JP7422998B2 - Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms - Google Patents

Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms Download PDF

Info

Publication number
JP7422998B2
JP7422998B2 JP2020026909A JP2020026909A JP7422998B2 JP 7422998 B2 JP7422998 B2 JP 7422998B2 JP 2020026909 A JP2020026909 A JP 2020026909A JP 2020026909 A JP2020026909 A JP 2020026909A JP 7422998 B2 JP7422998 B2 JP 7422998B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
air
gas
stripping
photosynthetic organisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026909A
Other languages
Japanese (ja)
Other versions
JP2021129521A (en
Inventor
宗治 藤川
弘樹 藤平
健一 宍田
光央 金久保
貴至 牧野
雄樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Takuma Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Takuma Co Ltd
Priority to JP2020026909A priority Critical patent/JP7422998B2/en
Publication of JP2021129521A publication Critical patent/JP2021129521A/en
Application granted granted Critical
Publication of JP7422998B2 publication Critical patent/JP7422998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Description

本発明は、例えば、植物や植物プランクトン、藻類等の光合成を行う光合成生物の育成方法、及び光合成生物の育成設備に関する。 The present invention relates to a method for growing photosynthetic organisms that perform photosynthesis, such as plants, phytoplankton, and algae, and equipment for growing photosynthetic organisms.

近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収し、回収した二酸化炭素を有効利用することが提案されている(例えば、特許文献1を参照)。 In recent years, carbon dioxide has been viewed as a problem as the main cause of global warming, and movements to curb emissions have become active worldwide. For this reason, it has been proposed to recover carbon dioxide from combustion exhaust gas or process exhaust gas without releasing it into the atmosphere, and to effectively utilize the recovered carbon dioxide (see, for example, Patent Document 1).

特許文献1には、二酸化炭素の回収方法として、二酸化炭素含有ガスをアミン系の吸収液に吸収させ、水蒸気ストリッピングにより吸収液から二酸化炭素を放散させ、二酸化炭素含有蒸気から相分離器で水分を除去して、95~99.9%程度の高濃度の二酸化炭素を回収することが開示されている。なお、特許文献1には、二酸化炭素の用途として、野菜の成長改善の用途が含まれることが開示されている。 Patent Document 1 describes a carbon dioxide recovery method in which carbon dioxide-containing gas is absorbed into an amine-based absorption liquid, carbon dioxide is diffused from the absorption liquid by steam stripping, and water is removed from the carbon dioxide-containing vapor using a phase separator. It has been disclosed that carbon dioxide with a high concentration of about 95 to 99.9% can be recovered by removing carbon dioxide. Note that Patent Document 1 discloses that the uses of carbon dioxide include the use of improving the growth of vegetables.

国際公開第2002/064238号International Publication No. 2002/064238

特許文献1において、水蒸気ストリッピングによる二酸化炭素の放散工程では、吸収液の温度上昇に要する熱エネルギー、吸収液から二酸化炭素を放出するのに要する熱エネルギー、吸収液の水分蒸発による熱損失を補うための熱エネルギー等が必要である。このため、吸収した二酸化炭素の放散に要するエネルギーが大きく、エネルギーコストが嵩む。なお、吸収液の加熱による二酸化炭素の放散についても、同様の問題がある。 In Patent Document 1, in the carbon dioxide dissipation step by steam stripping, the thermal energy required to raise the temperature of the absorption liquid, the thermal energy required to release carbon dioxide from the absorption liquid, and the heat loss due to water evaporation of the absorption liquid are compensated for. Thermal energy, etc. is required for this purpose. Therefore, a large amount of energy is required to dissipate the absorbed carbon dioxide, increasing energy costs. Incidentally, a similar problem occurs with regard to the dissipation of carbon dioxide by heating the absorption liquid.

また、特許文献1において、回収される二酸化炭素の濃度は、100%に近い高濃度である。光合成生物の成長促進に効果的な育成雰囲気の二酸化炭素の濃度は、高濃度である必要はない。このため、回収した二酸化炭素を光合成生物の育成促進に適用する場合、回収した高濃度の二酸化炭素を空気で希釈することになる。従って、育成促進ガスの生成に手間がかかるという問題がある。 Further, in Patent Document 1, the concentration of recovered carbon dioxide is high, close to 100%. The concentration of carbon dioxide in the growth atmosphere that is effective in promoting the growth of photosynthetic organisms does not need to be high. Therefore, when the recovered carbon dioxide is applied to promote the growth of photosynthetic organisms, the recovered high concentration carbon dioxide must be diluted with air. Therefore, there is a problem in that it takes time and effort to generate the growth promoting gas.

本発明は、上記の課題に鑑みてなされたものであり、吸収した二酸化炭素の放散に要するエネルギーを低く抑えることができるとともに、光合成生物の育成促進ガスを簡易に生成することができる光合成生物の育成方法、及び光合成生物の育成設備を提供することを目的とする。 The present invention was made in view of the above-mentioned problems, and provides a method for producing photosynthetic organisms that can reduce the energy required to dissipate absorbed carbon dioxide and easily generate a gas that promotes the growth of photosynthetic organisms. The purpose is to provide breeding methods and facilities for growing photosynthetic organisms.

上記課題を解決するための本発明に係る光合成生物の育成方法の特徴構成は、
二酸化炭素含有ガスを吸収材に接触させる接触工程と、
二酸化炭素を吸収した前記吸収材に対し、ストリッピングガスとして空気を供給するストリッピング工程と、
前記吸収材から放散された二酸化炭素と、前記ストリッピングガスとして用いた空気との混合ガスを、光合成生物を収容する育成室へと供給する混合ガス供給工程と、
を包含することにある。
The characteristic configuration of the method for growing photosynthetic organisms according to the present invention for solving the above problems is as follows:
a contacting step of bringing the carbon dioxide-containing gas into contact with the absorbent;
a stripping step of supplying air as a stripping gas to the absorbent material that has absorbed carbon dioxide;
a mixed gas supply step of supplying a mixed gas of carbon dioxide emitted from the absorbent material and air used as the stripping gas to a growth chamber that accommodates photosynthetic organisms;
The goal is to include the following.

本構成の光合成生物の育成方法によれば、二酸化炭素含有ガスを吸収材に接触させる接触工程が行われる。これにより、ガス中の二酸化炭素が吸収材に吸収される。また、二酸化炭素を吸収した吸収材に対し、ストリッピングガスとして空気を供給するストリッピング工程が行われる。これにより、吸収材から二酸化炭素が放散される。そして、吸収材から放散された二酸化炭素と、ストリッピングガスとして用いた空気との混合ガスを、育成促進ガスとして、光合成生物が収容された育成室へと供給する混合ガス供給工程が行われる。本構成の光合成生物の育成方法においては、吸収材に対し、空気をストリッピングガスとして供給することで二酸化炭素を放散するようにされている。従って、水蒸気ストリッピングによる二酸化炭素の放散や、加熱による二酸化炭素の放散と比べて、吸収した二酸化炭素の放散に要するエネルギーを低く抑えることができる。また、本構成の光合成生物の育成方法においては、吸収材から放散された二酸化炭素と、ストリッピングガスとして用いた空気との混合ガスが、育成促進ガスとして、光合成生物が収容された育成室へと供給される。このように、ストリッピングガスとして用いた空気が、ストリッピングで放散した二酸化炭素の希釈用空気を兼ねるようにされているので、放散後の二酸化炭素に空気を別途添加して希釈する工程を省略することができ、光合成生物の育成促進ガスを簡易に生成することができる。 According to the method for growing photosynthetic organisms of this configuration, a contacting step of bringing the carbon dioxide-containing gas into contact with the absorbent material is performed. As a result, carbon dioxide in the gas is absorbed by the absorbent material. Further, a stripping step is performed in which air is supplied as a stripping gas to the absorbent material that has absorbed carbon dioxide. This causes carbon dioxide to dissipate from the absorbent material. Then, a mixed gas supply step is performed in which a mixed gas of carbon dioxide emitted from the absorbent and air used as a stripping gas is supplied as a growth promoting gas to a growth chamber in which photosynthetic organisms are housed. In the method for growing photosynthetic organisms of this configuration, carbon dioxide is diffused by supplying air as a stripping gas to the absorbent material. Therefore, the energy required for dissipating absorbed carbon dioxide can be kept low compared to dissipating carbon dioxide by steam stripping or dissipating carbon dioxide by heating. In addition, in the method for growing photosynthetic organisms of this configuration, a mixed gas of carbon dioxide released from the absorbing material and air used as a stripping gas is sent as a growth promoting gas to the growth chamber in which the photosynthetic organisms are housed. is supplied. In this way, the air used as the stripping gas also serves as air for diluting the carbon dioxide released during stripping, so the step of separately adding air to dilute the carbon dioxide after it has been released is omitted. It is possible to easily generate a gas that promotes the growth of photosynthetic organisms.

本発明に係る光合成生物の育成方法において、
前記育成室内の二酸化炭素の濃度が600~2000ppmとなるように、前記ストリッピング工程での空気供給量を調整する空気供給量調整工程をさらに包含することが好ましい。
In the method for growing photosynthetic organisms according to the present invention,
Preferably, the method further includes an air supply amount adjustment step of adjusting the air supply amount in the stripping step so that the concentration of carbon dioxide in the growth chamber is 600 to 2000 ppm.

本構成の光合成生物の育成方法によれば、育成促進ガス中の二酸化炭素の濃度が600~2000ppmとなるようにストリッピング工程での空気供給量を調整する空気供給量調整工程が行われるので、光合成生物の育成室内の二酸化炭素濃度が600~2000ppmとなり、育成室内での作業者の安全が確保されるとともに、光合成生物の育成を効果的に促進することができる。 According to the method for growing photosynthetic organisms of this configuration, an air supply amount adjustment step is performed in which the air supply amount in the stripping step is adjusted so that the concentration of carbon dioxide in the growth promoting gas is 600 to 2000 ppm. The carbon dioxide concentration in the growth chamber for photosynthetic organisms is 600 to 2000 ppm, ensuring the safety of workers in the growth chamber and effectively promoting the growth of photosynthetic organisms.

次に、上記課題を解決するための本発明に係る光合成生物の育成設備の特徴構成は、
二酸化炭素含有ガスを吸収材に接触させて当該ガス中の二酸化炭素を前記吸収材に吸収させる吸収塔と、
二酸化炭素を吸収した前記吸収材に対し、ストリッピングガスとして空気を供給する空気供給手段と、
光合成生物を収容する育成室と、
前記吸収材から放散された二酸化炭素と、前記ストリッピングガスとして用いた空気との混合ガスを、前記育成室へと供給する混合ガス供給手段と、
を備えることにある。
Next, the characteristic configuration of the photosynthetic organism breeding equipment according to the present invention for solving the above problems is as follows:
an absorption tower that brings a carbon dioxide-containing gas into contact with an absorbent material and causes the carbon dioxide in the gas to be absorbed by the absorbent material;
an air supply means for supplying air as a stripping gas to the absorbent material that has absorbed carbon dioxide;
A growth chamber that houses photosynthetic organisms;
A mixed gas supply means for supplying a mixed gas of carbon dioxide diffused from the absorbing material and air used as the stripping gas to the growth chamber;
The goal is to prepare for

本構成の光合成生物の育成設備によれば、吸収塔において二酸化炭素含有ガスを吸収材に接触させることにより、ガス中の二酸化炭素が吸収材に吸収される。二酸化炭素を吸収した吸収材に対し、ストリッピングガスとして空気が空気供給手段によって供給されると、吸収材から二酸化炭素が放散される。そして、混合ガス供給手段は、吸収材から放散された二酸化炭素と、ストリッピングガスとして用いた空気との混合ガスを、育成促進ガスとして、光合成生物が収容された育成室へと供給する。本構成の光合成生物の育成設備においては、吸収材に対し、空気をストリッピングガスとして供給することで二酸化炭素を放散するようにされている。従って、水蒸気ストリッピングによる二酸化炭素の放散や、加熱による二酸化炭素の放散と比べて、吸収した二酸化炭素の放散に要するエネルギーを低く抑えることができる。また、本構成の光合成生物の育成設備においては、吸収材から放散された二酸化炭素と、ストリッピングガスとして用いた空気との混合ガスが、育成促進ガスとして、光合成生物が収容された育成室へと供給される。このように、ストリッピングガスとして用いた空気が、ストリッピングで放散した二酸化炭素の希釈用空気を兼ねるようにされているので、放散後の二酸化炭素に空気を別途添加して希釈する手段を省略することができ、光合成生物の育成促進ガスを簡易に生成することができる。 According to the photosynthetic organism cultivation equipment of this configuration, carbon dioxide in the gas is absorbed by the absorbent by bringing the carbon dioxide-containing gas into contact with the absorbent in the absorption tower. When air is supplied as a stripping gas by an air supply means to the absorbent material that has absorbed carbon dioxide, carbon dioxide is diffused from the absorbent material. Then, the mixed gas supply means supplies a mixed gas of carbon dioxide emitted from the absorbent and air used as the stripping gas to the growth chamber in which the photosynthetic organisms are housed, as a growth promoting gas. In the photosynthetic organism cultivation facility having this configuration, carbon dioxide is diffused by supplying air as a stripping gas to the absorbent material. Therefore, the energy required for dissipating absorbed carbon dioxide can be kept low compared to dissipating carbon dioxide by steam stripping or dissipating carbon dioxide by heating. In addition, in the photosynthetic organism growing facility with this configuration, a mixed gas of carbon dioxide emitted from the absorbing material and air used as a stripping gas is sent to the growth chamber containing the photosynthetic organisms as a growth promoting gas. is supplied. In this way, the air used as the stripping gas also serves as air for diluting the carbon dioxide diffused during stripping, so the need to separately add air to dilute the carbon dioxide after it has been diffused is omitted. It is possible to easily generate a gas that promotes the growth of photosynthetic organisms.

本発明に係る光合成生物の育成設備において、
前記育成室内の二酸化炭素の濃度が600~2000ppmとなるように、前記空気供給手段の空気供給量を調整する空気供給量調整手段をさらに備えることが好ましい。
In the photosynthetic organism cultivation equipment according to the present invention,
It is preferable to further include an air supply amount adjusting means for adjusting the air supply amount of the air supply means so that the concentration of carbon dioxide in the growth chamber is 600 to 2000 ppm.

本構成の光合成生物の育成設備によれば、育成促進ガス中の二酸化炭素の濃度が600~2000ppmとなるように空気供給手段の空気供給量を調整する空気供給量調整手段をさらに備えるので、光合成生物の育成室内の二酸化炭素濃度が600~2000ppmとなり、育成室内での作業者の安全が確保されるとともに、光合成生物の育成を効果的に促進することができる。 According to the cultivation facility for photosynthetic organisms of this configuration, since it is further provided with an air supply amount adjustment means for adjusting the air supply amount of the air supply means so that the concentration of carbon dioxide in the growth promoting gas is 600 to 2000 ppm, photosynthesis The carbon dioxide concentration in the growing room for organisms is 600 to 2,000 ppm, which ensures the safety of workers in the growing room and effectively promotes the growth of photosynthetic organisms.

図1は、本発明に係る光合成生物の育成設備の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a photosynthetic organism cultivation facility according to the present invention.

以下、本発明について、図1を参照しながら説明する。なお、以下の実施形態では、ごみ焼却施設で発生した燃焼排ガスに含まれる二酸化炭素を回収し、回収した二酸化炭素を利用して、育成室の植物や植物プランクトン、藻類等の光合成を行う光合成生物の育成を促進する光合成生物の育成設備を例に挙げて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることは意図しない。 The present invention will be described below with reference to FIG. In addition, in the following embodiments, photosynthetic organisms that recover carbon dioxide contained in combustion exhaust gas generated in a waste incineration facility and use the recovered carbon dioxide to carry out photosynthesis of plants, phytoplankton, algae, etc. in a growth chamber. The explanation will be given using an example of a cultivation facility for photosynthetic organisms that promotes the cultivation of. However, the present invention is not intended to be limited to the embodiments described below or the configurations described in the drawings.

<光合成生物の育成設備の全体構成>
図1は、本発明に係る光合成生物の育成設備の概略構成を示すブロック図である。図1に示される育成設備1は、主として、吸収塔11、再生塔13、空気供給手段15、空気供給量調整手段17、混合ガス供給手段19、及び育成ハウス21を備えている。
<Overall configuration of photosynthetic organism cultivation equipment>
FIG. 1 is a block diagram showing a schematic configuration of a photosynthetic organism cultivation facility according to the present invention. The growth facility 1 shown in FIG. 1 mainly includes an absorption tower 11, a regeneration tower 13, an air supply means 15, an air supply amount adjustment means 17, a mixed gas supply means 19, and a growth house 21.

<吸収塔>
吸収塔11は、塔内のアミン溶液(吸収材)に燃焼排ガス(二酸化炭素含有ガス)を気液接触可能に構成されている。吸収塔11の下部に導入された燃焼排ガスは、塔内でアミン溶液と気液接触し、燃焼排ガス中の二酸化炭素がアミン溶液に吸収される。なお、吸収塔11に導入される燃焼排ガスに対しては、予め、ごみ焼却施設における図示されない排ガス処理設備において、ダストや重金属類、SO、NO、ダイオキシン類等を除去する排ガス処理が施されている。
<Absorption tower>
The absorption tower 11 is configured to allow combustion exhaust gas (carbon dioxide-containing gas) to come into gas-liquid contact with the amine solution (absorbing material) in the tower. The combustion exhaust gas introduced into the lower part of the absorption tower 11 comes into gas-liquid contact with the amine solution within the tower, and carbon dioxide in the combustion exhaust gas is absorbed by the amine solution. Note that the combustion exhaust gas introduced into the absorption tower 11 is previously subjected to exhaust gas treatment to remove dust, heavy metals, SO x , NO x , dioxins, etc. in an exhaust gas treatment facility (not shown) in the waste incineration facility. has been done.

二酸化炭素が除去された燃焼排ガスは、吸収塔11の上部から抜き出され、系外に排出される。一方、二酸化炭素を吸収したアミン溶液は、吸収塔11の下部から抜き出され、ポンプ31によって再生塔13へと圧送される。 The combustion exhaust gas from which carbon dioxide has been removed is extracted from the upper part of the absorption tower 11 and discharged to the outside of the system. On the other hand, the amine solution that has absorbed carbon dioxide is extracted from the lower part of the absorption tower 11 and is pumped to the regeneration tower 13 by the pump 31.

<再生塔>
再生塔13は、吸収塔11において二酸化炭素を吸収したアミン溶液に対し空気によりストリッピングすることで二酸化炭素を放散させて、二酸化炭素を吸収可能な状態にアミン溶液を再生する。必要に応じて、ごみ焼却施設や排ガス処理設備等の廃熱を用いて再生塔13を加熱して、二酸化炭素の放散を促進させることができる。
<Regeneration Tower>
The regeneration tower 13 dissipates carbon dioxide by stripping the amine solution that has absorbed carbon dioxide in the absorption tower 11 with air, and regenerates the amine solution into a state capable of absorbing carbon dioxide. If necessary, the regeneration tower 13 can be heated using waste heat from a waste incineration facility, exhaust gas treatment facility, etc. to promote carbon dioxide dissipation.

<空気供給手段>
空気供給手段15は、ブロア41と、ブロア41から再生塔13へと延設される空気供給管43とを備え、ブロア41の作動により、ストリッピングガスとして用いる空気を、空気供給管43を介して再生塔13へと供給するように構成されている。
<Air supply means>
The air supply means 15 includes a blower 41 and an air supply pipe 43 extending from the blower 41 to the regeneration tower 13. The air supply means 15 supplies air to be used as a stripping gas through the air supply pipe 43 by operating the blower 41. It is configured such that the water is supplied to the regeneration tower 13.

<空気供給量調整手段>
空気供給量調整手段17は、空気供給管43に介設される流量制御弁45と、育成ハウス21の育成室21a内の二酸化炭素濃度を計測する二酸化炭素濃度計47とを備え、二酸化炭素濃度計47によって計測される育成室21a内の二酸化炭素濃度に基づいて、流量制御弁45により空気供給管43を流れる空気の流量を制御し、空気供給手段15の空気供給量を調整するように構成されている。
<Air supply amount adjustment means>
The air supply amount adjusting means 17 includes a flow rate control valve 45 interposed in the air supply pipe 43 and a carbon dioxide concentration meter 47 that measures the carbon dioxide concentration in the growth chamber 21a of the growth house 21. Based on the carbon dioxide concentration in the growth chamber 21a measured by the total 47, the flow rate of the air flowing through the air supply pipe 43 is controlled by the flow rate control valve 45, and the air supply amount of the air supply means 15 is adjusted. has been done.

空気供給量調整手段17によって供給量が調整された空気は、ストリッピングガスとして、再生塔13内のアミン溶液中に吹き込まれる。これにより、アミン溶液から二酸化炭素が放散される。二酸化炭素を放散したアミン溶液は、再生塔13の下部から抜き出され、ポンプ33により吸収塔11の上部へと圧送され、吸収塔11において二酸化炭素を吸収するための吸収材として再利用される。 The air whose supply amount is adjusted by the air supply amount adjusting means 17 is blown into the amine solution in the regeneration tower 13 as a stripping gas. This dissipates carbon dioxide from the amine solution. The amine solution from which carbon dioxide has been released is extracted from the lower part of the regeneration tower 13, pumped to the upper part of the absorption tower 11 by the pump 33, and reused as an absorbent for absorbing carbon dioxide in the absorption tower 11. .

再生塔13内には、ストリッピングガスとして吹き込まれた空気と、この空気によるストリッピングによってアミン溶液から放散された二酸化炭素とが混合状態で存在している。再生塔13内の空気と二酸化炭素との混合ガスは、再生塔13の上部から抜き出され、混合ガス供給手段19により育成ハウス21へと送られる。 In the regeneration tower 13, air blown as a stripping gas and carbon dioxide released from the amine solution by stripping with this air exist in a mixed state. The mixed gas of air and carbon dioxide in the regeneration tower 13 is extracted from the upper part of the regeneration tower 13 and sent to the growth house 21 by the mixed gas supply means 19.

<混合ガス供給手段>
混合ガス供給手段19は、再生塔13と育成ハウス21とを接続する混合ガス供給管51を備え、混合ガス供給管51に介設されるブロア53の作動により、再生塔13内の空気と二酸化炭素との混合ガスを、混合ガス供給管51を介して育成ハウス21へと供給するように構成されている。
<Mixed gas supply means>
The mixed gas supply means 19 includes a mixed gas supply pipe 51 that connects the regeneration tower 13 and the growth house 21, and by operating a blower 53 interposed in the mixed gas supply pipe 51, the air in the regeneration tower 13 and carbon dioxide are mixed. It is configured to supply a mixed gas with carbon to the growth house 21 via a mixed gas supply pipe 51.

<育成ハウス>
育成ハウス21は、光合成生物60を収容する育成室21aを区画形成する構造物である。育成ハウス21の一例としては、例えば、鋼管によって骨組を構成し、骨組を覆う合成樹脂製のフィルムで外壁を構成した、いわゆるビニールハウスが挙げられる。
<Nursing house>
The growth house 21 is a structure that partitions a growth chamber 21a that accommodates the photosynthetic organisms 60. An example of the growing house 21 is a so-called vinyl house, which has a frame made of steel pipes and an outer wall made of a synthetic resin film covering the frame.

[接触工程]
以上に述べた光合成生物の育成設備1では、吸収塔11において、二酸化炭素を含有する燃焼排ガスをアミン溶液に接触させる。これにより、燃焼排ガス中の二酸化炭素がアミン溶液に吸収される。二酸化炭素を吸収したアミン溶液は、吸収塔11の下部から抜き出され、ポンプ31によって再生塔13へと圧送される。
[Contact process]
In the photosynthetic organism cultivation facility 1 described above, the combustion exhaust gas containing carbon dioxide is brought into contact with the amine solution in the absorption tower 11. As a result, carbon dioxide in the combustion exhaust gas is absorbed into the amine solution. The amine solution that has absorbed carbon dioxide is extracted from the lower part of the absorption tower 11 and is pumped to the regeneration tower 13 by the pump 31.

[ストリッピング工程]
再生塔13においては、二酸化炭素を吸収したアミン溶液に対し、ストリッピングガスとしての空気を、空気供給手段15によって供給する。これにより、アミン溶液から二酸化炭素が放散される。
[Stripping process]
In the regeneration tower 13, air as a stripping gas is supplied by the air supply means 15 to the amine solution that has absorbed carbon dioxide. This dissipates carbon dioxide from the amine solution.

[混合ガス供給工程]
そして、アミン溶液から放散された二酸化炭素と、ストリッピングガスとして用いた空気との混合ガス(育成促進ガス)を、混合ガス供給手段19によって育成室21aへと供給する。これにより、育成室21a内の光合成生物60に育成促進ガスが供給される。
[Mixed gas supply process]
Then, a mixed gas (growth promoting gas) of carbon dioxide diffused from the amine solution and air used as a stripping gas is supplied to the growth chamber 21a by the mixed gas supply means 19. Thereby, the growth promoting gas is supplied to the photosynthetic organisms 60 in the growth chamber 21a.

[空気供給量調整工程]
育成室21a内の雰囲気中(栽培地の雰囲気中)の二酸化炭素濃度は、二酸化炭素濃度計47によって計測されている。その計測値が、600~2000ppmとなるように、流量制御弁45により空気供給管43を流れる空気の流量を制御し、ストリッピング工程での空気供給手段15の空気供給量を調整する。これにより、育成室21a内の雰囲気中の二酸化炭素濃度が600~2000ppmとなり、育成室21a内での作業者の安全が確保されるとともに、光合成生物60の育成を効果的に促進することができる。
[Air supply amount adjustment process]
The carbon dioxide concentration in the atmosphere within the growth chamber 21a (in the atmosphere of the cultivation area) is measured by a carbon dioxide concentration meter 47. The flow rate of air flowing through the air supply pipe 43 is controlled by the flow rate control valve 45, and the amount of air supplied by the air supply means 15 in the stripping process is adjusted so that the measured value is 600 to 2000 ppm. As a result, the carbon dioxide concentration in the atmosphere within the growth chamber 21a becomes 600 to 2000 ppm, ensuring the safety of workers within the growth chamber 21a, and effectively promoting the growth of the photosynthetic organisms 60. .

育成設備1を用いた上記の光合成生物60の育成方法においては、アミン溶液に対し、空気をストリッピングガスとして供給することで二酸化炭素を放散するようにされている。従って、水蒸気ストリッピングによる二酸化炭素の放散や、加熱による二酸化炭素の放散と比べて、吸収した二酸化炭素の放散に要するエネルギーを低く抑えることができる。 In the method for growing photosynthetic organisms 60 described above using the growing facility 1, carbon dioxide is diffused by supplying air as a stripping gas to the amine solution. Therefore, the energy required for dissipating absorbed carbon dioxide can be kept low compared to dissipating carbon dioxide by steam stripping or dissipating carbon dioxide by heating.

また、育成設備1を用いた上記の光合成生物60の育成方法においては、アミン溶液から放散された二酸化炭素と、ストリッピングガスとして用いた空気との混合ガスが、育成促進ガスとして、光合成生物60が収容された育成室21aへと供給される。このように、ストリッピングガスとして用いた空気が、ストリッピングで放散した二酸化炭素の希釈用空気を兼ねるようにされているので、放散後の二酸化炭素に空気を別途添加して希釈する工程を省略することができ、光合成生物の育成促進ガスを簡易に生成することができる。 In addition, in the above-mentioned method for growing photosynthetic organisms 60 using the growing facility 1, a mixed gas of carbon dioxide released from the amine solution and air used as a stripping gas is used as a growth promoting gas for photosynthetic organisms 60. is supplied to the growth chamber 21a that accommodates the seeds. In this way, the air used as the stripping gas also serves as air for diluting the carbon dioxide released during stripping, so the step of separately adding air to dilute the carbon dioxide after it has been released is omitted. It is possible to easily generate a gas that promotes the growth of photosynthetic organisms.

上記実施形態では、吸収材として、アミン化合物の水溶液であるアミン溶液を用いた例を示したが、二酸化炭素を吸収可能な吸収液であればよく、特にアミン溶液に限定されるものではない。また、吸収材として、例えば、各種アミンを担持してなるアミン系固体吸収材を用いてもよい。 In the above embodiment, an example was shown in which an amine solution, which is an aqueous solution of an amine compound, was used as the absorbent, but any absorbent liquid capable of absorbing carbon dioxide may be used, and the absorbent is not particularly limited to an amine solution. Further, as the absorbent material, for example, an amine-based solid absorbent material supporting various amines may be used.

本発明の光合成生物の育成方法、及び光合成生物の育成設備は、例えば、植物や植物プランクトン、藻類等の光合成を行う光合成生物の育成の用途において利用可能である。 The method for growing photosynthetic organisms and the equipment for growing photosynthetic organisms of the present invention can be used, for example, for growing photosynthetic organisms that perform photosynthesis, such as plants, phytoplankton, and algae.

1 光合成生物の育成設備
11 吸収塔
13 再生塔
15 空気供給手段
17 空気供給量調整手段
19 混合ガス供給手段
21a 育成室
60 光合成生物
1 Growth equipment for photosynthetic organisms 11 Absorption tower 13 Regeneration tower 15 Air supply means 17 Air supply amount adjustment means 19 Mixed gas supply means 21a Growth chamber 60 Photosynthetic organisms

Claims (4)

二酸化炭素含有ガスを吸収材に接触させる接触工程と、
二酸化炭素を吸収した前記吸収材が圧送される再生塔において、当該吸収材に対し、ストリッピングガスとして空気を供給するストリッピング工程と、
前記吸収材から放散された二酸化炭素と、当該二酸化炭素の希釈用空気を兼ねる、前記ストリッピングガスとして用いた空気との混合ガスを、光合成生物を収容する育成室へと供給する混合ガス供給工程と、
を包含し、
前記ストリッピング工程において、前記ストリッピングガスとして用いる空気は、ブロアの作動により前記再生塔に供給される光合成生物の育成方法。
a contacting step of bringing the carbon dioxide-containing gas into contact with the absorbent;
A stripping step of supplying air as a stripping gas to the absorbent in a regeneration tower to which the absorbent that has absorbed carbon dioxide is fed under pressure;
A mixed gas supply step of supplying a mixed gas of carbon dioxide emitted from the absorbing material and the air used as the stripping gas, which also serves as air for diluting the carbon dioxide, to a growth chamber that accommodates photosynthetic organisms. and,
encompasses ,
In the method for growing photosynthetic organisms , in the stripping step, air used as the stripping gas is supplied to the regeneration tower by operating a blower .
前記育成室内の二酸化炭素の濃度が600~2000ppmとなるように、前記ストリッピング工程での空気供給量を調整する空気供給量調整工程をさらに包含する請求項1に記載の光合成生物の育成方法。 The method for growing photosynthetic organisms according to claim 1, further comprising an air supply amount adjustment step of adjusting the air supply amount in the stripping step so that the concentration of carbon dioxide in the growth chamber is 600 to 2000 ppm. 二酸化炭素含有ガスを吸収材に接触させて当該ガス中の二酸化炭素を前記吸収材に吸収させる吸収塔と、
二酸化炭素を吸収した前記吸収材が圧送される再生塔において、当該吸収材に対し、ストリッピングガスとして空気を供給する空気供給手段と、
光合成生物を収容する育成室と、
前記吸収材から放散された二酸化炭素と、当該二酸化炭素の希釈用空気を兼ねる、前記ストリッピングガスとして用いた空気との混合ガスを、前記育成室へと供給する混合ガス供給手段と、
を備え
前記空気供給手段は、ブロアを備え、当該ブロアの作動により、前記ストリッピングガスとして用いる空気を前記再生塔に供給する光合成生物の育成設備。
an absorption tower that brings a carbon dioxide-containing gas into contact with an absorbent material and causes the carbon dioxide in the gas to be absorbed by the absorbent material;
In the regeneration tower to which the absorbent material that has absorbed carbon dioxide is fed under pressure, an air supply means for supplying air as a stripping gas to the absorbent material ;
A growth chamber that houses photosynthetic organisms;
A mixed gas supply means for supplying a mixed gas of carbon dioxide emitted from the absorbent material and air used as the stripping gas, which also serves as air for diluting the carbon dioxide, to the growth chamber;
Equipped with
The said air supply means is equipped with a blower, and the said blower is operated to supply the air used as the said stripping gas to the said regeneration tower .
前記育成室内の二酸化炭素の濃度が600~2000ppmとなるように、前記空気供給手段の空気供給量を調整する空気供給量調整手段をさらに備える請求項3に記載の光合成生物の育成設備。 4. The photosynthetic organism growing facility according to claim 3 , further comprising an air supply amount adjustment means for adjusting the air supply amount of the air supply means so that the concentration of carbon dioxide in the growth chamber is 600 to 2000 ppm.
JP2020026909A 2020-02-20 2020-02-20 Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms Active JP7422998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026909A JP7422998B2 (en) 2020-02-20 2020-02-20 Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026909A JP7422998B2 (en) 2020-02-20 2020-02-20 Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms

Publications (2)

Publication Number Publication Date
JP2021129521A JP2021129521A (en) 2021-09-09
JP7422998B2 true JP7422998B2 (en) 2024-01-29

Family

ID=77550538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026909A Active JP7422998B2 (en) 2020-02-20 2020-02-20 Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms

Country Status (1)

Country Link
JP (1) JP7422998B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230808A (en) 2003-12-23 2005-09-02 Inst Fr Petrole Collection method for carbon dioxide contained in fumes
JP2008253875A (en) 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Biogas system
JP2015226889A (en) 2014-06-02 2015-12-17 千代田化工建設株式会社 Method for treating liquid including amine-based organic compound
JP2017087094A (en) 2015-11-04 2017-05-25 日本電気株式会社 Tri-generation system and plant cultivation facility
JP2017153475A (en) 2016-02-29 2017-09-07 帝人フィルムソリューション株式会社 Agricultural house, and plant cultivation method using the agricultural house
JP2019083775A (en) 2017-11-09 2019-06-06 株式会社バリテック新潟 Carbonic acid gas supply device
JP2019106965A (en) 2017-12-20 2019-07-04 株式会社Ihi Management system and management method for plant cultivation facility
JP2019166481A (en) 2018-03-23 2019-10-03 月島環境エンジニアリング株式会社 Ammonia stripping treatment apparatus for wastewater containing acidic component and ammonia, and method therefor
JP2020015040A (en) 2019-08-16 2020-01-30 株式会社タクマ Exhaust gas treatment system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230808A (en) 2003-12-23 2005-09-02 Inst Fr Petrole Collection method for carbon dioxide contained in fumes
JP2008253875A (en) 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Biogas system
JP2015226889A (en) 2014-06-02 2015-12-17 千代田化工建設株式会社 Method for treating liquid including amine-based organic compound
JP2017087094A (en) 2015-11-04 2017-05-25 日本電気株式会社 Tri-generation system and plant cultivation facility
JP2017153475A (en) 2016-02-29 2017-09-07 帝人フィルムソリューション株式会社 Agricultural house, and plant cultivation method using the agricultural house
JP2019083775A (en) 2017-11-09 2019-06-06 株式会社バリテック新潟 Carbonic acid gas supply device
JP2019106965A (en) 2017-12-20 2019-07-04 株式会社Ihi Management system and management method for plant cultivation facility
JP2019166481A (en) 2018-03-23 2019-10-03 月島環境エンジニアリング株式会社 Ammonia stripping treatment apparatus for wastewater containing acidic component and ammonia, and method therefor
JP2020015040A (en) 2019-08-16 2020-01-30 株式会社タクマ Exhaust gas treatment system

Also Published As

Publication number Publication date
JP2021129521A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP5578469B2 (en) Carbon dioxide supply system for horticultural facilities by pressure swing method using carbon dioxide in combustion exhaust gas
JP6179915B2 (en) Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas
TW201632250A (en) Absorption type - removal / condensing apparatus
JP2008296216A (en) Carbon dioxide-recovering device using aqueous ammonia, and method therefor
WO2013114488A1 (en) Co2 recovery device
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
JPH0751537A (en) Removal of co2 in co2-containing gas
CA2858803A1 (en) Carbon dioxide chemical absorption system installed with vapor recompression equipment
JP2019062862A (en) Carbon dioxide concentrator
JP7422998B2 (en) Method for growing photosynthetic organisms and equipment for growing photosynthetic organisms
US20130313475A1 (en) Apparatus and process for purification of a nitrosamine-contaminated product from an operating plant
JP5073264B2 (en) Greenhouse cultivation system
AU2014203222A1 (en) Acid gas recovery system and acid gas recovery apparatus
KR20130134149A (en) Method of treating wastewater containing ammonia and apparatus
JP6764644B2 (en) Exhaust gas supply system and exhaust gas supply method
KR20130076596A (en) Method for simultaneous removal of co2, h2s and hcn using ammonia
JP4489536B2 (en) Carbon dioxide gas application method for greenhouse cultivation
CN107837676B (en) A kind of VOCs purification system of petrochemical industry exhaust gas
JP2022047559A (en) Agricultural carbon dioxide gas feeding device
CN108970311A (en) A kind of waste gas treatment process
CN211358347U (en) Spray tower for collecting waste gas treatment
CN107344052A (en) Gas cleaning and plume control method and device
KR101416546B1 (en) System for capturing gas using absorbent or adsorbent and method thereof
JP2871421B2 (en) Method for removing carbon dioxide in flue gas
JP2021130633A (en) Methane manufacturing method, methanol manufacturing method, methane manufacturing facility and methanol manufacturing facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7422998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150