling to adjust the pH.
3. A method for treating a chemical cleaning waste liquid, comprising a third step of treating the metal ions as hydroxide by adjusting the concentration within a range of 6 to 8.6.
JP2196350A 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method Expired - Lifetime JP2721740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2196350A JP2721740B2 (en) 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2196350A JP2721740B2 (en) 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method

Publications (2)

Publication Number Publication Date
JPH0483592A JPH0483592A (en) 1992-03-17
JP2721740B2 true JP2721740B2 (en) 1998-03-04

Family

ID=16356382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2196350A Expired - Lifetime JP2721740B2 (en) 1990-07-26 1990-07-26 Chemical cleaning waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP2721740B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882179B2 (en) * 2001-07-31 2012-02-22 栗田工業株式会社 Method for treating waste water containing hydrazine and ammonia
JP2006205287A (en) * 2005-01-27 2006-08-10 Toppan Printing Co Ltd Metallic roller blade for processing roughened surface
CN103910428A (en) * 2014-03-21 2014-07-09 华泰集团有限公司 Comprehensive utilization method of titanium dioxide waste acid
CN106242114B (en) * 2016-08-24 2022-12-27 厦门嵩湖环保股份有限公司 High-concentration organic industrial wastewater treatment system and treatment method
CN112295610A (en) * 2020-10-24 2021-02-02 李通 Chelate resin regeneration process in secondary brine refining process

Also Published As

Publication number Publication date
JPH0483592A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US5948269A (en) Process for the removal and suppression of dissolved hydrogen sulfide and other malodorous compounds and reduction of acidity in liquid and sludge wastewater systems
US4629570A (en) Removal of iron from chelant solutions
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
USH1126H (en) Treatment of sodium nitrite-containing boiler wastewater
JPH0714514B2 (en) Chemical cleaning waste liquid treatment method
JP4527896B2 (en) Wastewater treatment equipment
JPS63264194A (en) Treatment of chemical cleaning waste solution
JP2575878B2 (en) Chemical cleaning waste liquid treatment method
JPS6134875B2 (en)
JPS6111193A (en) Treatment of waste liquid of chemical cleaning
JP3889507B2 (en) Flocculant with deodorizing function
JPH0829319B2 (en) Chemical cleaning waste liquid treatment method
JPH01293187A (en) Treatment of spent chemical cleaning solution
JPS632678B2 (en)
JP7448129B2 (en) How to treat wastewater
JPS5940513B2 (en) Processing method for chemical cleaning waste liquid
JPS5836695A (en) Treatment of waste liquid of chemical washing
JP7297512B2 (en) Wastewater treatment method and wastewater treatment system
JPH06485A (en) Treatment of chelate drainage
JPH0722752B2 (en) Wafer process wastewater treatment method
JP3282452B2 (en) How to remove selenium from wastewater
JPH0673670B2 (en) Wastewater treatment method
JPH0910779A (en) Denitrification treatment of organic nitrogen-containing waste solution