JPH0910779A - Denitrification treatment of organic nitrogen-containing waste solution - Google Patents

Denitrification treatment of organic nitrogen-containing waste solution

Info

Publication number
JPH0910779A
JPH0910779A JP7187663A JP18766395A JPH0910779A JP H0910779 A JPH0910779 A JP H0910779A JP 7187663 A JP7187663 A JP 7187663A JP 18766395 A JP18766395 A JP 18766395A JP H0910779 A JPH0910779 A JP H0910779A
Authority
JP
Japan
Prior art keywords
waste liquid
edta
treatment
ammonia
organic nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7187663A
Other languages
Japanese (ja)
Inventor
Tomoyuki Otani
知之 大谷
Osamu Koyama
修 小山
Toyoichi Yokomaku
豊一 横幕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP7187663A priority Critical patent/JPH0910779A/en
Publication of JPH0910779A publication Critical patent/JPH0910779A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently denitrify a waste soln. containing at least EDTA as a nitrogen-containing org. compd. without performing biological treatment. SOLUTION: EDTA is sedimented from a waste soln. under a strong acidic pH condition to be removed and an org. substance is oxidized and decomposed by an oxidizing agent to generate ammonia and, after the pH of the waste soln. is made alkaline, ammonia gas is stripped in a stripping column. The ammonia gas is subjected to oxidation treatment and, if necessary, residual org. matter and inorg. salts are removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機物質として少な
くともEDTAを含有する有機態窒素含有廃液の脱窒処
理法に関し、更に詳細には、廃液中のEDTAを沈澱さ
せて除去する工程、有機態窒素等の有機物質を酸化剤に
より酸化分解する工程及び生成アンモニアガスを窒素ガ
スに酸化分解する工程を主要工程とする有機態窒素含有
廃液の脱窒処理法に関する。
TECHNICAL FIELD The present invention relates to a method for denitrifying an organic nitrogen-containing waste liquid containing at least EDTA as an organic substance, and more specifically, a step of precipitating and removing EDTA in the waste liquid, organic nitrogen. The present invention relates to a method for denitrifying an organic nitrogen-containing waste liquid, which mainly includes a step of oxidatively decomposing an organic substance such as oxidizer with an oxidant and a step of oxidatively decomposing produced ammonia gas into nitrogen gas.

【0002】火力発電所のボイラーでは、ボイラー水に
含まれる不純物の一部が蒸発管内部等に付着してスケー
ルを形成する。スケールを除去するために、従来からE
DTAを主剤とし、これに数種の有機酸や腐食防止剤等
を添加した化学洗浄液や界面活性剤及びヒドラジン等を
含むアルカリ洗浄液等が用いられている。スケールの種
類や付着有機物質の量等によって洗浄液やアルカリ洗浄
液等の使用量はかなり相違する。
In a boiler of a thermal power plant, some of impurities contained in the boiler water adhere to the inside of an evaporation pipe or the like to form a scale. Conventionally E to remove scale
A chemical cleaning liquid containing DTA as a main component and several kinds of organic acids, a corrosion inhibitor and the like, an alkaline cleaning liquid containing a surfactant, hydrazine and the like are used. The amount of cleaning liquid or alkaline cleaning liquid used varies considerably depending on the type of scale and the amount of attached organic substances.

【0003】又、原子力発電所においては、原子炉の一
次冷却系等に生じる放射性腐食生成物(クラッド)を除
染する為に、酸化剤、還元剤(ヒドラジン等)、キレー
ト剤(EDTA等)、腐食抑制剤、界面活性剤等が単独
で、或いはこれらを組み合わせて使用されている。洗浄
後あるいは除染後の廃液には上記の有機物質や無機物質
等が含まれており、廃液のCODは非常に高いものであ
る。
In a nuclear power plant, an oxidizing agent, a reducing agent (hydrazine, etc.), a chelating agent (EDTA, etc.) are used in order to decontaminate radioactive corrosion products (clads) generated in the primary cooling system of a nuclear reactor. , Corrosion inhibitors, surfactants, etc. are used alone or in combination. The waste liquid after washing or decontamination contains the above-mentioned organic substances and inorganic substances, and the COD of the waste liquid is very high.

【0004】上記廃液のCODを低下させるために、従
来から、廃液に重金属が含まれる場合には、(1)廃液
のpHをアルカリ性(12〜12.5)に調整して、重
金属を沈殿させて分離し、次いで、(2)廃液のpHを
酸性(1.5〜3)に調整してEDTAを結晶として沈
殿させて分離し、最後に、(3)廃液中の有機物質を化
学酸化法によって酸化分解する処理方法等が用いられて
いる。
In order to reduce the COD of the waste liquid, conventionally, when the waste liquid contains heavy metals, (1) the pH of the waste liquid is adjusted to alkaline (12 to 12.5) to precipitate the heavy metals. Then, (2) the pH of the waste liquid is adjusted to acidic (1.5 to 3) and EDTA is precipitated as crystals to separate, and finally (3) the organic substance in the waste liquid is chemically oxidized. A treatment method such as oxidative decomposition is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
処理方法では廃液中の窒素成分は一部しか除去されず、
窒素成分を含んだまま処理済水として放流されていた
が、河川や湾内あるいは内海の富栄養化が社会問題とな
り、現在は処理済水中の窒素及び燐は、厳しく規制さ
れ、廃液の脱窒処理が必要となっている。
However, in the above treatment method, only a part of the nitrogen component in the waste liquid is removed,
Although it was discharged as treated water containing nitrogen components, eutrophication of rivers, bays, and inland seas became a social problem, and now nitrogen and phosphorus in the treated water are strictly regulated and denitrification of waste liquid is performed. Is needed.

【0006】排水中の有機態窒素を除去する方法として
は、微生物を用いる生物学的処理法が知られているが、
上記の廃液にはEDTAや界面活性剤等の生物学的処理
では除去できない成分が多量に含まれており、生物学的
処理によらない脱窒処理法が求められている。従って、
本発明の目的は、生物学的処理によらない、少なくとも
EDTAを含窒素有機化合物として含む廃液の効率的脱
窒法を提供することである。
As a method for removing organic nitrogen in waste water, a biological treatment method using microorganisms is known.
The waste liquid contains a large amount of components such as EDTA and surfactants that cannot be removed by biological treatment, and a denitrification treatment method that does not rely on biological treatment is required. Therefore,
An object of the present invention is to provide an efficient denitrification method of a waste liquid containing at least EDTA as a nitrogen-containing organic compound, which does not depend on biological treatment.

【0007】[0007]

【課題を解決するための手段】上記の目的は以下の本発
明によって達成される。即ち、本発明は、有機態窒素と
して少なくともエチレンジアミン4酢酸ナトリウム(E
DTA)を含む廃液の脱窒処理において、前記廃液を、
(1)強酸性pH下にEDTAを沈澱により除去する工
程、(2)酸化剤によって有機物質を酸化分解してアン
モニアを発生させる工程、(3)pHをアルカリ性に調
整し、ストリッピングカラムでアンモニアガスをストリ
ッピングする工程、(4)ストリッピングされたアンモ
ニアガスを酸化処理する工程、及び必要により(5)残
存有機物及び無機塩を脱処理する工程を、(1)から順
次行うことを特徴とする有機態窒素含有廃液の脱窒処理
法である。
The above object is achieved by the present invention described below. That is, the present invention provides at least sodium ethylenediamine tetraacetate (E
In the denitrification treatment of the waste liquid containing DTA), the waste liquid is
(1) a step of removing EDTA by precipitation under strongly acidic pH, (2) a step of oxidatively decomposing an organic substance with an oxidizing agent to generate ammonia, (3) adjusting the pH to alkaline, and stripping the ammonia with a stripping column A step of stripping the gas, a step (4) of oxidizing the stripped ammonia gas, and a step (5) of removing residual organic substances and inorganic salts, if necessary, from step (1). This is a denitrification treatment method for waste liquid containing organic nitrogen.

【0008】[0008]

【発明の実施の形態】以下に好ましい実施形態を挙げて
本発明を更に詳細に説明する。本発明の廃液の処理方法
は、前工程の廃液のpHや加熱された状態を次工程にお
いて利用し、効率的に各工程での脱窒処理を行うもので
ある。即ち、廃液のpHを強酸性としてEDTAを沈澱
させて分離し、引き続いてEDTAを除去した酸性の廃
液を加熱下に酸化触媒を用いて又は用いずに酸化分解
し、有機態窒素をアンモニア、窒素ガス、及び窒素酸化
物に分解する。この際、酸化条件調整して窒素酸化物の
生成を極力少なくする。次に、加熱処理廃液中のアンモ
ニアをストリピングし、ストリッピングされたアンモニ
アガスを酸化分解することによって廃液中の有機態窒素
を効率的に脱窒することが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to preferred embodiments. The waste liquid treatment method of the present invention utilizes the pH and the heated state of the waste liquid of the previous step in the next step to efficiently perform the denitrification treatment in each step. That is, the pH of the waste liquid is made highly acidic to precipitate EDTA for separation, and then the acidic waste liquid from which EDTA has been removed is oxidatively decomposed under heating with or without the use of an oxidation catalyst to convert organic nitrogen into ammonia and nitrogen. Decomposes into gas and nitrogen oxides. At this time, the oxidation conditions are adjusted to minimize the production of nitrogen oxides. Next, by stripping the ammonia in the heat treatment waste liquid and oxidizing and stripping the stripped ammonia gas, the organic nitrogen in the waste liquid can be efficiently denitrified.

【0009】本発明で使用する廃液は、火力発電所や原
子力発電所等で発生する有機態窒素として少なくともE
DTAを含有する洗浄液や除染剤等の廃液である。以下
に順を追って各工程について説明する。
The waste liquid used in the present invention is at least E as organic nitrogen generated in a thermal power plant or a nuclear power plant.
It is a waste liquid such as a cleaning liquid and a decontaminating agent containing DTA. Each step will be described below step by step.

【0010】(1)EDTA除去工程 廃液中のEDTAは、酸性領域では不溶性の結晶として
沈殿する。従って、廃液のpHを硫酸等で1〜3に調整
し、この廃液をEDTA分離層に送り生成するEDTA
の結晶を沈澱させ、上澄み液を次の酸化処理工程に移送
する。EDTAの分離には、遠心分離等の機械的分離手
段を用いることも出来る。この工程でEDTAは95〜
99%回収され、再使用される。
(1) EDTA removal step EDTA in the waste liquid precipitates as insoluble crystals in the acidic region. Therefore, the pH of the waste liquid is adjusted to 1 to 3 with sulfuric acid or the like, and the waste liquid is sent to the EDTA separation layer to generate EDTA.
The crystals are precipitated, and the supernatant is transferred to the next oxidation treatment step. Mechanical separation means such as centrifugation can be used for the separation of EDTA. EDTA is 95-
99% recovered and reused.

【0011】(2)酸化分解処理工程 本工程では、(1)の工程を経た酸性pHの廃液中のC
ODや有機物質を酸化処理して炭酸ガスと水に、又、残
留EDTAやヒドラジン等の有機態窒素を窒素ガスやア
ンモニアに酸化分解する。この酸化分解においては、有
機態窒素はアンモニア、窒素ガ、及び窒素酸化物に変換
されるが、酸化条件を調製することによって、窒素酸化
物の生成を極力少なくすることが望ましい。アンモニア
の大部分はガス化し、一部は処理液中に残留する。アン
モニアガスは、例えば、アンモニアスクラバーで硫酸吸
収液に硫酸アンモンとして捕集することが出来る。
(2) Oxidative decomposition treatment step In this step, C in the waste liquid of acidic pH which has undergone the step (1) is
Oxidizing OD and organic substances to oxidize and decompose carbon dioxide gas and water, and organic nitrogen such as residual EDTA and hydrazine to nitrogen gas and ammonia. In this oxidative decomposition, organic nitrogen is converted into ammonia, nitrogen gas, and nitrogen oxides, but it is desirable to minimize the production of nitrogen oxides by adjusting the oxidizing conditions. Most of the ammonia gasifies, and some remains in the processing liquid. Ammonia gas can be collected as ammonium sulfate in the sulfuric acid absorption liquid with an ammonia scrubber, for example.

【0012】本工程の好ましい酸化処理法は、廃液のp
Hが酸性であることから、金属あるいは金属イオンを触
媒として酸化剤を用いて酸化処理する化学酸化法が好ま
しい。好ましい酸化処理条件は、pH0.7〜5.0、
温度40〜75℃の範囲である。
The preferred oxidation treatment method in this step is to use the waste liquid p
Since H is acidic, a chemical oxidation method in which an oxidation treatment is performed using a metal or metal ion as a catalyst and an oxidant is preferable. A preferable oxidation treatment condition is pH 0.7 to 5.0,
The temperature is in the range of 40 to 75 ° C.

【0013】酸化触媒としては、第1鉄イオン等の従来
公知の化学酸化法で用いられている全ての金属或いは金
属イオンが使用出来、特に限定されないが、廃液中に金
属或いは金属イオンが含まれる場合には、これらを触媒
として利用することが出来る。尚、触媒の使用は、固形
廃棄物の増加を来すので、廃液中の有機物の種類や量に
よっては触媒は使用しなくてもよい。酸化剤は、過酸化
水素等の従来公知の化学酸化法で用いられている全ての
酸化剤を用いることができ特に限定されない。
As the oxidation catalyst, any metal or metal ion used in the conventionally known chemical oxidation method such as ferrous ion can be used, and it is not particularly limited, but the waste liquid contains metal or metal ion. In some cases, these can be used as a catalyst. Since the use of the catalyst causes an increase in solid waste, the catalyst may not be used depending on the type and amount of organic substances in the waste liquid. As the oxidizing agent, any oxidizing agent such as hydrogen peroxide used in the conventionally known chemical oxidation method can be used and is not particularly limited.

【0014】酸化分解条件(酸化剤の添加量、反応p
H、反応温度等)によっては、EDTAは、ほぼ完全に
分解させることが出来るが、酸化反応を促進し過ぎると
EDTA等の有機態窒素は、アンモニア態の窒素を経て
硝酸態窒素にまで酸化されてしまうこともあり、酸化分
解条件を制御することでアンモニア態の窒素で反応を抑
えることが出来る。このような場合には、EDTAは残
留することになるので、更にEDTAの除去率を高める
ためには上記の酸化分解処理の後に後段の酸化処理工程
を設けることが出来る。酸化処理の条件は上記と同じで
ある。本工程で酸化処理された高温の廃液は、次のスト
リッピングカラムに移送されストリッピング処理され
る。
Oxidative decomposition conditions (addition amount of oxidizing agent, reaction p
Depending on H, reaction temperature, etc.), EDTA can be decomposed almost completely, but if the oxidation reaction is promoted too much, organic nitrogen such as EDTA is oxidized to nitrate nitrogen via ammonia nitrogen. The reaction can be suppressed by ammonia nitrogen by controlling the oxidative decomposition conditions. In such a case, since EDTA will remain, a post-oxidation treatment step can be provided after the above-mentioned oxidative decomposition treatment in order to further increase the EDTA removal rate. The conditions for the oxidation treatment are the same as above. The high temperature waste liquid subjected to the oxidation treatment in this step is transferred to the next stripping column and subjected to the stripping treatment.

【0015】(3)アンモニアストリッピング処理工程 本工程では、前段の酸化処理工程を経た残留アンモニア
等を含む高温の廃液は、アンモニアを廃液からストリッ
ピングするために、ストリッピングカラムに送られる。
この際、アンモニアのストリッピング効率を高めるため
に、廃液のpHは、苛性ソーダ等でアルカリ性に、好ま
しくはpHを10〜12に調整される。アルカリ性にp
H調整された廃液は、ストリッピングカラム中で、水蒸
気等によって更に加熱され、アンモニアガスがストリッ
ピングされる。ストリッピング温度は、廃液中のアンモ
ニアの濃度によって差異はあるが、好ましくは60〜1
00℃である。
(3) Ammonia Stripping Treatment Step In this step, the high temperature waste liquid containing residual ammonia and the like that has undergone the preceding oxidation treatment step is sent to a stripping column in order to strip ammonia from the waste liquid.
At this time, in order to enhance the stripping efficiency of ammonia, the pH of the waste liquid is adjusted to be alkaline with caustic soda or the like, preferably 10 to 12. P for alkaline
The H-adjusted waste liquid is further heated by steam or the like in the stripping column to strip ammonia gas. The stripping temperature varies depending on the concentration of ammonia in the waste liquid, but is preferably 60 to 1
00 ° C.

【0016】本工程で使用される好ましいストリッピン
グカラムは、棚段塔や充填塔であるが、アンモニアガス
が効率よくストリッピングされるカラムであれば特に限
定されない。又、カラムの操作条件も特に限定されな
い。ストリッピングされたアンモニアガスは、次のアン
モニア酸化処理工程(4)へ、又、ストリッピングカラ
ムから排出される処理廃液は、必要により残留有機物及
び無機塩を脱処理する工程(5)に送られ処理される。
The preferred stripping column used in this step is a plate column or a packed column, but it is not particularly limited as long as it is a column capable of efficiently stripping ammonia gas. The operating conditions of the column are not particularly limited. The stripped ammonia gas is sent to the next ammonia oxidation treatment step (4), and the treatment waste liquid discharged from the stripping column is sent to the step (5) of removing residual organic substances and inorganic salts, if necessary. It is processed.

【0017】(4)アンモニア酸化処理工程 ストリッピングカラムから抜き出されたアンモニアガス
は、本工程で酸化触媒の存在下に窒素ガスと水に酸化分
解される。酸化剤及び酸化触媒としては、アンモニアの
酸化に使用される従来公知の酸化剤及び酸化触媒が全て
使用出来、例えば、酸化剤としては空気中の酸素ガス等
が、酸化触媒としては白金、ロジウム等が挙げられる。
好ましい酸化温度は、 250〜350℃である。
(4) Ammonia Oxidation Treatment Step The ammonia gas extracted from the stripping column is oxidatively decomposed into nitrogen gas and water in the presence of an oxidation catalyst in this step. As the oxidizing agent and the oxidizing catalyst, all the conventionally known oxidizing agents and oxidizing catalysts used for the oxidation of ammonia can be used. For example, as the oxidizing agent, oxygen gas in the air, etc., and as the oxidizing catalyst, platinum, rhodium, etc. Is mentioned.
A preferable oxidation temperature is 250 to 350 ° C.

【0018】(5)残留有機物及び無機塩の脱処理工程 前段のストリッピングカラムから排出される(1)〜
(4)の各処理工程を経た処理廃液は、処理済水として
循環再利用を可能とする為に、必要により本工程で廃液
中の残留有機物及び無機塩の脱(除去)処理を行う。残
留有機物の脱処理には、上記の化学酸化法や過酸化水素
及びオゾンを溶解した廃液に紫外線を照射して酸化分解
する方法等の公知の処理方法を用いることが出来、処理
法自体は特に限定されない。
(5) Detreatment process of residual organic substances and inorganic salts Discharge from the stripping column in the preceding stage (1)-
The treated waste liquid that has undergone each treatment step of (4) is, if necessary, subjected to a removal (removal) treatment of residual organic substances and inorganic salts in the waste liquid in this step so that it can be recycled and reused as treated water. For removing the residual organic matter, a known treatment method such as the above-mentioned chemical oxidation method or a method of oxidatively decomposing the waste liquid in which hydrogen peroxide and ozone are dissolved by irradiating with ultraviolet rays can be used, and the treatment method itself is particularly preferable. Not limited.

【0019】又、脱無機塩処理も、脱処理法自体は特に
制限されず、イオン交換法、逆浸透膜等を用いる膜分離
法等の公知の脱塩処理法を用いることができる。脱塩処
理された濃縮塩含有液は、水を蒸発除去し、無機塩を析
出させて固形廃棄物とすることにより、処理廃液を減量
化することが出来る。以上の(1)〜(5)の処理工程
を経ることによって、EDTA等の有機態窒素を含有す
る廃液は、効率よく脱窒、脱塩処理され、処理済水は高
度処理水として再循環利用することが出来る。
The demineralization treatment is not particularly limited in the demineralization method itself, and known demineralization treatment methods such as an ion exchange method and a membrane separation method using a reverse osmosis membrane can be used. The concentrated salt-containing liquid subjected to the desalting treatment can reduce the amount of the processing waste liquid by removing water by evaporation and precipitating an inorganic salt to form a solid waste. By going through the treatment steps (1) to (5) above, the waste liquid containing organic nitrogen such as EDTA is efficiently denitrified and desalted, and the treated water is reused as highly treated water. You can do it.

【0020】[0020]

【実施例】次に実施例を挙げて本発明を具体的に説明す
る。 実施例1 (1)EDTAの除去 EDTAを10重量%及びヒドラジンを1.0重量%含
有する模擬化学洗浄廃液(模擬原水:pH7.48)を
用い、EDTAの除去処理を行った。模擬原水のpHを
濃硫酸を用いて1.5に調整し、この原水を室温で2時
間攪拌下に反応させた。析出したEDTAの結晶を十分
に沈殿させ、上澄液(処理水)のTOC及び全窒素分
(T−N)を測定し、原水のこれらの値とともに表1に
示した。EDTAの除去率は98.8%であった。
Next, the present invention will be described specifically with reference to examples. Example 1 (1) Removal of EDTA A simulated chemical cleaning waste liquid (simulated raw water: pH 7.48) containing 10% by weight of EDTA and 1.0% by weight of hydrazine was used to remove EDTA. The pH of the simulated raw water was adjusted to 1.5 with concentrated sulfuric acid, and this raw water was reacted at room temperature for 2 hours with stirring. The precipitated EDTA crystals were sufficiently precipitated, and the TOC and total nitrogen content (TN) of the supernatant (treated water) were measured and shown in Table 1 together with these values of raw water. The removal rate of EDTA was 98.8%.

【0021】[0021]

【表1】EDTA除去処理結果 [Table 1] Results of EDTA removal treatment

【0022】(2)−1 ヒドラジン等の化学酸化処理 (1)の結果に基づき、EDTAを除去した後の処理水
を模擬し、EDTAを1.0重量%及びヒドラジンを
1.0重量%含む模擬排水を表2に示す2つの条件で酸
化分解させ、表3に示す処理結果を得た。条件(I)の
酸化分解ではヒドラジンの除去率は55.3%であり、
条件(II)の酸化分解では99.9%であった。又、E
DTAも酸化分解によってある程度除されることが確認
され、条件(I)及び条件(II)の2段の酸化処理を行
うことによってEDTAの除去率は更に向上することを
表3の結果は示している。
(2) -1 Chemical oxidation treatment of hydrazine etc. Based on the result of (1), the treated water after removing EDTA was simulated to contain 1.0 wt% of EDTA and 1.0 wt% of hydrazine. The simulated waste water was oxidatively decomposed under the two conditions shown in Table 2, and the treatment results shown in Table 3 were obtained. In the oxidative decomposition under the condition (I), the hydrazine removal rate was 55.3%,
The oxidative decomposition under the condition (II) was 99.9%. E
It was confirmed that DTA was also removed to some extent by oxidative decomposition, and the results in Table 3 show that the removal rate of EDTA is further improved by performing the two-stage oxidation treatment of condition (I) and condition (II). There is.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】化学酸化処理結果 [Table 3] Results of chemical oxidation treatment

【0025】(2)−2 酸化条件と有機態窒素の分解
状態 酸化条件と有機態窒素の分解状態を、EDTA10重量
%、ヒドラジン1重量%、界面活性剤(ポリエチレング
リコールアルキルフェニルエーテル)0.01重量%、
その他を含む模擬排水〔TOC 40036mg/l、
T−N 9260mg/l(ヒドラジン由来の窒素Nは
窒素計検出不可能につき含まれていない)〕を用いて確
認した。 (i)酸化剤添加量 pH=2、反応温度=65℃、反応時間=5時間の酸化
条件で、酸化剤(過酸化水素)の使用量を変えて酸化分
解を行った。酸化剤の使用量及び酸化分解の結果を表4
に示す。
(2) -2 Oxidation Conditions and Decomposition State of Organic Nitrogen Oxidation conditions and decomposition state of organic nitrogen are as follows: EDTA 10% by weight, hydrazine 1% by weight, surfactant (polyethylene glycol alkylphenyl ether) 0.01 weight%,
Simulated wastewater including others [TOC 40036mg / l,
T-N 9260 mg / l (nitrogen N derived from hydrazine is not included because it cannot be detected by a nitrogen meter)]. (I) Amount of oxidizing agent added Under the oxidizing conditions of pH = 2, reaction temperature = 65 ° C., reaction time = 5 hours, the amount of the oxidizing agent (hydrogen peroxide) used was changed to perform oxidative decomposition. Table 4 shows the amount of oxidant used and the result of oxidative decomposition.
Shown in

【0026】[0026]

【表4】 [Table 4]

【0027】(ii)反応pH 酸化剤(過酸化水素の使)用量=112000mg/l
as O (酸素として)、反応温度=75℃、反応
時間=5時間の酸化条件で、処理系のpHを変えて酸化
分解を行った。酸化時のpH及び酸化分解の結果を表5
に示す。
(Ii) Reaction pH Oxidizing agent (using hydrogen peroxide) Dose = 112000 mg / l
Oxidative decomposition was performed by changing the pH of the treatment system under the oxidizing conditions of as O (as oxygen), reaction temperature = 75 ° C., and reaction time = 5 hours. Table 5 shows the results of pH and oxidative decomposition during oxidation.
Shown in

【0028】[0028]

【表5】 [Table 5]

【0029】(3)アンモニアストリッピング (2)の結果に基づき、種々のアンモニア含有量(45
0〜1600mg/l)の模擬排水をストリッピングカ
ラムに掛けてアンモニアガスをストリッピングさせた。
予め各模擬排水のpHを苛性ソーダで12.5に調整し
た。ストリッピングカラムは、10cm(直径)×10
0cm(長さ)を用い、カラム内温を60〜70℃に保
ち、模擬排水を連続供給した。55種類の模擬排水をス
トリッピングさせたが、いずれの場合もストリッピング
処理後の模擬排水中にはアンモニアは検出されず、アン
モニアの除去率は実質的に100%であった。結果を図
1に示す。
(3) Ammonia stripping Based on the result of (2), various ammonia contents (45
Simulated waste water (0-1600 mg / l) was applied to the stripping column to strip ammonia gas.
The pH of each simulated wastewater was adjusted to 12.5 with caustic soda in advance. Stripping column is 10 cm (diameter) x 10
0 cm (length) was used, the internal temperature of the column was maintained at 60 to 70 ° C., and simulated waste water was continuously supplied. 55 kinds of simulated waste water were stripped, but in any case, ammonia was not detected in the simulated waste water after the stripping treatment, and the removal rate of ammonia was substantially 100%. The results are shown in FIG.

【0030】(4)残存有機物処理 (2)における条件(II)で酸化分解処理した模擬排水
を(3)と同様にしてストリッピングしてアンモニアを
100%除去し、ストリッピングされた模擬排水中に残
存するヒドラジン及びEDTAの除去を行った(処理前
のpHは6.5、T−Nは8.0mg/l、TOCは2
3mg/l)。模擬排水に過酸化水素を20mg/l添
加し、オゾンをバブリングさせながら紫外線を室温で2
時間照射した。紫外線源には、高圧紫外線ランプを用い
た。処理結果は、pHは6.5、T−Nは7.5mg/
l、TOCは5mg/lであった。
(4) Treatment of residual organic matter In the stripped simulated wastewater, 100% of ammonia was removed by stripping the simulated wastewater subjected to oxidative decomposition under the condition (II) in (2) in the same manner as in (3). The residual hydrazine and EDTA were removed (pH before treatment was 6.5, T-N was 8.0 mg / l, and TOC was 2).
3 mg / l). Add 20mg / l hydrogen peroxide to the simulated waste water, and bubbling ozone at room temperature for 2
Irradiated for hours. A high pressure ultraviolet lamp was used as the ultraviolet source. As a result of the treatment, pH was 6.5 and T-N was 7.5 mg /
1 and TOC were 5 mg / l.

【0031】[0031]

【発明の効果】以上の本発明によれば、EDTA等の有
機態窒素等を含む廃液の脱窒処理を非常に効率的に行う
ことが出来、脱窒処理された廃液は高度処理水として再
循環利用することが出来る。
According to the present invention as described above, the denitrification treatment of the waste liquid containing organic nitrogen such as EDTA can be carried out very efficiently, and the denitrification-treated waste liquid is reprocessed as highly treated water. It can be recycled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1のアンモニアストリッピング処理効
果を示す図である。
FIG. 1 is a diagram showing an effect of an ammonia stripping treatment of Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機態窒素として少なくともエチレンジ
アミンテトラ4酢酸ナトリウム(EDTA)を含む廃液
の脱窒処理において、前記廃液を、(1)強酸性pH下
にEDTAを沈澱により除去する工程、(2)酸化剤に
よって有機物質を酸化分解してアンモニアを発生させる
工程、(3)pHをアルカリ性に調整し、ストリッピン
グカラムでアンモニアガスをストリッピングする工程、
(4)アンモニアガスを酸化処理する工程、及び必要に
より(5)残存有機物及び無機塩を脱処理する工程を、
(1)から順次行うことを特徴とする有機態窒素含有廃
液の脱窒処理法。
1. In a denitrification treatment of a waste liquid containing at least ethylenediaminetetratetraacetic acid sodium salt (EDTA) as organic nitrogen, the waste liquid is (1) a step of removing EDTA by precipitation under strongly acidic pH, (2) A step of oxidatively decomposing an organic substance with an oxidizing agent to generate ammonia, (3) a step of adjusting pH to alkaline and stripping ammonia gas with a stripping column,
(4) A step of oxidizing the ammonia gas, and (5) a step of removing the residual organic substances and inorganic salts, if necessary,
A method for denitrifying an organic nitrogen-containing waste liquid, which is performed sequentially from (1).
【請求項2】 工程(2)の酸化処理を常温〜100℃
で行う請求項1に記載の有機態窒素含有廃液の脱窒処理
法。
2. The oxidation treatment in step (2) is performed at room temperature to 100 ° C.
The denitrification treatment method of the organic nitrogen-containing waste liquid according to claim 1, which is carried out in 1.
【請求項3】 工程(2)の酸化処理を少なくとも1回
以上行う請求項1に記載の有機態窒素含有廃液の脱窒処
理法。
3. The method for denitrifying an organic nitrogen-containing waste liquid according to claim 1, wherein the oxidation treatment in the step (2) is performed at least once.
【請求項4】 過酸化水素及びオゾンの存在下に残存有
機物含む廃液に紫外線を照射する請求項1に記載の有機
態窒素含有廃液の脱窒処理法。
4. The method for denitrifying an organic nitrogen-containing waste liquid according to claim 1, wherein the waste liquid containing the residual organic matter is irradiated with ultraviolet rays in the presence of hydrogen peroxide and ozone.
JP7187663A 1995-07-03 1995-07-03 Denitrification treatment of organic nitrogen-containing waste solution Pending JPH0910779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7187663A JPH0910779A (en) 1995-07-03 1995-07-03 Denitrification treatment of organic nitrogen-containing waste solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7187663A JPH0910779A (en) 1995-07-03 1995-07-03 Denitrification treatment of organic nitrogen-containing waste solution

Publications (1)

Publication Number Publication Date
JPH0910779A true JPH0910779A (en) 1997-01-14

Family

ID=16210006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7187663A Pending JPH0910779A (en) 1995-07-03 1995-07-03 Denitrification treatment of organic nitrogen-containing waste solution

Country Status (1)

Country Link
JP (1) JPH0910779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186590A1 (en) * 2014-06-02 2015-12-10 千代田化工建設株式会社 Method for treating liquid containing organic amine compound
CN106687417A (en) * 2014-09-24 2017-05-17 技术获胜者有限公司 Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186590A1 (en) * 2014-06-02 2015-12-10 千代田化工建設株式会社 Method for treating liquid containing organic amine compound
CN106687417A (en) * 2014-09-24 2017-05-17 技术获胜者有限公司 Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water
EP3162768A4 (en) * 2014-09-24 2017-12-13 Techwin Co. Ltd. Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water
US10315942B2 (en) 2014-09-24 2019-06-11 Techwin Co, Ltd. Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water

Similar Documents

Publication Publication Date Title
US4693833A (en) Method of treating radioactive waste water resulting from decontamination
JPS60129187A (en) Treatment of waste composition solution
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
EP0166557A2 (en) Process for Waste Treatment
JPS59226898A (en) Method of treating radioactive organic waste
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
SK282036B6 (en) Method and device for disposing of a solution containing an organic acid, device for performing of this method
JP3389902B2 (en) Sludge treatment method and sludge treatment device
JPH09159798A (en) Bubble decontamination and method for treating decontamination waste liquid
JPH0910779A (en) Denitrification treatment of organic nitrogen-containing waste solution
JP2545946B2 (en) Waste liquid treatment method and treatment device
RU2122753C1 (en) Method of processing liquid wastes containing radionuclides
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JP3656602B2 (en) Treatment method of chemical decontamination waste liquid
JP2985421B2 (en) Treatment of radioactive liquid waste
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
JP3313549B2 (en) Decomposition and removal method of organic matter in chloride ion-containing wastewater
JPH0699181A (en) Method for treating waste liquid containing decomposition-resistant organic substance
JP4477869B2 (en) Method for treating waste liquid containing organic matter, especially radioactive liquid waste
JPS6218230B2 (en)
JPH0947751A (en) Denitrifying method of organic nitrogen-containing waste water
KR20210099549A (en) Ion exchange resin conditioning methods and apparatus for performing such methods
JPS5834080A (en) Treatment of acid-digested waste liquid
JPS61157539A (en) Decomposition treatment of ion exchange resin
JPS54156345A (en) Purification of metal plating waste water

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615