WO2015186590A1 - Method for treating liquid containing organic amine compound - Google Patents

Method for treating liquid containing organic amine compound Download PDF

Info

Publication number
WO2015186590A1
WO2015186590A1 PCT/JP2015/065322 JP2015065322W WO2015186590A1 WO 2015186590 A1 WO2015186590 A1 WO 2015186590A1 JP 2015065322 W JP2015065322 W JP 2015065322W WO 2015186590 A1 WO2015186590 A1 WO 2015186590A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
liquid
organic compound
nitrogen
liquid containing
Prior art date
Application number
PCT/JP2015/065322
Other languages
French (fr)
Japanese (ja)
Inventor
英司 粟井
和茂 川村
武田 大
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2015186590A1 publication Critical patent/WO2015186590A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Definitions

  • the present invention relates to a method for treating a liquid containing an amine organic compound.
  • Patent Document 1 discloses a method for removing BOD and nitrogen compounds from human wastewater and sewage organic wastewater by an accelerated oxidation method, specifically, decomposing a difficult-to-treat substance contained in wastewater with ozone.
  • Patent Document 2 and Non-Patent Document 1 describe a method for biological treatment after decomposing a difficult-to-treat substance contained in wastewater by using treatment with H 2 O 2 or ultraviolet irradiation and ozone treatment in combination.
  • Patent Document 3 proposes a method in which wastewater containing a difficult-to-treat substance is pretreated with ozone and then treated with an ion exchange resin in the subsequent stage.
  • Patent Document 4 discloses that carbon gas is produced by allowing bacteria having denitrification ability to act on ethanolamine and nitrate contained in wastewater. And a method for treating wastewater comprising a step of decomposing into ammonia and a step of nitrifying the produced ammonia under aerobic conditions in the presence of activated sludge having nitrification performance.
  • the chemical treatment is performed as a pretreatment for biological treatment because the disadvantages of handling waste generated in large quantities and the cost of obtaining and managing large quantities of chemicals are greater than the benefits of treatment. There were few.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method capable of economically and stably treating a liquid containing an amine-based organic compound as a difficult-to-treat material.
  • a method for treating a liquid containing an amine organic compound according to the present invention includes an oxidation treatment step of decomposing the amine organic compound by introducing an oxidant into the liquid containing the amine organic compound, And a biological treatment process for biologically treating the liquid treated in the oxidation treatment process, the liquid treatment method comprising an amine-based organic compound, wherein the oxidizing agent is based on the amount of nitrogen desorbed by the decomposition. It is characterized by controlling the amount of introduction.
  • a liquid containing an amine organic compound can be treated economically and stably.
  • FIG. 1 is a schematic block flow diagram showing a first embodiment of a method for treating a liquid containing an amine-based organic compound according to the present invention. It is a general block flow figure showing a 2nd embodiment of a processing method of a liquid containing an amine organic compound concerning the present invention. It is a graph which shows typically change of content of nitrogen content in a liquid in an oxidation treatment process. It is a general block flow figure showing a 3rd embodiment of a processing method of a liquid containing an amine organic compound concerning the present invention. It is a general
  • the present invention relates to an amine system having an oxidation treatment step for decomposing the organic compound by introducing an oxidant into a liquid containing an amine organic compound, and a biological treatment step for biologically treating the liquid treated in the oxidation treatment step.
  • the present invention relates to a method for treating a liquid containing an organic compound.
  • the amine organic compound is an organic compound containing at least one of a primary amine (—NH 2 ), a secondary amine (—NHR), and a tertiary amine (—NRR ′). And those classified as aromatic amines or heterocyclic amines.
  • Typical amine organic compounds include monoethanolamine, diethanolamine, triethanolamine methyl, dimethylaminoethanol, isopropylaminoethanol, acrylamide piperidine, piperazine, aniline, acrylamide and the like.
  • a certain liquid contains one or more of these amine organic compounds.
  • amine-based organic compounds are used as part of an absorption liquid for cleaning gas containing carbon dioxide and / or hydrogen sulfate in petroleum refining plants, LNG plants, and the like.
  • the amine organic compounds are also used as an organic cleaning agent in a manufacturing facility for electronic parts such as semiconductor devices, a factory for metal processing, and a corrosion inhibitor in a nuclear power generation facility.
  • the treatment method of the present invention can be used for the effluent discharged from these plants, equipment and factories.
  • emitted from these factories etc. does not necessarily show the same property always.
  • wastewater containing various concentrations of amine-based organic compounds from low to high concentrations is discharged at a level of several tons or more every day, and more than several to several tens of times at regular inspections. Wastewater may be discharged at once.
  • amine-based organic compounds contained in these wastewaters as described above, and the amine-based organic compounds contained in the wastewater may have different decomposition paths or different appropriate decomposition agents.
  • a substance that becomes an inhibitor of oxidation treatment or biological treatment may be included.
  • Amine-based organic compounds can be decomposed by chemical treatment with an oxidizing agent such as ozone or hydrogen peroxide. In this case, however, it is necessary to treat the amine-based organic compound while using a large amount of a decomposing agent such as an oxidizing agent.
  • the present invention includes an oxidation treatment step for decomposing the amine organic compound by introducing an oxidant into the liquid containing the amine organic compound, and a biological treatment step for biologically treating the liquid treated in the oxidation treatment step.
  • a biological treatment step for biologically treating the liquid treated in the oxidation treatment step.
  • a method for treating a liquid containing the amine-based organic compound of the present invention will be specifically described.
  • decomposition products from amine organic compounds carbon dioxide, nitric acid and organic nitrogen are generated in chemical treatment, and carbon dioxide and ammonia are produced in biological treatment (especially aerobic biological treatment).
  • the inventors of the present invention introduced ozone as an oxidizing agent into wastewater containing an organic compound composed of primary amine, secondary amine, or tertiary amine, and investigated its decomposition process.
  • ammonia production rate the ratio of ammonia to nitrate nitrogen produced in the initial stage of oxidation treatment varies depending on the primary amine, secondary amine, and tertiary amine. . Specifically, the production rate of ammonia in the oxidation treatment of the liquid containing the amine organic compound was higher in the order of primary amine> secondary amine >> tertiary amine. It has been found that ammonia nitrogen is generated by detaching particularly quickly when an oxidant acts on an amine-based organic compound, and when further oxidant acts thereafter, oxidation proceeds and shifts to nitrate nitrogen.
  • organic compounds from which amino groups are removed increase the rate of oxidative decomposition, break carbon bonds, lower the molecular weight, and organic acids (particularly carboxylic acids such as formic acid), ketones, hydroxides, alkenes, alkanes, linear organics. A compound, an aromatic compound, and the like. It was confirmed that the organic compounds from which the amino group was removed changed quickly to carbon dioxide gas without adversely affecting the oxidation treatment and the biological treatment, although there were differences in the biological treatment speed. Moreover, it confirmed that the organic compound from which the amino group remove
  • the present inventors measured the nitrogen content in the liquid containing the amine-based organic compound in the oxidation treatment step, and determined the nitrogen content. Based on this, it has been found that an amine-containing liquid can be treated economically and stably by controlling the amount of the oxidizing agent introduced into the liquid containing the amine-based organic compound, and the present invention has been completed.
  • the organic compound from which nitrogen has been eliminated in the oxidation treatment step is reduced in molecular weight, and further, the oxidation of the desorbed nitrogen component has progressed. Therefore, a large amount of oxidant is consumed during the oxidation treatment. It was.
  • the nitrogen content in the liquid treated in the oxidation treatment step is measured, so that the elimination of the nitrogen content from the amine organic compound proceeds from the change over time. Determine the stage and control the amount of oxidant introduced.
  • a first embodiment of a method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG.
  • a liquid containing an amine-based organic compound is received in a water receiving tank 1 such as a pit or a tank
  • the liquid received in the water receiving tank 1 is supplied to the oxidation treatment tank 2 by a batch method or a continuous method.
  • the liquid flow rate to the oxidation treatment tank 2 be constant from the viewpoint of controlling the amount of oxidant introduced later.
  • an oxidant is introduced from the oxidant supply device 3 (oxidation treatment step).
  • the oxidation treatment tank 2 is provided with a sensor 2a for measuring the content of nitrogen in the liquid supplied from the water receiving tank 1, and the oxidation treatment tank 2 is supplied from the oxidant supply device 3 based on the measured value. The amount of the oxidizing agent introduced into the is controlled.
  • the nitrogen content in the liquid measurement may be performed with any value such as mass, mol amount or concentration thereof.
  • the method for measuring the nitrogen content in the liquid in the oxidation treatment step include COD (chemical oxygen demand), a general method for measuring organic nitrogen, and the like. It is preferable to measure at least one of the contents of various nitrogen contents, and to control the amount of oxidant introduced based on the obtained measured values.
  • organic nitrogen is preferable as a nitrogen content whose content is measured in the oxidation treatment step. Further, among organic nitrogen, ammonia nitrogen and nitrate nitrogen (nitrous acid, nitric acid) are preferable because of high measurement accuracy.
  • ammonia nitrogen from amine-based organic compounds proceeds preferentially over the formation of nitrate nitrogen, and ammonia nitrogen changes to nitrate nitrogen as oxidation proceeds.
  • a decrease in the nitrogen content is a measure that the elimination of the amino group from the amine organic compound is complete and the liquid is ready for biological treatment. Can be controlled. The reason will be described in detail below with reference to FIG.
  • FIG. 3 is a graph showing the change over time in the content of nitrogen in the liquid in the oxidation treatment step.
  • the content of ammonia nitrogen in the liquid tends to increase in the initial stage of liquid treatment, but starts to decrease with the passage of time.
  • the increase rate of nitrate nitrogen content in the liquid increased, but this changed to nitrate nitrogen as the oxidation of ammonia nitrogen progressed It is presumed to show that. Therefore, by controlling the amount of oxidant introduced so that the content of ammonia nitrogen is generally the maximum value, the optimum amount of oxidant used can be obtained without excess or deficiency.
  • the content of ammonia nitrogen is generally the maximum value” means that when the content of ammonia nitrogen shows a maximum value as shown in FIG. 3, the maximum value (maximum value) is 100%, ammonia nitrogen.
  • the content of 0 mg / L (or 0 mol / L) is 0%, it is defined that the content of ammonia nitrogen is 65% or more.
  • the ammonia nitrogen content is more preferably 80% or more. Thereby, the consumption of an oxidizing agent can be reduced more.
  • the maximum value (the maximum value of the ammonia nitrogen content) can be found by measuring the change over time in the ammonia nitrogen content. Therefore, when the ammonia nitrogen content starts to decrease after the ammonia nitrogen content reaches the maximum value, the oxidation treatment step is preferably terminated.
  • the oxidation treatment process is a continuous type, immediately after the start of the oxidation treatment process, the ratio of the amount of oxidant introduced to the supply amount of the liquid supplied to the oxidation treatment tank 2 is appropriately changed while the oxidation treatment tank 2 By measuring the content of ammonia nitrogen, it is possible to determine the introduction amount of the oxidizing agent at which the content of ammonia nitrogen shows a maximum value.
  • the oxidant is such that the total amount of ammonia nitrogen and nitrate nitrogen in the liquid after the oxidation treatment step is 50 to 90 wt%, preferably 60 to 85 wt% of the total amount of organic nitrogen in the liquid.
  • the amount of introduction may be controlled.
  • the use of an excessive oxidizing agent can be suppressed, and the amine organic compound can be treated with a smaller load in the biological treatment process that is the next process.
  • oxygen, ozone, chlorine, hypochlorous acid, manganese dioxide, hydrogen peroxide, nitric acid and the like can be suitably used.
  • ozone it is particularly preferable to use ozone.
  • the organic compound having an oxygen-containing functional group is easily decomposed and can be treated efficiently.
  • an ozone generator using silent discharge an apparatus for electrolyzing pure water using a platinum electrode or a lead peroxide electrode, and high-concentration oxygen are produced from air.
  • a general ozone generator such as a PSA apparatus can be used.
  • the oxidizing agent is gaseous.
  • the oxidant introduced into the oxidation treatment tank 2 preferably has a form of fine bubbles called microbubbles or nanobubbles in the waste water. For this reason, for example, as shown in FIG. It is preferable to generate microbubbles and nanobubbles using a fine bubble generator 12 such as a generating nozzle.
  • a fine bubble generator 12 such as a generating nozzle.
  • a pH treatment tank is provided before the oxidation treatment step, and the pH of the liquid used for the oxidation treatment step is preferably 8.0 to 14.0, more preferably 10.0 to 13.5. It is most preferable to adjust to 12.0 to 12.5.
  • the alkaline agent used for the pH adjuster include sodium hydroxide (caustic soda), sodium carbonate (soda ash), calcium oxide (quick lime), calcium hydroxide (slaked lime), and calcium carbonate (limestone).
  • the acid include sulfuric acid, hydrochloric acid, carbon dioxide and the like.
  • the liquid treated in the oxidation treatment tank 2 is adjusted to a predetermined pH in the pH adjustment tank 4 and then sent to the biological treatment facility 5.
  • the liquid is preferably adjusted to pH 5.0 to 9.0, more preferably adjusted to pH 6.0 to 8.0, and adjusted to pH 6.5 to 7.5. Most preferred.
  • the biological treatment of a post process can be performed efficiently.
  • the pH adjuster include sodium hydroxide (caustic soda), sodium carbonate (soda ash), calcium oxide (quick lime), calcium hydroxide (slaked lime), and calcium carbonate (limestone).
  • the acid include sulfuric acid, hydrochloric acid, carbon dioxide and the like.
  • the treatment of the liquid sent to the biological treatment facility 5 will be described (biological treatment step).
  • the liquid containing the organic compound can be purified by inhabiting the treatment tank with microorganisms that feed on the organic compound in the liquid.
  • the biological treatment in the biological treatment step is roughly classified into an aerobic biological treatment and an anaerobic biological treatment, but may be performed by either one or a combination of both. Or you may perform anaerobic and aerobic alternately by 1 tank intermittently.
  • activated sludge method that decomposes organic matter in liquid into carbon dioxide etc. by aeration and agitation while making contact with microorganisms in treatment tank, biofilm made of microorganisms on the surface of various media
  • a biofilm method in which organic matter in a liquid is biochemically processed using the biofilm, and the activated sludge is processed and activated sludge is separated using a membrane such as a hollow fiber membrane. Examples include membrane separation activated sludge method.
  • examples of the anaerobic biological treatment include an anaerobic treatment method in which an anaerobic microorganism is used and the liquid is gently flowed in a treatment tank.
  • a volatilization process (an aeration tank 6 before oxidation treatment, an aeration tank 9 after oxidation treatment or an aeration tank 10 before biological treatment described later) is provided to volatilize volatile substances in the liquid. It is a feature.
  • the stripping gas is supplied to the liquid containing the amine organic compound to perform the volatilization process.
  • the exhaust gas containing volatile substances such as ammonia separated by the volatilization process is subjected to combustion treatment by the combustion apparatus 8 after recovering the volatile substances such as ammonia by the recovery apparatus 7 such as a cooling device or a filling tower.
  • the combustion treatment is not particularly limited, and examples thereof include a method in which natural gas as fuel and excess air are burned with a burner, and a volatile substance is burnt and oxidized by the flame. Further, ammonia contained in the exhaust gas can be used for the flue gas treatment.
  • a gaseous oxidant such as ozone
  • a gaseous oxidant such as ozone
  • the decomposition of the target organic compound can be promoted.
  • the gaseous oxidant may contain a gas (oxygen, nitrogen, etc.) different from the oxidant in part. Even if the gas does not have an oxidizing action, the same effect as the above-described volatilization treatment can be obtained by stripping volatile substances present in the liquid.
  • the third embodiment is characterized in that a post-oxidation aeration tank 9 is provided after the oxidation treatment tank 2 in place of the pre-oxidation aeration tank 6 of the second embodiment, and the volatilization treatment step is performed.
  • Volatile substances present in the liquid are organic compounds such as ammonia, benzene, toluene, organic acids, alcohols, etc. contained in the liquid before the oxidation treatment process, as well as ammonia nitrogen and nitrate produced in the oxidation treatment process. Nitrogen, low molecular organic substances, etc. are mentioned. Since the volatile substances include compounds that are targets of oxidation treatment / biological treatment, the consumption of excess oxidant can be suppressed or the oxidation treatment process and biological substances can be reduced by reducing the content of volatile substances in the liquid. The processing speed in the processing step can be improved.
  • the stripping gas general gases such as air, nitrogen and oxygen can be used. Moreover, you may use the waste gas discharged
  • the liquid treated in either the post-oxidation aeration tank 9 or the pre-biological aeration tank 10 described later) may be sent to the oxidation treatment process. Since the liquid after passing through the volatilization treatment process has a lower content of substances subject to oxidation treatment than raw water, mixing this with raw water will reduce the content of nitrogen in the liquid in the oxidation treatment process. Dilution can be performed and oxidation treatment can be performed efficiently.
  • FIG. 4 it is also possible to employ a system that circulates liquid in the oxidation treatment process and the volatilization treatment process.
  • a system that circulates liquid in the oxidation treatment process and the volatilization treatment process.
  • It is effective to perform the aeration of ammonia desorbed from amine-based organic compounds immediately after oxidation with an oxidizing agent, and to achieve more efficient oxidation with an oxidizing agent (nitrogen desorption).
  • the amount of liquid recycled is measured by measuring the ozone concentration in the exhaust gas discharged from the oxidation treatment tank 2 and controlling it to make this value as small as possible. Consumption can be minimized.
  • a basic agent such as caustic soda may be added to the aeration tank 6 before the oxidation treatment.
  • volatile substances such as ammonia and an organic acid, can be removed more efficiently, and the processing speed in an oxidation treatment process and a biological treatment process can be improved.
  • the fourth embodiment is characterized in that the liquid after the oxidation treatment step is supplied to the pre-oxidation aeration tank 6. Thereby, the density
  • a gaseous oxidant is supplied from the oxidant supplier 3.
  • the exhaust gas discharged from the oxidation treatment tank 2 contains a gaseous oxidant.
  • the exhaust gas in the oxidation treatment step as a stripping gas in the volatilization treatment step (in this embodiment, the pre-oxidation step aeration tank 6)
  • the oxidant remaining in the exhaust gas in the pre-oxidation aeration tank 6 thus, the oxidation treatment can be performed, and the load in the subsequent oxidation treatment process can be reduced.
  • the fifth embodiment is characterized in that an ozone generator 11 with a PSA (Pressure Swing Adsorption) device is used as the oxidant supplier 3.
  • PSA Pressure Swing Adsorption
  • ozone or oxygen is generated as an oxidant from the oxygen-rich gas generated by the PSA apparatus, and oxygen lean gas (that is, nitrogen-rich gas) by-produced is used as a stripping gas in the aeration tank 10 before biological treatment. Ozone and oxygen that are sent and dissolved can be volatilized.
  • ozone generator 11 with PSA device can produce oxygen-lean stripping gas and oxidants (ozone, oxygen), making the liquid processing system more efficient and compact.
  • the gas discharged from the pre-biological aeration tank 10 may be introduced as a stripping gas into the pre-oxidation aeration tank 6 as indicated by the one-dot chain line in FIG.
  • the sixth embodiment is characterized in that a diluent is mixed with a liquid to be introduced into a biological treatment process.
  • transduced into a biological treatment process can be reduced, the process inhibition factor in the biological treatment tank 5 can be reduced, and the biological treatment tank 5 can be made highly efficient. it can.
  • the diluting liquid it is possible to recycle and use waste water of other systems that do not contain a difficult-to-treat substance or liquid after the biological treatment process.
  • the method for treating a liquid containing an amine-based organic compound of the present invention has been described with reference to a plurality of embodiments.
  • the present invention is not limited to these specific examples, and the scope of the present invention is not deviated. It can be implemented in various ways. For example, it is possible to achieve the object of the present invention by appropriately combining the components in each embodiment. That is, the technical scope of the present invention extends to the claims and their equivalents.
  • Samples were sampled at the start of ozone introduction and after 30 minutes, 60 minutes and 120 minutes from the start of COD (measurement method: chemical oxygen consumption JIS K0120-20), TOC (measurement method: organic) State nitrogen (JIS K0102-22.1), organic nitrogen (measurement method: organic nitrogen, JIS K0102-44.1 and 44.2), ammonia nitrogen (measurement method: ammoniacal nitrogen, JIS K0120-42.1 and 42) .2) and nitrate nitrogen (measurement method: nitrate nitrogen and nitrite nitrogen, JIS K0102-43.2.1).
  • the COD decomposition rate, TOC decomposition rate, organic nitrogen decomposition rate, ammonia nitrogen decomposition rate, and nitrate nitrogen decomposition rate over time were determined.
  • the decomposition rate can be obtained by dividing the concentration (mg / L) at each stage by the concentration (mg / L) of each component at the start of processing.
  • the results are shown in Tables 1 to 5 below.
  • the results in Tables 1 to 5 below are analytical values in the liquid and do not include volatile substances.
  • the COD decomposition rate, TOC decomposition rate, and organic nitrogen decomposition rate are different even when the decomposition rate of the amine-based material in the simulated wastewater under the same conditions is measured. This is due to the difference in the detection rate of the amine-based substance depending on each measurement method.
  • the inventors of the present invention have found that a method for treating a liquid containing an amine-based organic compound using as an index the nitrogen content eliminated by decomposition is effective.
  • the timing of desorption of nitrogen varies depending on the structure of various amine organic compounds, and the progress of oxidation of ammonia nitrogen to nitrate nitrogen is caused by nitrogen desorption from amine organic compounds and decomposition byproducts (organic matter). We have found that it is slow compared to further degradation of. In other words, the ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen changed from a high point (a point where the ammonia nitrogen concentration becomes maximum) to a decrease (ammonia nitrogen is oxidized to nitrate nitrogen) The timing is suitable for stopping ozone supply.
  • the ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen is 0.3 or more. It can be seen that the supply of the oxidizing agent should be stopped at the time of Similarly, when the amine organic compound contained in the liquid is a secondary amine, the ratio is 0.3 or more, and when it is a tertiary amine, the ratio is 0.2 or more. In the case of amine, it can be seen that the supply of the oxidizing agent should be stopped when the ratio is 0.3 or more.
  • the specific ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen when stopping the oxidizer employed during actual operation is the ammonia nitrogen and nitrate nitrogen measured during actual operation. It is preferable to determine based on these data.
  • the primary amine monoethanolamine (MEA) is 0.2 parts by mass, 0.5 parts by mass, 1.0 part by mass, 3.0 parts by mass, and 5.0 parts by mass with respect to 100 parts by mass of pure water. And 6 types of MEA solution samples added with 10 parts by mass were prepared. Each of these six types of samples was subjected to aerobic biological treatment, and the degree of inhibition of the biological treatment was examined.
  • each sample of the MEA solution saturated with oxygen with air was added and treated under an air atmosphere at around 20 ° C. for 40 hours.
  • Example 1 Monoethanolamine (hereinafter also referred to as MEA), which is a primary amine, is dissolved in pure water, and the MEA concentration is 0.24 mol / L (that is, 1.5 parts by mass of MEA with respect to 100 parts by mass of pure water). Simulated wastewater A (pH 10.2) containing was produced, and this was treated using a lab scale test apparatus according to the process flow comprising the oxidation treatment step, the volatilization treatment step and the biological treatment step shown in FIG.
  • MEA Monoethanolamine
  • the simulated waste water was supplied with a treatment amount of 1 L / h as a standard value.
  • 0.18 mol / h of ozone gas in the form of micro / nano bubbles generated from oxygen using an ozone generator (manufactured by Ecodesign Co., Ltd.) and a micro / nano bubble generator (manufactured by Asp Co., Ltd.) was introduced as a standard value.
  • an ion selective electrode (NH4-N) manufactured by Endless Hauser was attached in order to measure the nitrogen content desorbed in the simulated wastewater. Thereby, the amount of ozone gas introduced was controlled so that the ammonia content in the simulated wastewater reached a maximum value.
  • the experiment was started using the standard value of the ozone introduction amount as an initial condition, and then the ozone introduction amount was changed, and the relationship with the amount of ammonia nitrogen produced was determined. And the oxidation treatment conditions (ozone introduction amount) at which the ammonia nitrogen content becomes the maximum value were determined. Then, control the amount of ozone introduced while checking the ammonia nitrogen content with the ion selective electrode (NH4-N) so that the ammonia nitrogen content is below the maximum value and above 80% of the maximum value. Then, simulated wastewater was treated. The residence time of the simulated wastewater in the oxidation treatment tank 2 and the aeration tank 9 was set to 2 hours as a standard.
  • an air introduction type aeration tank 9 is communicated with the oxidation treatment tank 2 so that simulated waste water is circulated at a rate of 2 L / h between the aeration tank 9 and the oxidation treatment tank 2. Further, the exhaust gas containing ozone discharged from the aeration tank 9 was released after absorbing and removing impurities contained in the packed tower using the sulfuric acid aqueous solution as the absorbing solution, and the absorbed waste solution was extracted and collected in a timely manner.
  • the simulated wastewater oxidized in this way is collected and stored, adjusted to a pH between 6 and 8, and then supplied to the biological treatment facility 5 equipped with an air aeration mechanism and aerobic using activated sludge.
  • Biological treatment was performed.
  • the biological treatment was performed so that the COD of the simulated wastewater was 50 mg / L or less, and the time taken for the biological treatment was measured.
  • Example 2 In the process flow, the same method as in Example 1 was applied except that the method of introducing ozone in the oxidation treatment tank 2 was changed to a diffuser tube instead of micro / nano bubbles. Various other conditions are shown in Table 7.
  • Example 3 In the oxidation treatment step, the same procedure as in Example 1 was carried out except that air of substantially the same amount (volume ratio) as ozone was introduced simultaneously with ozone.
  • Example 4 Example 1 except that simulated waste water B having an MEA concentration of 0.80 mol / L adjusted to pH 12 to 12.5 with caustic soda (ie, about 5.0 parts by mass of MEA with respect to 100 parts by mass of pure water) was used. In the same manner as in Example 4, the treatment of Example 4 was performed.
  • Example 5 The treatment was performed in the same manner as in Example 1 except that the biological treatment process was changed as follows. In Example 5, in a biological treatment process, anaerobic biological treatment was performed after nitrogen rich gas containing 1% oxygen was aerated in wastewater, and then an aerobic biological treatment was performed.
  • Comparative Example 1 the amount of ozone introduced was excessive compared to Example 1. As a result, although the load of biological treatment was smaller than that in Example 1, ozone could not be used efficiently, so that the treatment efficiency of the entire system was lower than that in Example 1. In Comparative Example 2, since the amount of ozone introduced was too small, the MEA could not be sufficiently treated in the biological treatment process, and the final simulated wastewater A COD after the biological treatment could not be reduced below the target value.
  • Example 2 the COD of the simulated wastewater A after biological treatment could be reduced below the target value, but the decomposition reaction rate was slightly slower than in Example 1, and the amount of ozone introduced was large. Thereby, the superiority by having the form of the microbubble of the oxidizing agent introduced in an oxidation treatment process was confirmed.
  • Example 3 the ozone introduction time (residence time) was shortened, and the ozone introduction amount could be reduced by about 10%. This is due to the fact that the air introduced simultaneously with ozone promotes the effect of aeration by ozone, which is a gaseous oxidant, and the generated ammonia is immediately volatilized.
  • Example 4 compared with the simulated wastewater A used in Example 1, the ammonia concentration in the simulated wastewater in the oxidation treatment process increased after 20 minutes of treatment, despite using the simulated wastewater B having a higher MEA concentration. Was suppressed, and a downward tendency was observed after 50 minutes. As a result, the oxidation treatment process was completed in a shorter time than in Example 1. In Example 5, the nitrogen content in the simulated wastewater after the biological treatment process could be further reduced by 40%. In addition, the time required for the biological treatment process could be shortened by about 10% compared to Example 1.

Abstract

Provided is a method whereby a liquid containing an organic amine compound as a hardly biologically treatable substance can be economically and stably treated. A method for treating a liquid containing an organic amine compound, said method comprising an oxidation step for introducing an oxidizing agent into the liquid containing the organic amine compound and degrading the organic amine compound, and a biological treatment step for biologically treating the liquid having been treated in the oxidation step, characterized in that, in the oxidation step, the content of nitrogen in the liquid is measured and the amount of the oxidizing agent to be introduced into the liquid is controlled on the basis of the nitrogen content.

Description

アミン系有機化合物を含む液体の処理方法Method for treating a liquid containing an amine-based organic compound
 本発明は、アミン系有機化合物を含む液体の処理方法に関する。 The present invention relates to a method for treating a liquid containing an amine organic compound.
 石油精製プラント、LNGプラント等から排出される産業廃水や下水道からの廃水は、比較的安価な廃水処理方法である生物処理で一般的に処理されている。しかし、これら廃水には生物処理が難しい難生物処理性物質が含まれることがあり、この場合はそのまま生物処理で処理するのは好ましくない。難生物処理性物質には種々のものがあり、例えばダイオキシン、有機フッ素化合物、溶剤等で用いられるジオキサン、アミン類などを挙げることができる。これら難生物処理性物質の処理には、活性炭吸着法、凝集沈殿法、フェントン酸化法、オゾン酸化法などの化学的処理が有効であることが知られており、これらの化学的処理と生物処理とを併用することで難生物処理性物質を含む廃水を処理することが可能になる。 Industrial wastewater discharged from petroleum refining plants, LNG plants, etc. and wastewater from sewers are generally treated by biological treatment, which is a relatively inexpensive wastewater treatment method. However, these wastewaters may contain difficult-to-treat substances that are difficult to biologically treat. In this case, it is not preferable to treat the wastewater as it is. There are various kinds of difficult-to-treat substances, and examples thereof include dioxins, organic fluorine compounds, dioxane and amines used in solvents and the like. It is known that chemical treatment such as activated carbon adsorption method, coagulation sedimentation method, Fenton oxidation method, ozone oxidation method is effective for the treatment of these inferior biological treatment substances. In combination, it becomes possible to treat wastewater containing difficult-to-treat substances.
 例えば特許文献1には、し尿や下水の有機性廃水のBOD及び窒素化合物を促進酸化法で除去する方法が示されており、具体的には廃水に含まれる難生物処理性物質をオゾンで分解すると共に窒素成分を硝酸態窒素にした後、嫌気条件で生物処理する方法が提案されている。また、特許文献2や非特許文献1には、Hや紫外線照射等による処理とオゾン処理とを併用して廃水に含まれる難生物処理性物質を分解した後、生物処理する方法が提案されている。また、特許文献3には、難生物処理性物質を含む廃水をオゾンで前処理した後、後段のイオン交換樹脂で処理する方法が提案されている。 For example, Patent Document 1 discloses a method for removing BOD and nitrogen compounds from human wastewater and sewage organic wastewater by an accelerated oxidation method, specifically, decomposing a difficult-to-treat substance contained in wastewater with ozone. In addition, a method of biological treatment under anaerobic conditions after converting the nitrogen component to nitrate nitrogen has been proposed. Patent Document 2 and Non-Patent Document 1 describe a method for biological treatment after decomposing a difficult-to-treat substance contained in wastewater by using treatment with H 2 O 2 or ultraviolet irradiation and ozone treatment in combination. Proposed. Patent Document 3 proposes a method in which wastewater containing a difficult-to-treat substance is pretreated with ozone and then treated with an ion exchange resin in the subsequent stage.
 さらに、難生物処理性物質としてアミン系有機化合物を含んだ廃水の処理方法について、特許文献4では、廃水に含まれるエタノールアミンと硝酸塩とに対して脱窒能を有する菌を作用させて炭素ガスとアンモニアに分解する工程と、生成したアンモニアを、硝化性能を有する活性汚泥の存在下において好気条件で硝化させる工程とからなる廃水の処理方法が示されている。 Furthermore, regarding a method for treating wastewater containing an amine-based organic compound as a difficult-to-treat substance, Patent Document 4 discloses that carbon gas is produced by allowing bacteria having denitrification ability to act on ethanolamine and nitrate contained in wastewater. And a method for treating wastewater comprising a step of decomposing into ammonia and a step of nitrifying the produced ammonia under aerobic conditions in the presence of activated sludge having nitrification performance.
特開昭60-031895号公報Japanese Unexamined Patent Publication No. 60-031895 特開平05-228496号公報Japanese Unexamined Patent Publication No. 05-228496 特開平10-244280号公報Japanese Patent Laid-Open No. 10-244280 特開平11-000693号公報JP 11-000693 A
 従来、生物処理で対応できない廃水処理では、化学的処理を行うことが多い。さらに、生物処理の前処理として化学的処理を設ける場合は、後段の生物処理に悪影響を及ぼす難生物処理性物質の大部分が炭酸ガスになるまで分解し、最終工程として生物処理を行うことが想定されている。そのため、例えばオゾンを酸化剤として使用する化学的処理の場合はコストの高いオゾンの消費量が多くなることが問題になっていた。また、オゾン処理以外の化学的処理では、コストだけでなく、安全面の配慮や大量に発生するスラッジの取り扱いが問題になることがあった。さらに前述したイオン交換樹脂や活性炭を使用する場合は煩雑な再生処理等の操作が必要になる上、そのために多くの薬剤を消費するので、コスト高になる傾向にあった。 Conventionally, in wastewater treatment that cannot be handled by biological treatment, chemical treatment is often performed. Furthermore, when chemical treatment is provided as a pretreatment for biological treatment, most of the difficult-to-treat substances that adversely affect the subsequent biological treatment are decomposed until carbon dioxide gas is obtained, and biological treatment is performed as the final step. Assumed. Therefore, for example, in the case of chemical treatment using ozone as an oxidizing agent, there has been a problem that the consumption of high-cost ozone is increased. Further, in chemical treatments other than ozone treatment, not only costs but also safety considerations and handling of sludge generated in large quantities may be problematic. Further, when the above-described ion exchange resin or activated carbon is used, a complicated operation such as a regeneration treatment is required, and a lot of chemicals are consumed for this, so that the cost tends to increase.
 特に、大量のアミン系有機化合物を使用する石油精製プラントやLNGプラントは、採掘現場に近い砂漠地帯等の不便な場所に立地する場合が多く、この場合は化学的処理及び生物処理の2段階で処理する利点よりも、大量に発生する廃棄物の取り扱いや大量に使用する薬剤の入手や管理に要するコスト等のデメリットの方が大きいため、生物処理の前処理として化学的処理が実施されることは少なかった。本発明は上記した従来の問題点に鑑みてなされたものであり、難生物処理性物質としてアミン系有機化合物を含む液体を経済的且つ安定的に処理できる方法を提供することを目的としている。 In particular, oil refining plants and LNG plants that use large amounts of amine-based organic compounds are often located in inconvenient places such as desert areas close to the mining site. In this case, there are two stages: chemical treatment and biological treatment. The chemical treatment is performed as a pretreatment for biological treatment because the disadvantages of handling waste generated in large quantities and the cost of obtaining and managing large quantities of chemicals are greater than the benefits of treatment. There were few. The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method capable of economically and stably treating a liquid containing an amine-based organic compound as a difficult-to-treat material.
 上記目的を達成するため、本発明に係るアミン系有機化合物を含む液体の処理方法は、アミン系有機化合物を含む液体に酸化剤を導入して前記アミン系有機化合物を分解する酸化処理工程と、前記酸化処理工程で処理された液体を生物処理する生物処理工程とを有するアミン系有機化合物を含む液体の処理方法であって、前記分解により脱離した窒素分の量に基づいて前記酸化剤の導入量を制御することを特徴としている。 In order to achieve the above object, a method for treating a liquid containing an amine organic compound according to the present invention includes an oxidation treatment step of decomposing the amine organic compound by introducing an oxidant into the liquid containing the amine organic compound, And a biological treatment process for biologically treating the liquid treated in the oxidation treatment process, the liquid treatment method comprising an amine-based organic compound, wherein the oxidizing agent is based on the amount of nitrogen desorbed by the decomposition. It is characterized by controlling the amount of introduction.
 本発明によれば、アミン系有機化合物を含む液体を経済的且つ安定的に処理することができる。 According to the present invention, a liquid containing an amine organic compound can be treated economically and stably.
本発明に係るアミン系有機化合物を含む液体の処理方法の第1実施形態を示す概略のブロックフロー図である。1 is a schematic block flow diagram showing a first embodiment of a method for treating a liquid containing an amine-based organic compound according to the present invention. 本発明に係るアミン系有機化合物を含む液体の処理方法の第2実施形態を示す概略のブロックフロー図である。It is a general block flow figure showing a 2nd embodiment of a processing method of a liquid containing an amine organic compound concerning the present invention. 酸化処理工程における液体中の窒素分の含有量の推移を模式的に示すグラフである。It is a graph which shows typically change of content of nitrogen content in a liquid in an oxidation treatment process. 本発明に係るアミン系有機化合物を含む液体の処理方法の第3実施形態を示す概略のブロックフロー図である。It is a general block flow figure showing a 3rd embodiment of a processing method of a liquid containing an amine organic compound concerning the present invention. 本発明に係るアミン系有機化合物を含む液体の処理方法の第4実施形態を示す概略のブロックフロー図である。It is a general | schematic block flow figure which shows 4th Embodiment of the processing method of the liquid containing the amine organic compound which concerns on this invention. 本発明に係るアミン系有機化合物を含む液体の処理方法の第5実施形態を示す概略のブロックフロー図である。It is a general block flow figure showing a 5th embodiment of a processing method of a liquid containing an amine organic compound concerning the present invention. 本発明に係るアミン系有機化合物を含む液体の処理方法の第6実施形態を示す概略のブロックフロー図である。It is a general | schematic block flow figure which shows 6th Embodiment of the processing method of the liquid containing the amine organic compound which concerns on this invention.
 本発明は、アミン系有機化合物を含む液体に酸化剤を導入して前記有機化合物を分解する酸化処理工程と、前記酸化処理工程で処理された液体を生物処理する生物処理工程とを有するアミン系有機化合物を含む液体の処理方法に関する。 The present invention relates to an amine system having an oxidation treatment step for decomposing the organic compound by introducing an oxidant into a liquid containing an amine organic compound, and a biological treatment step for biologically treating the liquid treated in the oxidation treatment step. The present invention relates to a method for treating a liquid containing an organic compound.
 まず、処理対象となるアミン系有機化合物を含む液体について説明する。アミン系有機化合物は、第一級アミン(-NH)、第二級アミン(-NHR)、及び第三級アミン(-NRR’)の内の少なくともいずれかを含む有機化合物であり、アルカノールアミン類、芳香族アミン類、又は複素環アミン類として分類されるものも含まれる。代表的なアミン系有機化合物としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンメチル、ジメチルアミノエタノール、イソプロピルアミノエタノール、アクリルアミドピペリジン、ピペラジン、アニリン、アクリルアミドなどを挙げることができ、本発明の処理対象である液体にはこれらのアミン系有機化合物が1種または2種以上含まれる。 First, a liquid containing an amine organic compound to be treated will be described. The amine organic compound is an organic compound containing at least one of a primary amine (—NH 2 ), a secondary amine (—NHR), and a tertiary amine (—NRR ′). And those classified as aromatic amines or heterocyclic amines. Typical amine organic compounds include monoethanolamine, diethanolamine, triethanolamine methyl, dimethylaminoethanol, isopropylaminoethanol, acrylamide piperidine, piperazine, aniline, acrylamide and the like. A certain liquid contains one or more of these amine organic compounds.
 これらアミン系有機化合物は、石油精製プラントやLNGプラント等において炭酸ガス及び/又は硫酸水素を含むガスの洗浄用の吸収液の一部として使用されている。また、半導体装置等の電子部品の製造設備や金属加工等の工場における有機洗浄剤、原子力発電設備における腐食防止剤としても前記アミン系有機化合物が使用される。これらのプラント、設備および工場から排出される排液に本発明の処理方法を用いることができる。なお、これらの工場等から排出される廃水(排水)は、必ずしも常に同一の性状を示すものではない。 These amine-based organic compounds are used as part of an absorption liquid for cleaning gas containing carbon dioxide and / or hydrogen sulfate in petroleum refining plants, LNG plants, and the like. The amine organic compounds are also used as an organic cleaning agent in a manufacturing facility for electronic parts such as semiconductor devices, a factory for metal processing, and a corrosion inhibitor in a nuclear power generation facility. The treatment method of the present invention can be used for the effluent discharged from these plants, equipment and factories. In addition, the waste water (drainage) discharged | emitted from these factories etc. does not necessarily show the same property always.
 これら工場では低濃度から高濃度まで種々の濃度のアミン系有機化合物を含む廃水が日々数トン又はそれ以上のレベルで排出されており、さらに定期点検時などではその数倍から数十倍以上の廃水が一度に排出されることがある。これらの廃水に含まれるアミン系有機化合物は前述したように多種存在し、廃水中に含まれるアミン系有機化合物は分解経路が異なったり、適当な分解剤が異なったりすることがある。さらには酸化処理や生物処理の阻害因子となる物質が含まれることもある。 At these factories, wastewater containing various concentrations of amine-based organic compounds from low to high concentrations is discharged at a level of several tons or more every day, and more than several to several tens of times at regular inspections. Wastewater may be discharged at once. There are various types of amine-based organic compounds contained in these wastewaters as described above, and the amine-based organic compounds contained in the wastewater may have different decomposition paths or different appropriate decomposition agents. Furthermore, a substance that becomes an inhibitor of oxidation treatment or biological treatment may be included.
 また、アミン系有機化合物を含む廃水を処理する廃水処理設備では廃水の負荷が著しく変動することが多く、上記の阻害因子が含まれる場合は除去率が低下したり廃水処理速度が低下したりして、十分な除去性能を安定して維持することが難しかった。アミン系有機化合物はオゾンや過酸化水素などの酸化剤による化学処理によっても分解することができるが、この場合は酸化剤等の分解剤を大量に使用しながら処理することが必要であった。 In addition, wastewater treatment equipment that treats wastewater containing amine-based organic compounds often has a significant fluctuation in the load of wastewater, and when the above-mentioned inhibitors are included, the removal rate decreases or the wastewater treatment speed decreases. Therefore, it has been difficult to stably maintain sufficient removal performance. Amine-based organic compounds can be decomposed by chemical treatment with an oxidizing agent such as ozone or hydrogen peroxide. In this case, however, it is necessary to treat the amine-based organic compound while using a large amount of a decomposing agent such as an oxidizing agent.
 そこで、アミン系有機化合物を含む液体に酸化剤を導入して該アミン系有機化合物を分解する酸化処理工程と、前記酸化処理工程で処理された液体を生物処理する生物処理工程とを有する本発明に係るアミン系有機化合物を含む液体の処理方法では、該酸化処理工程において、液体中の窒素分の含有量を測定し、前記窒素分の含有量に基づいて液体への酸化剤の導入量を制御している。 Therefore, the present invention includes an oxidation treatment step for decomposing the amine organic compound by introducing an oxidant into the liquid containing the amine organic compound, and a biological treatment step for biologically treating the liquid treated in the oxidation treatment step. In the method for treating a liquid containing an amine-based organic compound according to the present invention, in the oxidation treatment step, the content of nitrogen in the liquid is measured, and the amount of oxidant introduced into the liquid is determined based on the content of nitrogen. I have control.
 以下、かかる本発明のアミン系有機化合物を含む液体の処理方法について具体的に説明する。アミン系有機化合物からの分解生成物として、化学的処理においては炭酸ガス、硝酸及び有機体窒素が発生し、生物処理(特に好気性生物処理)においては炭酸ガスとアンモニアが発生する。本発明者らは、第一級アミン、第二級アミン、又は第三級アミンからなる有機化合物を含む廃水に酸化剤としてオゾンを導入し、その分解過程を調べた。その結果、オゾン導入の初期段階では、まず酸化によってアミン系有機化合物からアミノ基が外れ、このアミノ基がアンモニア態窒素又は硝酸態窒素(すなわち、亜硝酸や硝酸)の態様を成すことを確認した。 Hereinafter, a method for treating a liquid containing the amine-based organic compound of the present invention will be specifically described. As decomposition products from amine organic compounds, carbon dioxide, nitric acid and organic nitrogen are generated in chemical treatment, and carbon dioxide and ammonia are produced in biological treatment (especially aerobic biological treatment). The inventors of the present invention introduced ozone as an oxidizing agent into wastewater containing an organic compound composed of primary amine, secondary amine, or tertiary amine, and investigated its decomposition process. As a result, at the initial stage of ozone introduction, it was first confirmed that the amino group was removed from the amine organic compound by oxidation, and this amino group formed an aspect of ammonia nitrogen or nitrate nitrogen (that is, nitrous acid or nitric acid). .
 さらに、酸化処理の初期段階で生成されるアンモニアの硝酸態窒素に対する割合(以降、アンモニアの生成率とも称する)は、第一級アミン、第二級アミン、第三級アミンによって異なることを見出した。具体的には、アミン系有機化合物を含む液体の酸化処理におけるアンモニアの生成率は、第一級アミン>第二級アミン>>第三級アミンの順に高かった。アンモニア態窒素は、アミン系有機化合物に酸化剤が作用した時に特に速やかに脱離して生成し、その後さらに酸化剤が作用すると、酸化が進行して硝酸態窒素に移行することがわかった。 Furthermore, it has been found that the ratio of ammonia to nitrate nitrogen produced in the initial stage of oxidation treatment (hereinafter also referred to as ammonia production rate) varies depending on the primary amine, secondary amine, and tertiary amine. . Specifically, the production rate of ammonia in the oxidation treatment of the liquid containing the amine organic compound was higher in the order of primary amine> secondary amine >> tertiary amine. It has been found that ammonia nitrogen is generated by detaching particularly quickly when an oxidant acts on an amine-based organic compound, and when further oxidant acts thereafter, oxidation proceeds and shifts to nitrate nitrogen.
 さらに、アンモニア態窒素や硝酸態窒素の酸化は、アミン系有機化合物からの窒素分の脱離に比べ、遅れて進行することを確認した。これらアンモニア態窒素や硝酸態窒素は、生物処理において処理することが可能であるので、本発明者らは、アミン系有機化合物から窒素分が脱離したタイミング(すなわち、液体中の全窒素分において、アンモニア態窒素または硝酸態窒素の含有量が多いタイミング)で酸化処理を完了することにより、過剰な酸化剤の使用を抑制できることを見出した。 Furthermore, it was confirmed that the oxidation of ammonia nitrogen and nitrate nitrogen proceeded later than the elimination of nitrogen from amine organic compounds. Since these ammonia nitrogen and nitrate nitrogen can be treated in biological treatment, the present inventors have determined the timing at which the nitrogen content is desorbed from the amine organic compound (that is, the total nitrogen content in the liquid). It was found that the use of an excessive oxidizing agent can be suppressed by completing the oxidation treatment at a timing when the content of ammonia nitrogen or nitrate nitrogen is high.
 一方、アミノ基が外れた有機化合物は、酸化分解速度が上がり炭素結合が切れて低分子化し、有機酸(特に蟻酸などのカルボン酸)、ケトン、水酸化物、アルケン、アルカン、直鎖状有機化合物、芳香族化合物等となる。前記アミノ基が外れた有機化合物はそれぞれ生物処理速度の差はあるものの、酸化処理及び生物処理に悪影響を与えることなく、速やかに炭酸ガスに変化することを確認した。また、アミノ基が外れた有機化合物は、好気性又は嫌気性のどちらの生物処理においても容易に処理できることを確認した。 On the other hand, organic compounds from which amino groups are removed increase the rate of oxidative decomposition, break carbon bonds, lower the molecular weight, and organic acids (particularly carboxylic acids such as formic acid), ketones, hydroxides, alkenes, alkanes, linear organics. A compound, an aromatic compound, and the like. It was confirmed that the organic compounds from which the amino group was removed changed quickly to carbon dioxide gas without adversely affecting the oxidation treatment and the biological treatment, although there were differences in the biological treatment speed. Moreover, it confirmed that the organic compound from which the amino group remove | deviated can be easily processed in both aerobic or anaerobic biological treatment.
 上述の検討結果に基づき、本発明者らは、酸化反応を抑制するために、酸化処理工程においてアミン系有機化合物を含む液体中の窒素分の含有量を測定し、前記窒素分の含有量に基づいて該アミン系有機化合物を含む液体への酸化剤の導入量を制御することにより経済的且つ安定的にアミンを含む液体を処理できることを見出し本発明を完成するに至った。 Based on the above examination results, in order to suppress the oxidation reaction, the present inventors measured the nitrogen content in the liquid containing the amine-based organic compound in the oxidation treatment step, and determined the nitrogen content. Based on this, it has been found that an amine-containing liquid can be treated economically and stably by controlling the amount of the oxidizing agent introduced into the liquid containing the amine-based organic compound, and the present invention has been completed.
 すなわち、従来は酸化処理工程において窒素が脱離した有機化合物を低分子化すると共に、脱離した窒素分についてはさらに酸化が進行していたため、酸化処理を行う際に酸化剤を大量に消費していた。これに対して本発明では、前述したように酸化処理工程で処理された液中の窒素分の含有量を測定することにより、その経時変化から、アミン系有機化合物から窒素分の脱離が進んだ段階を見極めて酸化剤の導入量を制御する。これにより、生物処理で処理可能な構造(アミノ基が脱離した有機化合物、アンモニア態窒素、硝酸態窒素等)に分解し、かつ、酸化処理工程における過剰な酸化剤の使用を抑えることができ、生物処理設備に過剰な負担をかけることなく液体の処理にかかるコストを削減することができる。また、処理する液体の性状や流量がある程度変動するような場合であっても、そのために生物処理設備の設計余裕を大きめに確保しておく必要がなくなり、設備面においても経済性及び安定性を両立することができる。 In other words, conventionally, the organic compound from which nitrogen has been eliminated in the oxidation treatment step is reduced in molecular weight, and further, the oxidation of the desorbed nitrogen component has progressed. Therefore, a large amount of oxidant is consumed during the oxidation treatment. It was. On the other hand, in the present invention, as described above, the nitrogen content in the liquid treated in the oxidation treatment step is measured, so that the elimination of the nitrogen content from the amine organic compound proceeds from the change over time. Determine the stage and control the amount of oxidant introduced. As a result, it can be decomposed into a structure that can be treated by biological treatment (organic compounds from which amino groups have been removed, ammonia nitrogen, nitrate nitrogen, etc.), and the use of excessive oxidizing agents in the oxidation treatment process can be suppressed. In addition, the cost for liquid processing can be reduced without placing an excessive burden on the biological treatment facility. In addition, even if the properties and flow rate of the liquid to be treated fluctuate to some extent, it is not necessary to secure a large design margin for the biological treatment equipment, and thus the economy and stability can be improved in terms of equipment. It can be compatible.
 [第1実施形態]
 図1を参照しながら本発明に係るアミン系有機化合物を含む液体の処理方法の第1実施形態について説明する。先ずアミン系有機化合物を含む液体をピットやタンク等の受水槽1に受け入れた後、受水槽1に受け入れた液体を回分式又は連続式により酸化処理槽2に供給する。なお、連続式の場合、酸化処理槽2への液体の流量を一定にすることが、後述する酸化剤の導入量制御の点から好ましい。
[First Embodiment]
A first embodiment of a method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG. First, after a liquid containing an amine-based organic compound is received in a water receiving tank 1 such as a pit or a tank, the liquid received in the water receiving tank 1 is supplied to the oxidation treatment tank 2 by a batch method or a continuous method. In the case of the continuous type, it is preferable that the liquid flow rate to the oxidation treatment tank 2 be constant from the viewpoint of controlling the amount of oxidant introduced later.
 酸化処理槽2では、酸化剤供給器3から酸化剤が導入される(酸化処理工程)。酸化処理槽2には、受水槽1から供給された液体の窒素分の含有量を測定するためのセンサー2aが設けられており、この測定値に基づいて酸化剤供給器3から酸化処理槽2に導入される酸化剤の導入量が制御される。 In the oxidation treatment tank 2, an oxidant is introduced from the oxidant supply device 3 (oxidation treatment step). The oxidation treatment tank 2 is provided with a sensor 2a for measuring the content of nitrogen in the liquid supplied from the water receiving tank 1, and the oxidation treatment tank 2 is supplied from the oxidant supply device 3 based on the measured value. The amount of the oxidizing agent introduced into the is controlled.
 液体中の窒素分の含有量として、質量、mol量またはこれらの濃度等のいずれの値で測定を行ってもよい。酸化処理工程における液体中の窒素分の含有量の測定法としては、COD(化学的酸素要求量)、一般的な有機態窒素の測定法等が挙げられる。各種窒素分の含有量のうち少なくとも一つを測定し、得られた測定値に基づいて酸化剤の導入量を制御することが好ましい。なお、酸化処理工程において含有量を測定する窒素分として有機体窒素が好ましい。さらに有機体窒素の中でも、アンモニア態窒素および硝酸態窒素(亜硝酸、硝酸)は測定精度が高いため好適である。 As the nitrogen content in the liquid, measurement may be performed with any value such as mass, mol amount or concentration thereof. Examples of the method for measuring the nitrogen content in the liquid in the oxidation treatment step include COD (chemical oxygen demand), a general method for measuring organic nitrogen, and the like. It is preferable to measure at least one of the contents of various nitrogen contents, and to control the amount of oxidant introduced based on the obtained measured values. In addition, organic nitrogen is preferable as a nitrogen content whose content is measured in the oxidation treatment step. Further, among organic nitrogen, ammonia nitrogen and nitrate nitrogen (nitrous acid, nitric acid) are preferable because of high measurement accuracy.
 特に、アミン系有機化合物からのアンモニア態窒素の生成が硝酸態窒素の生成に比べ優先的に進行すること、アンモニア態窒素は酸化が進むと硝酸態窒素に変化することから、液体中のアンモニア態窒素の含有量が減少に転じることは、アミン系有機化合物からのアミノ基の脱離が終了して液体が生物処理に適用できる状態となった目安となるため、酸化剤の導入量をより的確に制御することができる。その理由について、図3を参照しながら以下に詳細に説明する。 In particular, the formation of ammonia nitrogen from amine-based organic compounds proceeds preferentially over the formation of nitrate nitrogen, and ammonia nitrogen changes to nitrate nitrogen as oxidation proceeds. A decrease in the nitrogen content is a measure that the elimination of the amino group from the amine organic compound is complete and the liquid is ready for biological treatment. Can be controlled. The reason will be described in detail below with reference to FIG.
 図3は酸化処理工程における液体中の窒素量の含有率の経時変化を示すグラフである。液体中のアンモニア態窒素の含有量は、液体の処理の初期段階において増加傾向を示すが、時間の経過に伴って減少傾向に転じる。アンモニア態窒素の含有量が減少傾向に転じる前後のタイミングで、液体中の硝酸態窒素の含有量の増加率が高くなるが、これはアンモニア態窒素の酸化が進行して硝酸態窒素に変化したことを示すものと推察される。よって、アンモニア態窒素の含有量がおおむね最大値になるように酸化剤の導入量を制御することで過不足のない最適な酸化剤の使用量となる。 FIG. 3 is a graph showing the change over time in the content of nitrogen in the liquid in the oxidation treatment step. The content of ammonia nitrogen in the liquid tends to increase in the initial stage of liquid treatment, but starts to decrease with the passage of time. At the timing before and after the ammonia nitrogen content began to decrease, the increase rate of nitrate nitrogen content in the liquid increased, but this changed to nitrate nitrogen as the oxidation of ammonia nitrogen progressed It is presumed to show that. Therefore, by controlling the amount of oxidant introduced so that the content of ammonia nitrogen is generally the maximum value, the optimum amount of oxidant used can be obtained without excess or deficiency.
 ここで「アンモニア態窒素の含有量がおおむね最大値」とは、アンモニア態窒素の含有量が図3に示すような極大値を示す場合、その最大値(極大値)を100%、アンモニア態窒素の含有量0mg/L(もしくは0mol/L)を0%としたとき、アンモニア態窒素の含有量が65%以上の場合と定義する。なお、アンモニア態窒素の含有量は、80%以上となることがより好ましい。これにより、酸化剤の消費量をより低減することができる。 Here, “the content of ammonia nitrogen is generally the maximum value” means that when the content of ammonia nitrogen shows a maximum value as shown in FIG. 3, the maximum value (maximum value) is 100%, ammonia nitrogen. When the content of 0 mg / L (or 0 mol / L) is 0%, it is defined that the content of ammonia nitrogen is 65% or more. The ammonia nitrogen content is more preferably 80% or more. Thereby, the consumption of an oxidizing agent can be reduced more.
 酸化処理工程が回分式の場合、アンモニア態窒素の含有量の経時変化を測定することにより、その極大値(アンモニア態窒素の含有量の最大値)を見出すことができる。よって、アンモニア態窒素の含有量が最大値を示した後にアンモニア態窒素の含有量が減少傾向に転じたら、酸化処理工程を終了することが好ましい。一方、酸化処理工程が連続式の場合、酸化処理工程の開始直後に、酸化処理槽2に供給される液体の供給量に対する酸化剤の導入量の割合を適宜変更しながら酸化処理槽2内のアンモニア態窒素の含有量を測定することにより、アンモニア態窒素の含有量がおおよそ最大値を示す酸化剤の導入量を決定することができる。 When the oxidation treatment step is a batch type, the maximum value (the maximum value of the ammonia nitrogen content) can be found by measuring the change over time in the ammonia nitrogen content. Therefore, when the ammonia nitrogen content starts to decrease after the ammonia nitrogen content reaches the maximum value, the oxidation treatment step is preferably terminated. On the other hand, when the oxidation treatment process is a continuous type, immediately after the start of the oxidation treatment process, the ratio of the amount of oxidant introduced to the supply amount of the liquid supplied to the oxidation treatment tank 2 is appropriately changed while the oxidation treatment tank 2 By measuring the content of ammonia nitrogen, it is possible to determine the introduction amount of the oxidizing agent at which the content of ammonia nitrogen shows a maximum value.
 あるいは、酸化処理工程後の液体中のアンモニア態窒素及び硝酸態窒素の合計量が、該液体中の有機態窒素の合計量の50~90wt%、好ましくは60~85wt%になるように酸化剤の導入量を制御してもよい。いずれの方法であっても、過剰な酸化剤の使用を抑制し、また、次工程である生物処理工程においてアミン系有機化合物をより少ない負荷に処理することができる。 Alternatively, the oxidant is such that the total amount of ammonia nitrogen and nitrate nitrogen in the liquid after the oxidation treatment step is 50 to 90 wt%, preferably 60 to 85 wt% of the total amount of organic nitrogen in the liquid. The amount of introduction may be controlled. In any method, the use of an excessive oxidizing agent can be suppressed, and the amine organic compound can be treated with a smaller load in the biological treatment process that is the next process.
 なお、上述のとおり、液体中のアンモニア態窒素の含有量の変化と硝酸態窒素の含有量の変化は相関関係にあるため、アンモニア態窒素の含有量または硝酸態窒素の含有量のいずれか一方のみを測定しても、両方の含有量を測定した場合と同様に本発明の課題を達成することができる。 As described above, since the change in the content of ammonia nitrogen and the change in the content of nitrate nitrogen in the liquid are correlated, either the content of ammonia nitrogen or the content of nitrate nitrogen Even if only this is measured, the subject of this invention can be achieved similarly to the case where both contents are measured.
 酸化処理工程で使用する酸化剤としては、酸素、オゾン、塩素、次亜塩素酸、二酸化マンガン、過酸化水素および硝酸等を好適に用いることができる。この中でも、特にオゾンを用いることが好ましい。これにより、酸素含有官能基を有する有機化合物がより生成しやすくなる。酸化処理工程の後工程となる生物処理において、酸素含有官能基を有する有機化合物は分解が容易であり、効率的に処理することができる。酸化剤としてオゾンを使用する場合は、酸化剤供給器3に例えば無声放電によるオゾン発生装置、純水を白金電極又は過酸化鉛電極を用いて電気分解する装置、空気から高濃度酸素を製造するPSA装置等の一般的なオゾン発生機を用いることができる。 As the oxidizing agent used in the oxidation treatment step, oxygen, ozone, chlorine, hypochlorous acid, manganese dioxide, hydrogen peroxide, nitric acid and the like can be suitably used. Among these, it is particularly preferable to use ozone. Thereby, it becomes easier to produce an organic compound having an oxygen-containing functional group. In the biological treatment that follows the oxidation treatment step, the organic compound having an oxygen-containing functional group is easily decomposed and can be treated efficiently. When ozone is used as the oxidant, for example, an ozone generator using silent discharge, an apparatus for electrolyzing pure water using a platinum electrode or a lead peroxide electrode, and high-concentration oxygen are produced from air. A general ozone generator such as a PSA apparatus can be used.
 また、酸化剤は気体状であることが好ましい。酸化処理槽2に導入される酸化剤は、廃水中でマイクロバブルやナノバブルと称される微細な気泡の形態を有しているのが好ましく、このため、例えば図7に示すように、微細バブル発生ノズルなどの微細バブル発生装置12を用いてマイクロバブルやナノバブルを発生させることが好ましい。このように、オゾンガスをマイクロバブルやナノバブル(これらマイクロバブル及び/又はナノバブルをマイクロ・ナノバブルとも称する)の形態で液体中に吹き込むことで接触面積を多く取れるだけでなく、バブルの破裂による酸化活性の増大によりさらに反応効率が高めることができる。 Moreover, it is preferable that the oxidizing agent is gaseous. The oxidant introduced into the oxidation treatment tank 2 preferably has a form of fine bubbles called microbubbles or nanobubbles in the waste water. For this reason, for example, as shown in FIG. It is preferable to generate microbubbles and nanobubbles using a fine bubble generator 12 such as a generating nozzle. Thus, not only can the contact area be increased by blowing ozone gas into the liquid in the form of microbubbles and / or nanobubbles (these microbubbles and / or nanobubbles are also referred to as micro / nano bubbles), but also the oxidation activity due to bursting of the bubbles. The reaction efficiency can be further increased by the increase.
 図1に図示しないが、酸化処理工程前にpH処理槽を設けて、酸化処理工程に供する液体のpHを好適には8.0~14.0、より好適には10.0~13.5、最も好適には12.0~12.5に調整することが好ましい。酸化処理工程に供する液体のpHを上記範囲とすることにより、アミン系有機化合物の酸化処理をより効率的に行うことができる。なお、pH調整剤に使用するアルカリ剤としては、水酸化ナトリウム(苛性ソーダ)、炭酸ナトリウム(ソーダ灰)、酸化カルシウム(生石灰)、水酸化カルシウム(消石灰)、炭酸カルシウム(石灰石)が挙げられる。また、酸としては、硫酸、塩酸、二酸化炭素等が挙げられる。 Although not shown in FIG. 1, a pH treatment tank is provided before the oxidation treatment step, and the pH of the liquid used for the oxidation treatment step is preferably 8.0 to 14.0, more preferably 10.0 to 13.5. It is most preferable to adjust to 12.0 to 12.5. By setting the pH of the liquid to be subjected to the oxidation treatment step within the above range, the oxidation treatment of the amine organic compound can be performed more efficiently. Examples of the alkaline agent used for the pH adjuster include sodium hydroxide (caustic soda), sodium carbonate (soda ash), calcium oxide (quick lime), calcium hydroxide (slaked lime), and calcium carbonate (limestone). Examples of the acid include sulfuric acid, hydrochloric acid, carbon dioxide and the like.
 図1に示す通り、酸化処理槽2で処理された液体は、pH調整槽4で所定のpHに調整された後、生物処理設備5に送られることが好ましい。pH調整槽4において、液体はpH5.0~9.0に調整されることが好ましく、pH6.0~8.0に調整されることがより好ましく、pH6.5~7.5に調整されることが最も好ましい。これにより、後工程の生物処理を効率的に行うことができる。pH調整剤として、アルカリ剤としては、水酸化ナトリウム(苛性ソーダ)、炭酸ナトリウム(ソーダ灰)、酸化カルシウム(生石灰)、水酸化カルシウム(消石灰)、炭酸カルシウム(石灰石)が挙げられる。また、酸としては、硫酸、塩酸、二酸化炭素等が挙げられる。 As shown in FIG. 1, it is preferable that the liquid treated in the oxidation treatment tank 2 is adjusted to a predetermined pH in the pH adjustment tank 4 and then sent to the biological treatment facility 5. In the pH adjusting tank 4, the liquid is preferably adjusted to pH 5.0 to 9.0, more preferably adjusted to pH 6.0 to 8.0, and adjusted to pH 6.5 to 7.5. Most preferred. Thereby, the biological treatment of a post process can be performed efficiently. Examples of the pH adjuster include sodium hydroxide (caustic soda), sodium carbonate (soda ash), calcium oxide (quick lime), calcium hydroxide (slaked lime), and calcium carbonate (limestone). Examples of the acid include sulfuric acid, hydrochloric acid, carbon dioxide and the like.
 生物処理設備5に送られた液体の処理について説明する(生物処理工程)。生物処理設備5では、液体中の有機化合物を餌とする微生物を処理槽内に生息させることで有機化合物を含む液体の浄化を行うことができる。生物処理工程における生物処理は、好気性生物処理と嫌気性生物処理に大別されるが、どちらか一方、もしくは両方を組み合わせて行ってもよい。または、1槽で嫌気性と好気性を交互に間欠的に行ってもよい。 The treatment of the liquid sent to the biological treatment facility 5 will be described (biological treatment step). In the biological treatment facility 5, the liquid containing the organic compound can be purified by inhabiting the treatment tank with microorganisms that feed on the organic compound in the liquid. The biological treatment in the biological treatment step is roughly classified into an aerobic biological treatment and an anaerobic biological treatment, but may be performed by either one or a combination of both. Or you may perform anaerobic and aerobic alternately by 1 tank intermittently.
 好気性生物処理としては、処理槽内で微生物に接触させながらばっ気と撹拌を行うことで液体中の有機物を二酸化炭素等に分解する活性汚泥法、様々な媒体の表面に微生物からなる生物膜を生成・付着させて、その生物膜を利用して液体中の有機物を生物化学的に処理する生物膜法、活性汚泥で処理すると共に中空糸膜などの膜を用いて活性汚泥の分離を行う膜分離活性汚泥法などが挙げられる。一方、嫌気性生物処理としては、嫌気性の微生物を用いて処理槽内で液体を緩やかに流動させながら処理する嫌気性処理法などが挙げられる。なお、上述した酸化処理工程や生物処理工程の前処理や後処理として、必要に応じて膜処理、イオン交換、活性炭吸着などの処理を行ってもよい。 As aerobic biological treatment, activated sludge method that decomposes organic matter in liquid into carbon dioxide etc. by aeration and agitation while making contact with microorganisms in treatment tank, biofilm made of microorganisms on the surface of various media A biofilm method in which organic matter in a liquid is biochemically processed using the biofilm, and the activated sludge is processed and activated sludge is separated using a membrane such as a hollow fiber membrane. Examples include membrane separation activated sludge method. On the other hand, examples of the anaerobic biological treatment include an anaerobic treatment method in which an anaerobic microorganism is used and the liquid is gently flowed in a treatment tank. In addition, you may perform processes, such as a film | membrane process, ion exchange, and activated carbon adsorption, as the pre-process and post-process of the oxidation process mentioned above or a biological process.
 [第2実施形態]
 次に、図2を参照しながら本発明に係るアミン系有機化合物を含む液体の処理方法の第2実施形態について説明する。なお、前述の第1実施形態と重複する部分については、説明を省略する。第2実施形態は、揮散処理工程(酸化処理前ばっ気槽6、後述する酸化処理後ばっ気槽9または生物処理前ばっ気槽10)を設け、液体中の揮発性物質を揮散させることを特徴としている。揮散処理工程では、アミン系有機化合物を含む液体にストリッピングガスを供給して揮散処理を行う。これにより、酸化処理工程の前に、アンモニア等の揮散性物質を液体中から排出することができるため、酸化処理工程における処理対象を削減することにより酸化剤の導入量を低減することができる。
[Second Embodiment]
Next, a second embodiment of the method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG. Note that a description of the same parts as those in the first embodiment is omitted. In the second embodiment, a volatilization process (an aeration tank 6 before oxidation treatment, an aeration tank 9 after oxidation treatment or an aeration tank 10 before biological treatment described later) is provided to volatilize volatile substances in the liquid. It is a feature. In the volatilization process, the stripping gas is supplied to the liquid containing the amine organic compound to perform the volatilization process. Thereby, since volatile substances, such as ammonia, can be discharged | emitted from the liquid before an oxidation treatment process, the introduction amount of an oxidizing agent can be reduced by reducing the process target in an oxidation treatment process.
 なお、揮散処理で分離されたアンモニアなどの揮発性物質を含む排ガスは、冷却装置や充填搭などの回収装置7で該アンモニアなどの揮発性物質を回収した後、燃焼装置8で燃焼処理することが好ましい。燃焼処理については特に限定するものではなく、例えば燃料としての天然ガスと過剰空気とをバーナーで燃焼させ、その火炎によって揮発性物質を燃焼酸化する方法を挙げることができる。また、排ガスに含まれるアンモニアを排煙処理に利用することもできる。 The exhaust gas containing volatile substances such as ammonia separated by the volatilization process is subjected to combustion treatment by the combustion apparatus 8 after recovering the volatile substances such as ammonia by the recovery apparatus 7 such as a cooling device or a filling tower. Is preferred. The combustion treatment is not particularly limited, and examples thereof include a method in which natural gas as fuel and excess air are burned with a burner, and a volatile substance is burnt and oxidized by the flame. Further, ammonia contained in the exhaust gas can be used for the flue gas treatment.
 なお、本実施形態及びその他の実施形態においても、酸化処理工程において常温常圧において気体状の酸化剤(オゾン等)を用いる場合には、揮散処理と同様の効果を奏する。気体状の酸化剤を用いることにより、アミン系有機化合物の酸化と揮発性物質のストリッピングとを同時に行うことができ、揮発性物質の酸化に用いられる過剰な酸化剤の消費を抑え、効率的に目的の有機化合物の分解を促進することができる。なお、気体状の酸化剤は、その一部に酸化剤とは異なる気体(酸素、窒素等)を含んでもよい。酸化作用を有しない気体であっても、液体中に存在する揮発性物質をストリッピングすることにより、上述の揮散処理と同様の効果を得ることができる。 In addition, also in this embodiment and other embodiments, when a gaseous oxidant (such as ozone) is used at normal temperature and pressure in the oxidation treatment step, the same effect as the volatilization treatment is obtained. By using a gaseous oxidant, it is possible to oxidize amine organic compounds and strip volatile substances at the same time, reducing the consumption of excess oxidant used for oxidizing volatile substances, and improving efficiency. Furthermore, the decomposition of the target organic compound can be promoted. The gaseous oxidant may contain a gas (oxygen, nitrogen, etc.) different from the oxidant in part. Even if the gas does not have an oxidizing action, the same effect as the above-described volatilization treatment can be obtained by stripping volatile substances present in the liquid.
 [第3実施形態]
 次に、図4を参照しながら本発明に係るアミン系有機化合物を含む液体の処理方法の第3実施形態について説明する。なお、前述の第1実施形態および第2実施形態と重複する部分については、説明を省略する。第3実施形態においては、第2実施形態の酸化処理前ばっ気槽6に代わり、酸化処理槽2の後に酸化処理後ばっ気槽9を設け、揮散処理工程を実施することを特徴としている。このように酸化処理工程で処理された液体の少なくとも一部を揮散処理工程に送ることより、液体中に存在する揮発性物質をストリッピングガスを用いた揮散処理によって液体から揮散させ除去することができる。
[Third Embodiment]
Next, a third embodiment of the method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG. In addition, description is abbreviate | omitted about the part which overlaps with above-mentioned 1st Embodiment and 2nd Embodiment. The third embodiment is characterized in that a post-oxidation aeration tank 9 is provided after the oxidation treatment tank 2 in place of the pre-oxidation aeration tank 6 of the second embodiment, and the volatilization treatment step is performed. By sending at least a part of the liquid treated in the oxidation treatment step to the volatilization treatment step in this manner, volatile substances present in the liquid can be volatilized and removed from the liquid by the volatilization treatment using a stripping gas. it can.
 液体中に存在する揮発性物質とは、酸化処理工程前から液体に含まれるアンモニア、ベンゼン、トルエン、有機酸類、アルコール類等の有機化合物、また、酸化処理工程において生成したアンモニア態窒素、硝酸態窒素、低分子有機物等が挙げられる。前記揮発性物質は酸化処理・生物処理の対象である化合物も含まれるため、液体中の揮発性物質の含有量が低下したことにより、過剰な酸化剤の消費を抑えたり、酸化処理工程および生物処理工程における処理速度を向上したりすることができる。 Volatile substances present in the liquid are organic compounds such as ammonia, benzene, toluene, organic acids, alcohols, etc. contained in the liquid before the oxidation treatment process, as well as ammonia nitrogen and nitrate produced in the oxidation treatment process. Nitrogen, low molecular organic substances, etc. are mentioned. Since the volatile substances include compounds that are targets of oxidation treatment / biological treatment, the consumption of excess oxidant can be suppressed or the oxidation treatment process and biological substances can be reduced by reducing the content of volatile substances in the liquid. The processing speed in the processing step can be improved.
 ストリッピングガスとしては、空気、窒素、酸素等の一般的な気体を用いることができる。また、後述のとおり、各工程において排出される排ガスを用いてもよい。なお、各工程においてストリッピングガスとして排ガスを用いる場合は、その工程より後段の工程から排出される排ガスを用いることが好ましい。 As the stripping gas, general gases such as air, nitrogen and oxygen can be used. Moreover, you may use the waste gas discharged | emitted in each process as mentioned later. In addition, when using exhaust gas as stripping gas in each process, it is preferable to use the exhaust gas discharged | emitted from the process of the back | latter stage after the process.
 さらに、揮散処理工程のうち、酸化処理後ばっ気槽9、後述する生物処理前ばっ気槽10のいずれか)で処理された液体を、前記酸化処理工程に送ってもよい。揮散処理工程を通過後の液体は、原水に比べ、酸化処理の対象となる物質の含有量が少ないため、これを原水と混合することにより、酸化処理工程における液体中の窒素分の含有量を希釈することができ、効率的に酸化処理を行うことができる。 Furthermore, in the volatilization treatment process, the liquid treated in either the post-oxidation aeration tank 9 or the pre-biological aeration tank 10 described later) may be sent to the oxidation treatment process. Since the liquid after passing through the volatilization treatment process has a lower content of substances subject to oxidation treatment than raw water, mixing this with raw water will reduce the content of nitrogen in the liquid in the oxidation treatment process. Dilution can be performed and oxidation treatment can be performed efficiently.
 また、図4に示す通り、酸化処理工程、揮散処理工程に液体を循環させるシステムを採用することもできる。これにより、揮散処理および酸化処理の効率をより向上することが可能である。アミン系有機化合物から脱離したアンモニアのばっ気操作は酸化剤による酸化後速やかに行うのが効果的であり、また、より効率的な酸化剤による酸化(窒素脱離)を達成するためには、酸化処理工程で処理された液体の一部を揮散処理工程にリサイクルするのが望ましい。リサイクルされる液循環量は、酸化剤にオゾンを使用する場合は、酸化処理槽2から排出される排ガス中のオゾン濃度を計測して、この値が極力小さくなるように制御することで、オゾンの消費を最小化できる。例えば、この酸化処理工程における排ガスのオゾンガス濃度を100ppmv以下に制御することが好ましい。 Moreover, as shown in FIG. 4, it is also possible to employ a system that circulates liquid in the oxidation treatment process and the volatilization treatment process. Thereby, it is possible to improve the efficiency of a volatilization process and an oxidation process more. It is effective to perform the aeration of ammonia desorbed from amine-based organic compounds immediately after oxidation with an oxidizing agent, and to achieve more efficient oxidation with an oxidizing agent (nitrogen desorption). It is desirable to recycle a part of the liquid treated in the oxidation treatment process to the volatilization treatment process. When the ozone is used as the oxidant, the amount of liquid recycled is measured by measuring the ozone concentration in the exhaust gas discharged from the oxidation treatment tank 2 and controlling it to make this value as small as possible. Consumption can be minimized. For example, it is preferable to control the ozone gas concentration of the exhaust gas in this oxidation treatment step to 100 ppmv or less.
 前記酸化処理および前記揮散処理工程は、共にアルカリ性雰囲気化で処理が促進されるので、例えば酸化処理前ばっ気槽6に苛性ソーダなどの塩基性の薬剤を添加してもよい。これにより、アンモニア、有機酸等の揮発性物質をより高効率に除去し、また、酸化処理工程および生物処理工程における処理速度を向上することができる。 Since both the oxidation treatment and the volatilization treatment process are promoted in an alkaline atmosphere, a basic agent such as caustic soda may be added to the aeration tank 6 before the oxidation treatment. Thereby, volatile substances, such as ammonia and an organic acid, can be removed more efficiently, and the processing speed in an oxidation treatment process and a biological treatment process can be improved.
 [第4実施形態]
 次に、図5を参照しながら本発明に係るアミン系有機化合物を含む液体の処理方法の第4実施形態について説明する。なお、前述の第1実施形態~第3実施形態のいずれかと重複する部分については、説明を省略する。第4実施形態においては、酸化処理工程後の液体を酸化処理前ばっ気槽6に供給することを特徴としている。これにより、酸化処理工程に供給される液体中の窒素分の濃度を希釈により減少させることができ、酸化処理工程において、酸化処理を効率よく進めることができる。
[Fourth Embodiment]
Next, a fourth embodiment of a method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG. Note that description of portions overlapping with any of the first to third embodiments is omitted. The fourth embodiment is characterized in that the liquid after the oxidation treatment step is supplied to the pre-oxidation aeration tank 6. Thereby, the density | concentration of the nitrogen content in the liquid supplied to an oxidation treatment process can be reduced by dilution, and oxidation treatment can be advanced efficiently in an oxidation treatment process.
 さらに、第4実施形態は酸化剤供給器3から気体状の酸化剤を供給するものである。したがって、酸化処理槽2から排出される排ガスには気体状の酸化剤が含まれる。酸化処理工程における排ガスを揮散処理工程(本実施形態においては、酸化処理工程前ばっ気槽6)にストリッピングガスとして利用することにより、酸化処理前ばっ気槽6において排ガス中に残存する酸化剤を利用して酸化処理を行うことができ、後段の酸化処理工程における負荷を低減することができる。 Further, in the fourth embodiment, a gaseous oxidant is supplied from the oxidant supplier 3. Accordingly, the exhaust gas discharged from the oxidation treatment tank 2 contains a gaseous oxidant. By using the exhaust gas in the oxidation treatment step as a stripping gas in the volatilization treatment step (in this embodiment, the pre-oxidation step aeration tank 6), the oxidant remaining in the exhaust gas in the pre-oxidation aeration tank 6 Thus, the oxidation treatment can be performed, and the load in the subsequent oxidation treatment process can be reduced.
 [第5実施形態]
 次に、図6を参照しながら本発明に係るアミン系有機化合物を含む液体の処理方法の第5実施形態について説明する。なお、前述の第1実施形態~第4実施形態のいずれかと重複する部分については、説明を省略する。第5実施形態においては、酸化剤供給器3としてPSA(Pressure Swing Adsorption)装置付きオゾン発生機11を使用することを特徴としている。これにより、前記PSA装置で生成される酸素リッチガスから酸化剤としてオゾン又は酸素を生成すると共に、副生される酸素リーンガス(すなわち、窒素リッチガス)をストリッピングガスとして上記生物処理前ばっ気槽10に送り、溶解しているオゾン、酸素を揮散処理することができる。オゾンを揮散除去することにより、嫌気性、好気性を問わず、生物処理を効率よく行うことが可能になる。酸素の揮散除去は嫌気性生物処理を行ううえで効果的である。一つの装置(PSA装置付きオゾン発生機11)により、酸素リーンのストリッピングガスおよび酸化剤(オゾン、酸素)を製造することができ、液体処理システムを効率化し、かつ、コンパクトにすることができる。なお、生物処理前ばっ気槽10から排出されるガスは、図6の一点鎖線のように酸化処理前ばっ気槽6にストリッピングガスとして導入してもよい。
[Fifth Embodiment]
Next, a fifth embodiment of a method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG. Note that description of portions overlapping with any of the first to fourth embodiments is omitted. The fifth embodiment is characterized in that an ozone generator 11 with a PSA (Pressure Swing Adsorption) device is used as the oxidant supplier 3. As a result, ozone or oxygen is generated as an oxidant from the oxygen-rich gas generated by the PSA apparatus, and oxygen lean gas (that is, nitrogen-rich gas) by-produced is used as a stripping gas in the aeration tank 10 before biological treatment. Ozone and oxygen that are sent and dissolved can be volatilized. By stripping off ozone, it is possible to efficiently perform biological treatment regardless of anaerobic or aerobic. Oxygen volatilization is effective for anaerobic biological treatment. One device (ozone generator 11 with PSA device) can produce oxygen-lean stripping gas and oxidants (ozone, oxygen), making the liquid processing system more efficient and compact. . Note that the gas discharged from the pre-biological aeration tank 10 may be introduced as a stripping gas into the pre-oxidation aeration tank 6 as indicated by the one-dot chain line in FIG.
 [第6実施形態]
 次に、図7を参照しながら本発明に係るアミン系有機化合物を含む液体の処理方法の第6実施形態について説明する。なお、前述の第1実施形態~第5実施形態のいずれかと重複する部分については、説明を省略する。第6実施形態においては、生物処理工程に導入する液体に、希釈液を混合することを特徴としている。これにより、生物処理工程に導入される液体中のアミン系有機化合物の濃度を低減することができ、生物処理槽5における処理阻害要因を低減して、生物処理槽5を高効率化することができる。希釈液としては、難生物処理性物質を含まない他系統の廃水や生物処理工程後の液体をリサイクルして利用することができる。
[Sixth Embodiment]
Next, a sixth embodiment of the method for treating a liquid containing an amine-based organic compound according to the present invention will be described with reference to FIG. Note that description of portions overlapping with any of the first to fifth embodiments described above is omitted. The sixth embodiment is characterized in that a diluent is mixed with a liquid to be introduced into a biological treatment process. Thereby, the density | concentration of the amine organic compound in the liquid introduce | transduced into a biological treatment process can be reduced, the process inhibition factor in the biological treatment tank 5 can be reduced, and the biological treatment tank 5 can be made highly efficient. it can. As the diluting liquid, it is possible to recycle and use waste water of other systems that do not contain a difficult-to-treat substance or liquid after the biological treatment process.
 以上、本発明のアミン系有機化合物を含む液体の処理方法について複数の実施形態を挙げて説明したが、本発明はこれら具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施することが可能である。例えば、各実施形態における構成要素を適宜組み合わせても、本発明の課題を達成することは可能である。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等物に及ぶものである。 As described above, the method for treating a liquid containing an amine-based organic compound of the present invention has been described with reference to a plurality of embodiments. However, the present invention is not limited to these specific examples, and the scope of the present invention is not deviated. It can be implemented in various ways. For example, it is possible to achieve the object of the present invention by appropriately combining the components in each embodiment. That is, the technical scope of the present invention extends to the claims and their equivalents.
 [参考例1]
 難生物処理性物質であるアミン系有機化合物として、モノエタノールアミン(1級アミン)、イソプロピルアミノエタノール(2級アミン)、メチルジエチルアミン(3級アミン)、及びピペラジン(環式2級アミン)をそれぞれ純水7リットルに約0.0016mol/Lの濃度で含まれるように調製した4種類の試料を作製した。各試料の温度を室温(25℃)にした状態で、株式会社アスプ製のマイクロ・ナノバブル発生器を用いて酸素ガスから発生させたオゾンを0.06mol/hの流量で導入した。このようにして、オゾン含有のマイクロバブルによる回分式分解試験を行った。
[Reference Example 1]
Monoethanolamine (primary amine), isopropylaminoethanol (secondary amine), methyldiethylamine (tertiary amine), and piperazine (cyclic secondary amine) as amine organic compounds that are difficult-to-treat substances Four types of samples prepared to be contained in 7 liters of pure water at a concentration of about 0.0016 mol / L were prepared. With the temperature of each sample at room temperature (25 ° C.), ozone generated from oxygen gas was introduced at a flow rate of 0.06 mol / h using a micro / nano bubble generator manufactured by Asp Corporation. In this way, a batch decomposition test using ozone-containing microbubbles was performed.
 オゾン導入の開始時と、開始してから30分、60分及び120分経過後の各試料をサンプリングし、COD(測定法:化学的酸素消費量 JIS K0120-20)、TOC(測定法:有機態窒素 JIS K0102-22.1)、有機態窒素(測定法:有機態窒素 JIS K0102-44.1及び44.2)、アンモニア態窒素(測定法:アンモニア性窒素 JIS K0120-42.1および42.2)、及び硝酸態窒素(測定法:硝酸性窒素及び亜硝酸性窒素 JIS K0102-43.2.1)を測定した。そして、時間の経過に伴うCODの分解率、TOCの分解率、有機態窒素の分解率、アンモニア態窒素への分解率、及び硝酸態窒素への分解率をそれぞれ求めた。なお、分解率は、各段階の濃度(mg/L)を処理開始時の各成分の濃度(mg/L)で除することにより求めることができる。それらの結果を下記表1~5に示す。なお、下記表1~5の結果は液中の分析値であり、揮発したものは含まれていない。 Samples were sampled at the start of ozone introduction and after 30 minutes, 60 minutes and 120 minutes from the start of COD (measurement method: chemical oxygen consumption JIS K0120-20), TOC (measurement method: organic) State nitrogen (JIS K0102-22.1), organic nitrogen (measurement method: organic nitrogen, JIS K0102-44.1 and 44.2), ammonia nitrogen (measurement method: ammoniacal nitrogen, JIS K0120-42.1 and 42) .2) and nitrate nitrogen (measurement method: nitrate nitrogen and nitrite nitrogen, JIS K0102-43.2.1). The COD decomposition rate, TOC decomposition rate, organic nitrogen decomposition rate, ammonia nitrogen decomposition rate, and nitrate nitrogen decomposition rate over time were determined. The decomposition rate can be obtained by dividing the concentration (mg / L) at each stage by the concentration (mg / L) of each component at the start of processing. The results are shown in Tables 1 to 5 below. The results in Tables 1 to 5 below are analytical values in the liquid and do not include volatile substances.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [参考例2]
 また、オゾンによる分解副生物が生じた廃水に類似した模擬廃水として、純水に蟻酸、ブタノール、硫化ナトリウム及び硫酸アンモニウム(アンモニア)をそれぞれ添加した4種類の試料を作製し、それらの各々についても参考例1と同様の条件にて回分式分解試験を行った。そして、各物質のCODの分解率を同様にして求めた。その結果を下記表6に示す。なお、下記表6に示す結果は液中の分析値であり、揮発したものは含まれていない。
[Reference Example 2]
In addition, as simulated wastewater similar to the wastewater generated by ozone decomposition by-products, four types of samples were prepared by adding formic acid, butanol, sodium sulfide, and ammonium sulfate (ammonia) to pure water. A batch decomposition test was performed under the same conditions as in Example 1. And the decomposition rate of COD of each substance was calculated | required similarly. The results are shown in Table 6 below. The results shown in Table 6 below are analytical values in the liquid and do not include volatile substances.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表1~5に示す通り、同条件における模擬廃水中のアミン系物質の分解率を測定しても、COD分解率、TOC分解率、有機態窒素分解率の示す値はそれぞれ異なる。これは、各測定方法により、アミン系物質の検出率が異なることに起因する。本発明者らは、この中でも分解により脱離した窒素分を指標とするアミン系有機化合物を含む液体の処理方法が効果的であることを見出した。 As shown in Tables 1-5 above, the COD decomposition rate, TOC decomposition rate, and organic nitrogen decomposition rate are different even when the decomposition rate of the amine-based material in the simulated wastewater under the same conditions is measured. This is due to the difference in the detection rate of the amine-based substance depending on each measurement method. The inventors of the present invention have found that a method for treating a liquid containing an amine-based organic compound using as an index the nitrogen content eliminated by decomposition is effective.
 表4及び5の結果から、アンモニア態窒素と硝酸態窒素の和に対するアンモニア態窒素の割合は、第1級アミンでは30分後が33/(33+46)=0.42、120分後が31/(31+69)=0.31となっている。同様に、第2級アミンでは30分後が13/(13+23)=0.36、120分後が25/(25+54)=0.32となっており、第3級アミンでは30分後が8/(8+21)=0.28、120分後が11/(11+44)=0.20となっており、環式2級アミンでは30分後が20/(20+25)=0.44、120分後が27/(27+56)=0.33となっている。 From the results of Tables 4 and 5, the ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen was 33 / (33 + 46) = 0.42 after 30 minutes for the primary amine and 31 / after 120 minutes. (31 + 69) = 0.31. Similarly, for the secondary amine, 13 / (13 + 23) = 0.36 after 30 minutes, 25 / (25 + 54) = 0.32 after 120 minutes, and 8 minutes after 30 minutes for the tertiary amine. /(8+21)=0.28, 120 minutes later 11 / (11 + 44) = 0.20, and cyclic secondary amines 30 minutes later 20 / (20 + 25) = 0.44, 120 minutes later Is 27 / (27 + 56) = 0.33.
 各種アミン系有機化合物の構造により窒素が脱離するタイミングが異なること、さらに、アンモニア態窒素の硝酸態窒素への酸化進行は、アミン系有機化合物からの窒素脱離や、分解副生物(有機物)のさらなる分解と比べて遅いことを本発明者らは見出した。すなわち、アンモニア態窒素と硝酸態窒素の和に対するアンモニア態窒素の割合が、高い時点(アンモニア態窒素濃度が最大となる点)から減少に転じた付近(アンモニア態窒素が硝酸態窒素へ酸化進行)がオゾン供給停止に適したタイミングとなる。 The timing of desorption of nitrogen varies depending on the structure of various amine organic compounds, and the progress of oxidation of ammonia nitrogen to nitrate nitrogen is caused by nitrogen desorption from amine organic compounds and decomposition byproducts (organic matter). We have found that it is slow compared to further degradation of. In other words, the ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen changed from a high point (a point where the ammonia nitrogen concentration becomes maximum) to a decrease (ammonia nitrogen is oxidized to nitrate nitrogen) The timing is suitable for stopping ozone supply.
 したがって、表4及び5の結果から、参考例1の実施条件において、第1級アミンを含む液体の処理においては、アンモニア態窒素と硝酸態窒素の和に対するアンモニア態窒素の割合が0.3以上の時に酸化剤の供給を停止すればよいことが分かる。同様に、液体に含まれるアミン系有機化合物が第2級アミンの場合はその割合が0.3以上の時、第3級アミンの場合はその割合が0.2以上の時、環式2級アミンの場合はその割合が0.3以上の時に酸化剤の供給を停止すればよいことが分かる。なお、実運転の際に採用する、酸化剤を停止する時の具体的なアンモニア態窒素と硝酸態窒素の和に対するアンモニア態窒素の割合は、実運転時に測定したこれらアンモニア態窒素及び硝酸態窒素のデータに基づいて定めるのが好ましい。 Therefore, from the results in Tables 4 and 5, in the treatment conditions of Reference Example 1, in the treatment of the liquid containing the primary amine, the ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen is 0.3 or more. It can be seen that the supply of the oxidizing agent should be stopped at the time of Similarly, when the amine organic compound contained in the liquid is a secondary amine, the ratio is 0.3 or more, and when it is a tertiary amine, the ratio is 0.2 or more. In the case of amine, it can be seen that the supply of the oxidizing agent should be stopped when the ratio is 0.3 or more. The specific ratio of ammonia nitrogen to the sum of ammonia nitrogen and nitrate nitrogen when stopping the oxidizer employed during actual operation is the ammonia nitrogen and nitrate nitrogen measured during actual operation. It is preferable to determine based on these data.
 また、上記表6の結果から、分解副生物として想定される有機物等はオゾンを継続して導入することにより速やかに酸化分解されることが分かる。生物処理可能な程度以上に有機物を分解するとオゾンを無駄に消費することになるので、消費を抑制するためには速やかにオゾン分解を停止することが重要であることが分かる。更に、副生されるアンモニアの酸化は、徐々に進行するため、アンモニアの酸化抑制もオゾン消費量の抑制にとって重要である。したがって、分解により脱離した窒素分の量を測定することにより、酸化処理工程におけるアミン系有機化合物を含む液体の処理状況を予測することができ、生物処理に好適な条件になるタイミングで酸化処理工程を終了し、生物処理工程へ移行することができる。 Also, from the results of Table 6 above, it can be seen that organic substances assumed as decomposition by-products are rapidly oxidized and decomposed by continuously introducing ozone. It can be seen that if the organic matter is decomposed beyond the level capable of biological treatment, ozone is wasted, and it is important to stop the ozone decomposition promptly in order to suppress consumption. Furthermore, since oxidation of ammonia produced as a by-product proceeds gradually, suppression of ammonia oxidation is also important for suppression of ozone consumption. Therefore, by measuring the amount of nitrogen desorbed by decomposition, it is possible to predict the treatment status of a liquid containing an amine-based organic compound in the oxidation treatment process, and the oxidation treatment is performed at a timing suitable for biological treatment. The process can be terminated and the process can proceed to a biological treatment process.
 [参考例3]
 純水100質量部に対して第1級アミンであるモノエタノールアミン(MEA)をそれぞれ0.2質量部、0.5質量部、1.0質量部、3.0質量部、5.0質量部、及び10質量部添加した6種類のMEA溶液の試料を調製した。これら6種類の試料の各々に対して好気性生物処理を行って、生物処理の阻害度合いを調べた。具体的には、pH計、溶存酸素濃度計、及び攪拌機能を備えた容器に、空気で酸素飽和状態にしたMEA溶液の各試料(中性付近にpH調整)と、MEAを含む液で馴養した汚泥やpH緩衝剤などを含む植種水を加えて、空気雰囲気の下、20℃付近で40時間処理した。
[Reference Example 3]
The primary amine monoethanolamine (MEA) is 0.2 parts by mass, 0.5 parts by mass, 1.0 part by mass, 3.0 parts by mass, and 5.0 parts by mass with respect to 100 parts by mass of pure water. And 6 types of MEA solution samples added with 10 parts by mass were prepared. Each of these six types of samples was subjected to aerobic biological treatment, and the degree of inhibition of the biological treatment was examined. Specifically, in a vessel equipped with a pH meter, a dissolved oxygen concentration meter, and a stirring function, each sample of the MEA solution saturated with oxygen with air (pH adjustment near neutrality) and conditioned with a solution containing MEA Planted water containing sludge and pH buffering agent was added and treated under an air atmosphere at around 20 ° C. for 40 hours.
 その結果、純水100質量部にMEAを0.2質量部、0.5質量部、及び1.0質量部添加した試料は、十分に生物処理できることをCOD測定により確認した。このうち1.0質量部添加した試料は処理速度の低下が顕著であり、0.5質量部の試料も0.2質量部の試料より処理速度が低かった。よって、1.0質量部以下であれば処理可能であるが、安定性能を維持できる工業的に対応可能な処理速度を確保するためには0.5質量部(有機態窒素として1200mg/L)以下であることが好ましく、0.2質量部(有機態窒素として460mg/L)以下がさらに好適であることがわかった。 As a result, it was confirmed by COD measurement that a sample obtained by adding 0.2 parts by mass, 0.5 parts by mass, and 1.0 parts by mass of MEA to 100 parts by mass of pure water can be sufficiently biologically treated. Among them, the sample added with 1.0 part by mass showed a remarkable decrease in the processing speed, and the sample with 0.5 part by mass also had a lower processing speed than the sample with 0.2 part by mass. Therefore, if it is 1.0 part by mass or less, it can be processed, but 0.5 part by mass (1200 mg / L as organic nitrogen) in order to ensure an industrially compatible processing rate capable of maintaining stable performance. It was preferable that the content was 0.2 parts by mass (460 mg / L as organic nitrogen) or less.
 [実施例1]
 第1級アミンであるモノエタノールアミン(以下、MEAとも記載する)を純水に溶解して、MEA濃度が0.24mol/L(すなわち、純水100質量部に対してMEA1.5質量部)を含む模擬廃水A(pH10.2)を作製し、これを図4に示す酸化処理工程、揮散処理工程及び生物処理工程からなるプロセスフローに準じたラボスケール試験装置を用いて処理した。
[Example 1]
Monoethanolamine (hereinafter also referred to as MEA), which is a primary amine, is dissolved in pure water, and the MEA concentration is 0.24 mol / L (that is, 1.5 parts by mass of MEA with respect to 100 parts by mass of pure water). Simulated wastewater A (pH 10.2) containing was produced, and this was treated using a lab scale test apparatus according to the process flow comprising the oxidation treatment step, the volatilization treatment step and the biological treatment step shown in FIG.
 酸化処理槽2において、前記模擬廃水を処理量1L/hを標準値として供給した。また、オゾン発生器(エコデザイン株式会社製)及びマイクロ・ナノバブル発生器(株式会社アスプ製)を用いて酸素から生成したマイクロ・ナノバブル形態のオゾンガスを0.18mol/hを標準値として導入した。酸化処理槽2には模擬廃水中において脱離した窒素分を計測するため、エンドレスハウザー製のイオン選択電極(NH4-N)を取り付けた。これにより、模擬廃水中のアンモニア含有量が最大値となるようにオゾンガスの導入量を制御した。 In the oxidation treatment tank 2, the simulated waste water was supplied with a treatment amount of 1 L / h as a standard value. Moreover, 0.18 mol / h of ozone gas in the form of micro / nano bubbles generated from oxygen using an ozone generator (manufactured by Ecodesign Co., Ltd.) and a micro / nano bubble generator (manufactured by Asp Co., Ltd.) was introduced as a standard value. In the oxidation treatment tank 2, an ion selective electrode (NH4-N) manufactured by Endless Hauser was attached in order to measure the nitrogen content desorbed in the simulated wastewater. Thereby, the amount of ozone gas introduced was controlled so that the ammonia content in the simulated wastewater reached a maximum value.
 具体的には、上記のオゾン導入量の標準値を初期条件として実験を開始して、その後オゾン導入量を変化させ、生成したアンモニア態窒素の量との関係を把握することにより、アンモニア態窒素の含有量の最大値と、アンモニア態窒素の含有量が最大値となる酸化処理条件(オゾン導入量)を決定した。その後、アンモニア態窒素の含有量が最大値以下、かつ、最大値の80%以上になるよう、イオン選択電極(NH4-N)でアンモニア態窒素の含有量を確認しながら、オゾン導入量を制御して模擬廃水の処理を行った。なお、酸化処理槽2およびばっ気槽9における模擬廃水の滞留時間は標準として2時間とした。 Specifically, the experiment was started using the standard value of the ozone introduction amount as an initial condition, and then the ozone introduction amount was changed, and the relationship with the amount of ammonia nitrogen produced was determined. And the oxidation treatment conditions (ozone introduction amount) at which the ammonia nitrogen content becomes the maximum value were determined. Then, control the amount of ozone introduced while checking the ammonia nitrogen content with the ion selective electrode (NH4-N) so that the ammonia nitrogen content is below the maximum value and above 80% of the maximum value. Then, simulated wastewater was treated. The residence time of the simulated wastewater in the oxidation treatment tank 2 and the aeration tank 9 was set to 2 hours as a standard.
 さらに、酸化処理槽2には空気導入式のばっ気槽9を連通させて、該ばっ気槽9と酸化処理槽2との間において、模擬廃水を2L/hで循環するようにした。また、ばっ気槽9から排出されるオゾンを含む排ガスは、充填塔で硫酸水溶液を吸収液として含有不純物を吸収除去したのち放出して吸収廃液は適時抜き取り回収した。 Further, an air introduction type aeration tank 9 is communicated with the oxidation treatment tank 2 so that simulated waste water is circulated at a rate of 2 L / h between the aeration tank 9 and the oxidation treatment tank 2. Further, the exhaust gas containing ozone discharged from the aeration tank 9 was released after absorbing and removing impurities contained in the packed tower using the sulfuric acid aqueous solution as the absorbing solution, and the absorbed waste solution was extracted and collected in a timely manner.
 このようにして酸化処理した模擬廃水を回収・貯蔵して、pH6~8の間になるよう調整した後、空気ばっ気機構を備えた生物処理設備5に供給して活性汚泥を用いた好気性生物処理を行った。生物処理設備5において、模擬廃水のCODが50mg/L以下となるように生物処理を行い、生物処理にかかった時間を計測した。 The simulated wastewater oxidized in this way is collected and stored, adjusted to a pH between 6 and 8, and then supplied to the biological treatment facility 5 equipped with an air aeration mechanism and aerobic using activated sludge. Biological treatment was performed. In the biological treatment facility 5, the biological treatment was performed so that the COD of the simulated wastewater was 50 mg / L or less, and the time taken for the biological treatment was measured.
 [比較例1]
 プロセスフローにおいて、ばっ気槽9での揮散処理、及び酸化処理槽2における模擬廃水の窒素分の計測を行わず酸化処理槽からの排ガス中のオゾン濃度を計測しながらオゾンガスを導入する方法を採用したこと以外は実施例1と同様にして模擬廃水の処理を行った。また、その他の各種条件を表7に示す。
[Comparative Example 1]
In the process flow, a method of introducing ozone gas while measuring the ozone concentration in the exhaust gas from the oxidation treatment tank without measuring the nitrogen content in the aeration tank 9 and the nitrogen content of the simulated wastewater in the oxidation treatment tank 2 is adopted. Except that, the simulated wastewater was treated in the same manner as in Example 1. Various other conditions are shown in Table 7.
 [比較例2]
 各種条件を表7に示す通り変更した以外は、比較例1と同様にして模擬廃水の処理を行った。
[Comparative Example 2]
Except that various conditions were changed as shown in Table 7, treatment of simulated wastewater was performed in the same manner as in Comparative Example 1.
 [実施例2]
 プロセスフローにおいて、酸化処理槽2におけるオゾンの導入方法を、マイクロ・ナノバブルではなく散気管に変更した以外は実施例1と同様にした。また、その他の各種条件を表7に示す。
[Example 2]
In the process flow, the same method as in Example 1 was applied except that the method of introducing ozone in the oxidation treatment tank 2 was changed to a diffuser tube instead of micro / nano bubbles. Various other conditions are shown in Table 7.
 [実施例3]
 酸化処理工程において、オゾンとほぼ同量(体積比)の空気をオゾンと同時に導入した以外は、実施例1と同様にした。
[Example 3]
In the oxidation treatment step, the same procedure as in Example 1 was carried out except that air of substantially the same amount (volume ratio) as ozone was introduced simultaneously with ozone.
 [実施例4]
 苛性ソーダでpH12~12.5に調整したMEA濃度0.80mol/L(すなわち、純水100質量部に対してMEA約5.0質量部)の模擬廃水Bを用いたこと以外はそれぞれ実施例1と同様にして実施例4の処理を行った。
[Example 4]
Example 1 except that simulated waste water B having an MEA concentration of 0.80 mol / L adjusted to pH 12 to 12.5 with caustic soda (ie, about 5.0 parts by mass of MEA with respect to 100 parts by mass of pure water) was used. In the same manner as in Example 4, the treatment of Example 4 was performed.
 [実施例5]
 生物処理工程を以下のように変更した以外は、実施例1と同様にして処理を行った。実施例5では生物処理工程において、酸素1%含有の窒素リッチガスを廃水にばっ気したのち、嫌気性生物処理を行い、さらにその後、好気性生物処理を行った。
[Example 5]
The treatment was performed in the same manner as in Example 1 except that the biological treatment process was changed as follows. In Example 5, in a biological treatment process, anaerobic biological treatment was performed after nitrogen rich gas containing 1% oxygen was aerated in wastewater, and then an aerobic biological treatment was performed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 比較例1では、実施例1に比べてオゾン導入量が過大となった。その結果、生物処理の負荷は実施例1に比べて小さくなったものの、オゾンが効率よく使用できなかったため、システム全体としての処理効率は実施例1に比べて低かった。比較例2ではオゾン導入量が過少のため、生物処理工程においてMEAが十分に処理できず、生物処理後の最終的な模擬廃水AのCODを目標値以下とすることができなかった。 In Comparative Example 1, the amount of ozone introduced was excessive compared to Example 1. As a result, although the load of biological treatment was smaller than that in Example 1, ozone could not be used efficiently, so that the treatment efficiency of the entire system was lower than that in Example 1. In Comparative Example 2, since the amount of ozone introduced was too small, the MEA could not be sufficiently treated in the biological treatment process, and the final simulated wastewater A COD after the biological treatment could not be reduced below the target value.
 なお、実施例2は、生物処理後の模擬廃水AのCODを目標値以下とすることができたが、実施例1に比べて分解反応速度がやや遅くなりオゾン導入量が多かった。これにより、酸化処理工程において導入される酸化剤がマイクロバブルの形態を有することによる優位性が確認された。 In Example 2, the COD of the simulated wastewater A after biological treatment could be reduced below the target value, but the decomposition reaction rate was slightly slower than in Example 1, and the amount of ozone introduced was large. Thereby, the superiority by having the form of the microbubble of the oxidizing agent introduced in an oxidation treatment process was confirmed.
 実施例3ではオゾン導入時間(滞留時間)が短縮され、オゾン導入量を10%程度削減できた。これは、オゾンと同時に導入した空気により、気体性酸化剤であるオゾンによるばっ気の効果が促進され、生成したアンモニアがすみやかに揮散されたことに起因する。 In Example 3, the ozone introduction time (residence time) was shortened, and the ozone introduction amount could be reduced by about 10%. This is due to the fact that the air introduced simultaneously with ozone promotes the effect of aeration by ozone, which is a gaseous oxidant, and the generated ammonia is immediately volatilized.
 実施例4では、実施例1で使用した模擬廃水Aに比べ、MEA濃度の高い模擬廃水Bを用いたにもかかわらず、酸化処理工程における模擬廃水中のアンモニア濃度は処理20分経過後には増加が抑制され、50分後には低下傾向が認められた。これにより、実施例1に比べて短い時間で酸化処理工程を終了することができた。実施例5では、生物処理工程後の模擬廃水中の窒素分の含有量をさらに40%削減できた。また、生物処理工程にかかる時間を実施例1に比べて約10%短縮できた。 In Example 4, compared with the simulated wastewater A used in Example 1, the ammonia concentration in the simulated wastewater in the oxidation treatment process increased after 20 minutes of treatment, despite using the simulated wastewater B having a higher MEA concentration. Was suppressed, and a downward tendency was observed after 50 minutes. As a result, the oxidation treatment process was completed in a shorter time than in Example 1. In Example 5, the nitrogen content in the simulated wastewater after the biological treatment process could be further reduced by 40%. In addition, the time required for the biological treatment process could be shortened by about 10% compared to Example 1.
 1   受水槽
 2   酸化処理槽
 2a  センサー
 3   酸化剤供給器
 4   pH調整槽
 5   生物処理設備
 5a  嫌気性処理槽
 5b  好気性処理槽
 6   酸化処理前ばっ気槽
 7   回収装置
 8   燃焼装置
 9   酸化処理後ばっ気槽
 10  生物処理前ばっ気槽
 11  PSA装置付きオゾン発生機
 12  微細バブル発生装置
DESCRIPTION OF SYMBOLS 1 Water receiving tank 2 Oxidation processing tank 2a Sensor 3 Oxidizing agent supply device 4 pH adjustment tank 5 Biological treatment equipment 5a Anaerobic processing tank 5b Aerobic processing tank 6 Aerobic tank before oxidation treatment 7 Recovery device 8 Combustion device 9 After oxidation treatment Air tank 10 Aeration tank before biological treatment 11 Ozone generator with PSA device 12 Fine bubble generator

Claims (17)

  1.  アミン系有機化合物を含む液体に酸化剤を導入して該アミン系有機化合物を分解する酸化処理工程と、前記酸化処理工程で処理された液体を生物処理する生物処理工程とを有するアミン系有機化合物を含む液体の処理方法であって、
     前記酸化処理工程において、液体中の窒素分の含有量を測定し、前記窒素分の含有量に基づいて液体への酸化剤の導入量を制御することを特徴とするアミン系有機化合物を含む液体の処理方法。
    An amine organic compound having an oxidation treatment step of decomposing the amine organic compound by introducing an oxidant into the liquid containing the amine organic compound, and a biological treatment step of biologically treating the liquid treated in the oxidation treatment step A method for treating a liquid comprising:
    In the oxidation treatment step, a liquid containing an amine-based organic compound is characterized in that the nitrogen content in the liquid is measured and the amount of the oxidizing agent introduced into the liquid is controlled based on the nitrogen content. Processing method.
  2.  前記液体中の窒素分は、有機体窒素である請求項1に記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to claim 1, wherein the nitrogen content in the liquid is organic nitrogen.
  3.  前記有機体窒素は、アンモニア態窒素及び/または硝酸態窒素である請求項2に記載のアミン系有機化合物を含む液体の処理方法。 3. The method for treating a liquid containing an amine-based organic compound according to claim 2, wherein the organic nitrogen is ammonia nitrogen and / or nitrate nitrogen.
  4.  前記液体中のアンモニア態窒素の含有量が最大値の65%~最大値になるように酸化剤の導入量を制御する、請求項3に記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to claim 3, wherein the introduction amount of the oxidizing agent is controlled so that the content of ammonia nitrogen in the liquid becomes 65% to the maximum value of the maximum value.
  5.  前記酸化処理工程において、前記液体中のアンモニア態窒素及び硝酸態窒素の合計量が、前記液体中の有機態窒素の合計量の50~90%になるように前記酸化剤の導入量を制御する、請求項3又は4に記載のアミン系有機化合物を含む液体の処理方法。 In the oxidation treatment step, the introduction amount of the oxidizing agent is controlled so that the total amount of ammonia nitrogen and nitrate nitrogen in the liquid is 50 to 90% of the total amount of organic nitrogen in the liquid. The processing method of the liquid containing the amine organic compound of Claim 3 or 4.
  6.  前記酸化処理工程後の液体における有機態窒素の濃度が1200mg/L以下である請求項2~5のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 6. The method for treating a liquid containing an amine-based organic compound according to claim 2, wherein the concentration of organic nitrogen in the liquid after the oxidation treatment step is 1200 mg / L or less.
  7.  更に揮散処理工程を設け、液体中の揮発性物質を揮散させる請求項1~6に記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to any one of claims 1 to 6, further comprising a volatilization treatment step to volatilize a volatile substance in the liquid.
  8.  前記酸化剤は気体状である請求項1~7のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to any one of claims 1 to 7, wherein the oxidizing agent is gaseous.
  9.  前記酸化剤はオゾンである請求項8に記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to claim 8, wherein the oxidizing agent is ozone.
  10.  前記オゾンはPSA装置により製造され、酸化処理工程又は揮散処理工程において前記PSA装置より製造される窒素リッチガスをストリッピングガスとして供給する請求項9に記載の処理方法。 10. The processing method according to claim 9, wherein the ozone is manufactured by a PSA apparatus, and a nitrogen-rich gas manufactured by the PSA apparatus is supplied as a stripping gas in an oxidation treatment process or a volatilization treatment process.
  11.  前記酸化剤が、ナノバブル及び/又はマイクロバブルの形態を有している請求項8~10のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine organic compound according to any one of claims 8 to 10, wherein the oxidizing agent has a form of nanobubbles and / or microbubbles.
  12.  前記生物処理工程に導入する液体に、希釈液を混合する請求項1~11のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to any one of claims 1 to 11, wherein a diluent is mixed with the liquid to be introduced into the biological treatment step.
  13.  前記アミン系有機化合物を含む液体は、炭酸ガス及び/又は硫酸水素を含むガスの洗浄に用いた吸収液を含むものである請求項1~12のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 The treatment of a liquid containing an amine-based organic compound according to any one of claims 1 to 12, wherein the liquid containing the amine-based organic compound contains an absorption liquid used for cleaning a gas containing carbon dioxide and / or hydrogen sulfate. Method.
  14.  前記アミン系有機化合物を含む液体は、半導体装置製造設備又は原子力発電設備において排出される排液を含むものである請求項1~12のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 The method for treating a liquid containing an amine-based organic compound according to any one of claims 1 to 12, wherein the liquid containing the amine-based organic compound includes a liquid discharged from a semiconductor device manufacturing facility or a nuclear power generation facility.
  15.  前記アミン系有機化合物がアルカノールアミン類、芳香族アミン類、及び複素環アミン類のうちのいずれかに分類されるものを含む請求項1~14のいずれかに記載のアミン系有機化合物を含む液体の処理方法。 The liquid containing an amine-based organic compound according to any one of claims 1 to 14, wherein the amine-based organic compound includes those classified into any one of alkanolamines, aromatic amines, and heterocyclic amines. Processing method.
  16. アミン系有機化合物を含む液体に酸化剤を接触させて該アミン系有機化合物を分解する酸化処理槽と、前記酸化処理槽で処理された液体を生物処理する生物処理工槽とを有するアミン系有機化合物を含む液体の処理システムであって、
     前記酸化処理槽は液体中の窒素分の含有量を測定するセンサーを備えることを特徴とするアミン系有機化合物を含む液体の処理システム。
    An amine-based organic having an oxidation treatment tank for decomposing the amine-based organic compound by contacting an oxidant with a liquid containing the amine-based organic compound, and a biological treatment processing tank for biologically treating the liquid treated in the oxidation treatment tank A liquid treatment system comprising a compound,
    The said oxidation treatment tank is equipped with the sensor which measures content of the nitrogen content in a liquid, The processing system of the liquid containing an amine organic compound characterized by the above-mentioned.
  17.  前記液体に含まれる揮発性物質を揮散させる揮散処理槽を更に設け、前記酸化処理槽で処理された液体の少なくとも一部を前記揮散処理槽に送る請求項16に記載のアミン系有機化合物を含む液体の処理システム。 17. The amine-based organic compound according to claim 16, further comprising a volatilization treatment tank for volatilizing volatile substances contained in the liquid, and sending at least a part of the liquid treated in the oxidation treatment tank to the volatilization treatment tank. Liquid processing system.
PCT/JP2015/065322 2014-06-02 2015-05-27 Method for treating liquid containing organic amine compound WO2015186590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-114264 2014-06-02
JP2014114264A JP2015226889A (en) 2014-06-02 2014-06-02 Method for treating liquid including amine-based organic compound

Publications (1)

Publication Number Publication Date
WO2015186590A1 true WO2015186590A1 (en) 2015-12-10

Family

ID=54766663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065322 WO2015186590A1 (en) 2014-06-02 2015-05-27 Method for treating liquid containing organic amine compound

Country Status (2)

Country Link
JP (1) JP2015226889A (en)
WO (1) WO2015186590A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007256A (en) 2016-07-28 2016-10-12 黄霞 Microbubble ozone catalytic oxidation-no-aeration biochemical coupling technology system and application thereof
KR102280644B1 (en) * 2019-09-17 2021-07-23 주식회사 포스코 Method for eliminating pollutant from solution
JP7422998B2 (en) * 2020-02-20 2024-01-29 株式会社タクマ Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms
JP7050992B1 (en) 2021-04-30 2022-04-08 株式会社 イージーエス Treatment method for wastewater containing high-concentration organic matter
CN117643744B (en) * 2024-01-30 2024-04-16 四川凌耘建科技有限公司 Efficient dehydration method and related device for natural gas triethylene glycol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796287A (en) * 1993-09-29 1995-04-11 Kubota Corp High-degree treatment of organic sewage
JPH07214092A (en) * 1994-02-01 1995-08-15 Kubota Corp Method for removing cod and nitrogen
JPH0910779A (en) * 1995-07-03 1997-01-14 Kankyo Eng Kk Denitrification treatment of organic nitrogen-containing waste solution
JP2000117273A (en) * 1998-10-19 2000-04-25 Osaka Gas Co Ltd Waste water treatment
JP2002079279A (en) * 2000-09-11 2002-03-19 Chiyoda Corp Method for removing hydrazine compound
JP2011194373A (en) * 2010-03-23 2011-10-06 Mayekawa Mfg Co Ltd Treatment method and apparatus of rice processing wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796287A (en) * 1993-09-29 1995-04-11 Kubota Corp High-degree treatment of organic sewage
JPH07214092A (en) * 1994-02-01 1995-08-15 Kubota Corp Method for removing cod and nitrogen
JPH0910779A (en) * 1995-07-03 1997-01-14 Kankyo Eng Kk Denitrification treatment of organic nitrogen-containing waste solution
JP2000117273A (en) * 1998-10-19 2000-04-25 Osaka Gas Co Ltd Waste water treatment
JP2002079279A (en) * 2000-09-11 2002-03-19 Chiyoda Corp Method for removing hydrazine compound
JP2011194373A (en) * 2010-03-23 2011-10-06 Mayekawa Mfg Co Ltd Treatment method and apparatus of rice processing wastewater

Also Published As

Publication number Publication date
JP2015226889A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015186590A1 (en) Method for treating liquid containing organic amine compound
JP5197223B2 (en) Water treatment system
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
CN103833166B (en) A kind of methyldiethanolamine (MDEA) process for treating industrial waste water
JP2006122771A (en) Fluid treatment method and fluid treatment system
JP2010000480A (en) Effective denitrification method for organic raw water
KR101761129B1 (en) Waste water treatment system and the method of waste water
JP2018083173A (en) Wastewater treatment method, wastewater treatment system and coal gasification power generation equipment with the same
JP2007038188A (en) Method and apparatus for desulfurizing hydrogen sulfide-containing gas
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP5118376B2 (en) Water treatment method and water treatment apparatus
JP2012066186A (en) Water treatment apparatus
JP2000308900A (en) Treatment of ammonia-containing waste water
JP5027000B2 (en) Nitrification processing method and nitrification processing apparatus
US20150251937A1 (en) Method and an apparatus for simultaneous removal of thiosalts and nitrogen compounds in waste water
JP2005288371A (en) Wastewater treatment method
US10493423B2 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP3598100B2 (en) Treatment of water containing organic waste with aromatic amine nitrate
US10947137B2 (en) Process for treatment of mine impacted water
JP2006095478A (en) Treatment method for wastewater containing sulfur compound
JP4862234B2 (en) Method for treating waste water containing hydrazine and chelating organic compound
CN112456723B (en) Mixed organic waste water treatment equipment
Vilar et al. Application of anaerobic and ozonation processes in the landfill leachate treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803491

Country of ref document: EP

Kind code of ref document: A1