JP2007038188A - Method and apparatus for desulfurizing hydrogen sulfide-containing gas - Google Patents

Method and apparatus for desulfurizing hydrogen sulfide-containing gas Download PDF

Info

Publication number
JP2007038188A
JP2007038188A JP2005228137A JP2005228137A JP2007038188A JP 2007038188 A JP2007038188 A JP 2007038188A JP 2005228137 A JP2005228137 A JP 2005228137A JP 2005228137 A JP2005228137 A JP 2005228137A JP 2007038188 A JP2007038188 A JP 2007038188A
Authority
JP
Japan
Prior art keywords
liquid
hydrogen sulfide
gas
carbon dioxide
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005228137A
Other languages
Japanese (ja)
Other versions
JP4862314B2 (en
Inventor
Nobuhiro Oda
信博 織田
Toshihiro Kiyokawa
智弘 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005228137A priority Critical patent/JP4862314B2/en
Publication of JP2007038188A publication Critical patent/JP2007038188A/en
Application granted granted Critical
Publication of JP4862314B2 publication Critical patent/JP4862314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for desulfurizing a hydrogen sulfide-containing gas capable of lowering pH decrease caused by carbon dioxide and efficiently removing hydrogen sulfide from a gas containing hydrogen sulfide and carbon dioxide. <P>SOLUTION: The method for desulfurizing a hydrogen sulfide-containing gas comprises bringing a gas containing hydrogen sulfide and carbon dioxide in contact with an alkaline absorption liquid of which alkali metal ion concentration after removing an alkali metal ion derived from neutral salts is 0.25 to 3.5 mol/L to transfer the hydrogen sulfide to the absorption liquid, then supplying the absorption liquid into an aerobic organism treatment tank in which sulfur-oxidizing bacteria are used, and circulating the treated liquid discharging from the aerobic organism treatment tank to be used as the alkaline absorption liquid. The apparatus for desulfurizing a hydrogen sulfide-containing gas comprises a gas-liquid contact device for bringing the gas containing hydrogen sulfide and carbon dioxide in contact with the alkaline absorption liquid, the aerobic organism treatment tank for treating the absorption liquid, to which the hydrogen sulfide is transferred, by the sulfur-oxidizing bacteria, a solid-liquid separation unit for solid-liquid separating the treated absorption liquid, and a liquid feed path for feeding the solid-liquid separated liquid to the gas-liquid contact device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、硫化水素含有ガスの脱硫方法及び脱硫装置に関する。さらに詳しくは、本発明は、各種の工場や処理場などで発生する硫化水素と二酸化炭素を含むガスから、従来のアルカリスクラバーに比較して二酸化炭素によるpH低下が少なく、硫化水素を効率よく除去することができる硫化水素含有ガスの脱硫方法及び脱硫装置に関する。   The present invention relates to a desulfurization method and a desulfurization apparatus for a hydrogen sulfide-containing gas. More specifically, the present invention removes hydrogen sulfide efficiently from gas containing hydrogen sulfide and carbon dioxide generated in various factories and treatment plants with less pH drop due to carbon dioxide compared to conventional alkaline scrubbers. The present invention relates to a desulfurization method and a desulfurization apparatus for hydrogen sulfide-containing gas.

化学工場、製紙工場、食品飲料製造工場、ゴミ焼却場、し尿処理場、下水処理場などから排出される排ガスは、硫化水素と同時に二酸化炭素を含有するものが多い。硫化水素と二酸化炭素を含有するガスの処理方法として、アルカリ吸収処理と生物酸化処理との組み合わせが検討されている。   Exhaust gas discharged from chemical factories, paper mills, food and beverage factories, garbage incineration plants, human waste treatment plants, sewage treatment plants, etc. often contains carbon dioxide as well as hydrogen sulfide. As a method for treating a gas containing hydrogen sulfide and carbon dioxide, a combination of alkali absorption treatment and biological oxidation treatment has been studied.

例えば、硫化水素含有ガスを、大容量の設備を必要とすることなく、多量のアルカリを使用することなく、低コストで効率的に処理して、硫化水素濃度の低い処理ガスを得る方法として、硫化水素を含む原ガスを活性汚泥、生物処理水又は工水と接触させて、原ガス中の硫化水素を粗取りする一次脱硫工程と、一次脱硫工程の処理ガスを湿式又は乾式でアルカリと接触させてガス中に残留する硫化水素を除去する二次脱硫工程とを有する硫化水素含有ガスの脱硫方法が提案されている(特許文献1)。   For example, as a method of obtaining a processing gas having a low hydrogen sulfide concentration by efficiently processing a hydrogen sulfide-containing gas at a low cost without using a large amount of equipment, without using a large amount of alkali, The primary gas containing hydrogen sulfide is brought into contact with activated sludge, biologically treated water or industrial water, and the hydrogen sulfide in the raw gas is roughly removed, and the treated gas in the primary desulfurizing process is contacted with alkali in a wet or dry manner. A hydrogen sulfide-containing gas desulfurization method has been proposed which includes a secondary desulfurization step of removing hydrogen sulfide remaining in the gas (Patent Document 1).

また、メタンガスの含有率を低下させず、低コストで効率よく、しかも高い脱硫率で脱硫でき、かつ脱硫に伴って新たな廃液を生じない消化ガスの脱硫方法及び装置として、有機性物質の嫌気性微生物消化により発生する消化ガスを、酸素を混合することなく、有機性物質の好気性微生物酸化における処理液からなる洗浄液のスプレー液と接触させて、消化ガス中の硫化水素を洗浄液に吸収させる吸収工程と、吸収工程で得られた吸収液を好気性微生物酸化して、吸収された硫化水素を酸化する酸化工程とを含む消化ガスの脱硫方法が提案されている(特許文献2)。   In addition, as a desulfurization method and apparatus for digestion gas that does not reduce the content of methane gas, can be efficiently desulfurized at a low cost, and can be desulfurized at a high desulfurization rate, and does not generate a new waste liquid as a result of desulfurization, The digestion gas generated by the digestive microorganism digestion is brought into contact with the spray solution of the cleaning liquid consisting of the treatment liquid in the aerobic microbial oxidation of organic substances without mixing oxygen, and the hydrogen sulfide in the digestion gas is absorbed by the cleaning liquid A digestion gas desulfurization method has been proposed that includes an absorption step and an oxidation step in which the absorption liquid obtained in the absorption step is subjected to aerobic microorganism oxidation to oxidize absorbed hydrogen sulfide (Patent Document 2).

しかし、排ガス中の二酸化炭素の濃度比が高いと、アルカリが二酸化炭素に消費され、吸収液のpHが低下して吸収率も低下し、硫化水素の除去率が低下するという問題があった。
特開2002−79051号公報(第2頁) 特許第3235131号公報(第1−2頁)
However, when the concentration ratio of carbon dioxide in the exhaust gas is high, alkali is consumed by carbon dioxide, the pH of the absorbing solution is lowered, the absorption rate is lowered, and the hydrogen sulfide removal rate is lowered.
JP 2002-79051 A (second page) Japanese Patent No. 3235131 (page 1-2)

本発明は、各種の工場や処理場などで発生する硫化水素と二酸化炭素を含むガスから、従来のアルカリスクラバーに比較して二酸化炭素によるpH低下が少なく、硫化水素を効率よく除去することができる硫化水素含有ガスの脱硫方法及び脱硫装置を提供することを目的としてなされたものである。   The present invention is capable of efficiently removing hydrogen sulfide from a gas containing hydrogen sulfide and carbon dioxide generated in various factories and treatment plants with less pH drop due to carbon dioxide compared to a conventional alkali scrubber. The object of the present invention is to provide a desulfurization method and desulfurization apparatus for a hydrogen sulfide-containing gas.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、多量の二酸化炭素を含有する排ガス中の硫化水素を吸収するにあたり、吸収液中のアルカリ金属イオン濃度を高めることにより、効果的に硫化水素を吸収し得ることを見いだし、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have increased the alkali metal ion concentration in the absorption liquid when absorbing hydrogen sulfide in exhaust gas containing a large amount of carbon dioxide. It has been found that hydrogen sulfide can be absorbed effectively, and the present invention has been completed based on this finding.

すなわち、本発明は、
(1)硫化水素と二酸化炭素とを含むガスを、中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度が0.25〜3.5モル/Lであるアルカリ性吸収液と接触させて、硫化水素を該吸収液に移行させたのち、該吸収液を硫黄酸化細菌を用いた好気性生物処理槽に供給し、該好気性生物処理槽から流出する処理液を前記アルカリ性吸収液として循環使用することを特徴とする硫化水素含有ガスの脱硫方法、
(2)アルカリ金属イオンがナトリウムイオン又はカリウムイオンであり、アルカリ金属イオンが水酸化物、炭酸塩又は重炭酸塩として供給される(1)記載の硫化水素含有ガスの脱硫方法、
(3)硫化水素と二酸化炭素とを含むガスをアルカリ性吸収液と接触させる気液接触装置、硫化水素が移行した該吸収液を硫黄酸化細菌により処理する好気性生物処理槽及び処理された吸収液を気液接触装置に送液する送液路を有することを特徴とする硫化水素含有ガスの脱硫装置、及び、
(4)硫化水素と二酸化炭素とを含むガスをアルカリ性吸収液と接触させる気液接触装置、硫化水素が移行した該吸収液を硫黄酸化細菌により処理する好気性生物処理槽、処理された吸収液を固液分離する固液分離部及び固液分離された液を気液接触装置に送液する送液路を有することを特徴とする硫化水素含有ガスの脱硫装置、
を提供するものである。
That is, the present invention
(1) contacting a gas containing hydrogen sulfide and carbon dioxide with an alkaline absorbent having an alkali metal ion concentration of 0.25 to 3.5 mol / L excluding alkali metal ions derived from neutral salts; After transferring hydrogen sulfide to the absorption liquid, the absorption liquid is supplied to an aerobic biological treatment tank using sulfur-oxidizing bacteria, and the treatment liquid flowing out of the aerobic biological treatment tank is recycled as the alkaline absorption liquid. A method for desulfurizing a hydrogen sulfide-containing gas, characterized by:
(2) The method for desulfurizing a hydrogen sulfide-containing gas according to (1), wherein the alkali metal ion is sodium ion or potassium ion, and the alkali metal ion is supplied as a hydroxide, carbonate or bicarbonate,
(3) Gas-liquid contact device for bringing a gas containing hydrogen sulfide and carbon dioxide into contact with an alkaline absorbent, an aerobic biological treatment tank for treating the absorbent with transferred hydrogen sulfide with sulfur-oxidizing bacteria, and a treated absorbent A desulfurization device for hydrogen sulfide-containing gas, characterized by having a liquid feed passage for feeding the gas to a gas-liquid contact device, and
(4) Gas-liquid contact device for bringing a gas containing hydrogen sulfide and carbon dioxide into contact with an alkaline absorbent, an aerobic biological treatment tank for treating the absorbent with transferred hydrogen sulfide with sulfur-oxidizing bacteria, and a treated absorbent A desulfurization apparatus for a hydrogen sulfide-containing gas, comprising: a solid-liquid separation unit for solid-liquid separation; and a liquid feeding path for feeding the solid-liquid separated liquid to a gas-liquid contact device,
Is to provide.

本発明の硫化水素含有ガスの脱硫方法及び脱硫装置によれば、高濃度の二酸化炭素を含む硫化水素含有ガスをアルカリ性吸収液を用いて処理して、二酸化炭素によるアルカリの消費にもとづく吸収液のpHの低下が少なく、効果的に硫化水素を高い除去率で除去することができる。   According to the hydrogen sulfide-containing gas desulfurization method and desulfurization apparatus of the present invention, a hydrogen sulfide-containing gas containing high-concentration carbon dioxide is treated with an alkaline absorption liquid, and the absorption liquid based on the consumption of alkali by carbon dioxide is obtained. There is little decrease in pH, and hydrogen sulfide can be effectively removed at a high removal rate.

本発明の硫化水素含有ガスの脱硫方法においては、硫化水素と二酸化炭素とを含むガスを、中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度が0.25〜3.5モル/Lであるアルカリ性吸収液と接触させて、硫化水素を該吸収液に移行させたのち、該吸収液を硫黄酸化細菌を用いた好気性生物処理槽に供給し、該好気性生物処理槽から流出する処理液を前記アルカリ性吸収液として循環使用する。   In the hydrogen sulfide-containing gas desulfurization method of the present invention, the alkali metal ion concentration of the gas containing hydrogen sulfide and carbon dioxide, excluding alkali metal ions derived from neutral salts, is 0.25 to 3.5 mol / L. The hydrogen sulfide is transferred to the absorption liquid by being brought into contact with the alkaline absorption liquid, and then the absorption liquid is supplied to the aerobic biological treatment tank using sulfur-oxidizing bacteria and flows out of the aerobic biological treatment tank. The treatment liquid is circulated and used as the alkaline absorbing liquid.

図1は、本発明方法の一態様の工程系統図である。本態様においては、硫化水素と二酸化炭素とを含むガスを充填塔1に送り、塔頂の液分散器2から供給される中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度が0.25〜3.5モル/Lのアルカリ性吸収液と接触させる。ガス中の硫化水素は、アルカリ性吸収液に移行し、硫化水素の大部分が除去されたガスが塔頂の排気管から排出される。硫化水素を吸収したアルカリ性吸収液は、送液管3を経由して好気性生物処理槽4へ送られる。好気性生物処理槽は、好気性酸化部5と必要により固液分離部6からなり、好気性酸化部において槽底の散気管7から空気が供給され、硫化物イオンが硫黄酸化細菌により酸化されて硫黄単体、亜硫酸イオン、硫酸イオンなどになる。前記生物処理槽からの処理液の一部は、ポンプ8により返送液管9を経由して充填塔に送られ、アルカリ性吸収液として循環使用される。好気性生物処理槽あるいは充填塔に送られる処理液には、アルカリ水溶液が添加されて、アルカリ金属イオン濃度が調整される。処理液の残部は、排水として処理される。   FIG. 1 is a process flow diagram of one embodiment of the method of the present invention. In this embodiment, the gas containing hydrogen sulfide and carbon dioxide is sent to the packed column 1 and the alkali metal ion concentration excluding the alkali metal ions derived from the neutral salt supplied from the liquid disperser 2 at the top of the column is 0. Contact with 25-3.5 mol / L alkaline absorbent. The hydrogen sulfide in the gas moves to the alkaline absorbing liquid, and the gas from which most of the hydrogen sulfide has been removed is discharged from the exhaust pipe at the top of the tower. The alkaline absorbing liquid that has absorbed hydrogen sulfide is sent to the aerobic biological treatment tank 4 via the liquid feeding pipe 3. The aerobic biological treatment tank includes an aerobic oxidation unit 5 and, if necessary, a solid-liquid separation unit 6. Air is supplied from the diffuser tube 7 at the bottom of the tank in the aerobic oxidation unit, and sulfide ions are oxidized by sulfur oxidizing bacteria. It becomes sulfur simple substance, sulfite ion, sulfate ion and so on. A part of the treatment liquid from the biological treatment tank is sent to the packed tower via the return liquid pipe 9 by the pump 8 and circulated and used as an alkaline absorbing liquid. An alkali aqueous solution is added to the treatment liquid sent to the aerobic biological treatment tank or packed tower to adjust the alkali metal ion concentration. The remainder of the treatment liquid is treated as waste water.

本発明方法は、下水、し尿、産業排水、汚泥などの有機性物質の嫌気性微生物消化により発生する消化ガスなどの少量の硫化水素と多量の二酸化炭素を含有するガスの脱硫に好適に適用することができる。硫化水素は、水中で解離して水硫化イオン(HS-)となり、吸収除去される。吸収液に移行した硫化水素は、液のアルカリ性が強いと解離割合が多くなるために、アルカリ性の方が効率よく吸収除去される。しかし、被処理ガス中に二酸化炭素が多く存在すると、アルカリ性の吸収液は二酸化炭素を多く吸収して、そのpHを低下させてしまい、硫化水素の解離が妨げられ、結果として硫化水素の吸収除去が効率的に進行しなくなる。本発明方法によれば、硫化水素含有ガス中に二酸化炭素が多量に存在しても、アルカリ性吸収液のpHを比較的高めに保持することができ、硫化水素を効率よく除去することができる。 The method of the present invention is suitably applied to desulfurization of a gas containing a small amount of hydrogen sulfide and a large amount of carbon dioxide such as digestion gas generated by anaerobic microbial digestion of organic substances such as sewage, human waste, industrial wastewater, and sludge. be able to. Hydrogen sulfide is dissociated in water to form hydrosulfide ions (HS ) and is absorbed and removed. The hydrogen sulfide transferred to the absorbing solution has a higher dissociation ratio when the alkalinity of the solution is strong, so that the alkali is more efficiently absorbed and removed. However, if a large amount of carbon dioxide is present in the gas to be treated, the alkaline absorbing solution absorbs a large amount of carbon dioxide and lowers its pH, preventing the dissociation of hydrogen sulfide, resulting in the absorption and removal of hydrogen sulfide. Will not proceed efficiently. According to the method of the present invention, even when a large amount of carbon dioxide is present in the hydrogen sulfide-containing gas, the pH of the alkaline absorbent can be kept relatively high, and hydrogen sulfide can be efficiently removed.

本発明方法に用いるアルカリ性吸収液は、中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度の濃度が0.25〜3.5モル/Lであり、より好ましくは0.5〜2.5モル/Lである。中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度が0.25モル/L未満であると、二酸化炭素の吸収によるpH低下のために硫化水素の吸収効率が低く、硫化水素の除去率が低下して、処理ガスの硫化水素濃度が十分に下がらないおそれがある。中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度が3.5モル/Lを超えると、重炭酸ナトリウム塩などの析出が起こり、偏流によりガス吸収反応が進みにくくなって、硫化水素の除去率が低下し、処理ガスの硫化水素濃度が十分に下がらないか、あるいは、処理液が流れないおそれがある。   The alkaline absorbing liquid used in the method of the present invention has an alkali metal ion concentration of 0.25 to 3.5 mol / L excluding alkali metal ions derived from neutral salts, and more preferably 0.5 to 2.5. 5 mol / L. When the alkali metal ion concentration excluding alkali metal ions derived from neutral salts is less than 0.25 mol / L, the absorption efficiency of hydrogen sulfide is low due to the decrease in pH due to absorption of carbon dioxide, and the removal rate of hydrogen sulfide. May decrease, and the hydrogen sulfide concentration of the processing gas may not be sufficiently reduced. When the alkali metal ion concentration excluding alkali metal ions derived from neutral salts exceeds 3.5 mol / L, precipitation of sodium bicarbonate salt and the like occurs, and the gas absorption reaction is difficult to proceed due to drift, and hydrogen sulfide There is a possibility that the removal rate is lowered and the hydrogen sulfide concentration of the processing gas is not sufficiently lowered or the processing liquid does not flow.

中性塩は、水に溶かすとほぼ中性を示す塩であり、強酸と強塩基の中和により生成する正塩である。本発明方法においては、中性塩のカチオン成分がアルカリ金属イオンなので、中性塩のアニオン成分は、硫酸イオン、塩化物イオン、硝酸イオンなどである。中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度は、アルカリ性吸収液中の全アルカリ金属イオン濃度と、中性塩の各アニオン成分の濃度を測定し、全アルカリ金属イオン濃度から、各アニオン成分の濃度の当量に相当する量を減ずることによって求めることができる。簡易的には、Mアルカリ度(pH4.8酸消費量)を測定することで求めることができる。   A neutral salt is a salt that is almost neutral when dissolved in water, and is a normal salt formed by neutralization of a strong acid and a strong base. In the method of the present invention, since the cation component of the neutral salt is an alkali metal ion, the anion component of the neutral salt is sulfate ion, chloride ion, nitrate ion or the like. The alkali metal ion concentration excluding the alkali metal ions derived from the neutral salt was determined by measuring the total alkali metal ion concentration in the alkaline absorbent and the concentration of each anion component of the neutral salt. It can be determined by reducing the amount corresponding to the equivalent of the concentration of the anion component. In simple terms, it can be determined by measuring the M alkalinity (pH 4.8 acid consumption).

本発明方法に用いる硫黄酸化細菌としては、例えば、チオバチルス属、チオトリックス属、ベギアトア属、チオマリヌス属、シュードモナス属などの細菌を挙げることができる。本発明方法においては、硫化水素含有ガスの処理に先立って、硫黄酸化細菌を下水、産業排水などの活性汚泥から馴養することが好ましい。硫黄酸化細菌の馴養は、硫化ナトリウム、チオ硫酸塩、亜硫酸塩などの不揮発性の還元性硫黄化合物を用いて行うことが好ましい。不揮発性の還元性硫黄化合物を用いることにより、還元性硫黄化合物の放散による大気汚染を防止することができる。好気性活性汚泥法により発生した活性汚泥を好気性生物処理槽に入れ、不揮発性の還元性化合物とアンモニア、リンなどの栄養源を溶解した溶液を供給し、曝気しつつ処理することにより、硫黄酸化細菌を馴養することができる。好気性生物処理槽液の還元性硫黄化合物が検出されなくなることにより、硫黄酸化細菌の馴養の完了を確認することができる。   Examples of the sulfur-oxidizing bacterium used in the method of the present invention include bacteria such as thiobacillus genus, thiotrix genus, begiatoa genus, thiomarinus genus, and pseudomonas genus. In the method of the present invention, it is preferable to acclimate sulfur-oxidizing bacteria from activated sludge such as sewage and industrial wastewater prior to the treatment of the hydrogen sulfide-containing gas. Acclimatization of sulfur-oxidizing bacteria is preferably performed using a non-volatile reducing sulfur compound such as sodium sulfide, thiosulfate, or sulfite. By using a non-volatile reducing sulfur compound, air pollution due to the emission of the reducing sulfur compound can be prevented. Activated sludge generated by the aerobic activated sludge method is placed in an aerobic biological treatment tank, and a solution in which nutrient sources such as non-volatile reducing compounds and ammonia and phosphorus are dissolved is supplied. You can acclimatize oxidized bacteria. The completion of acclimatization of the sulfur-oxidizing bacteria can be confirmed by the detection of the reducing sulfur compound in the aerobic biological treatment tank liquid.

本発明方法においては、アルカリ金属イオンがナトリウムイオン又はカリウムイオンであることが好ましい。ナトリウムイオン又はカリウムイオンを含有するアルカリ性吸収液は、硫化水素の移行性が良好であり、効率的に硫化水素を吸収して除去することができる。本発明方法においては、アルカリ金属イオンが、水酸化物、炭酸塩、重炭酸塩として供給されることが好ましい。ヒドロキシルイオン、炭酸イオン又は重炭酸イオンを含有するアルカリ性吸収液は、硫化水素の移行性が良好であり、効率的に硫化水素を吸収して除去することができる。   In the method of the present invention, the alkali metal ion is preferably a sodium ion or a potassium ion. Alkaline absorption liquids containing sodium ions or potassium ions have good hydrogen sulfide migration, and can efficiently absorb and remove hydrogen sulfide. In the method of the present invention, alkali metal ions are preferably supplied as hydroxides, carbonates, and bicarbonates. Alkaline absorption liquids containing hydroxyl ions, carbonate ions or bicarbonate ions have good hydrogen sulfide migration, and can efficiently absorb and remove hydrogen sulfide.

本発明の硫化水素含有ガスの脱硫装置の第一の態様は、硫化水素と二酸化炭素とを含むガスをアルカリ性吸収液と接触させる気液接触装置、硫化水素が移行した該吸収液を硫黄酸化細菌により処理する好気性生物処理槽及び処理された吸収液を気液接触装置に送液する送液路を有する装置である。
本発明の硫化水素含有ガスの脱硫装置の第二の態様は、硫化水素と二酸化炭素とを含むガスをアルカリ性吸収液と接触させる気液接触装置、硫化水素が移行した該吸収液を硫黄酸化細菌により処理する好気性生物処理槽、処理された吸収液を固液分離する固液分離部及び固液分離された液を気液接触装置に送液する送液路を有する装置である。
A first aspect of the desulfurization apparatus for hydrogen sulfide-containing gas of the present invention is a gas-liquid contact apparatus for bringing a gas containing hydrogen sulfide and carbon dioxide into contact with an alkaline absorption liquid, and the absorption liquid to which hydrogen sulfide has been transferred is converted into a sulfur-oxidizing bacterium. The apparatus has an aerobic biological treatment tank to be treated and a liquid feed path for feeding the treated absorption liquid to the gas-liquid contact device.
The second aspect of the desulfurization apparatus for hydrogen sulfide-containing gas of the present invention is a gas-liquid contact apparatus for bringing a gas containing hydrogen sulfide and carbon dioxide into contact with an alkaline absorption liquid, and the absorption liquid to which hydrogen sulfide has migrated is converted into a sulfur-oxidizing bacterium. An aerobic biological treatment tank to be treated by the above, a solid-liquid separation part for solid-liquid separation of the treated absorption liquid, and a liquid feed path for feeding the solid-liquid separated liquid to the gas-liquid contact device.

本発明装置に用いる気液接触装置に特に制限はなく、例えば、充填塔、濡れ壁塔、段塔、スプレー塔、スクラバー、気泡塔、気泡撹拌槽などを挙げることができる。これらの中で、充填塔及びスプレー塔を好適に用いることができる。充填塔は、構造が簡単で取り扱いが容易であり、ガスの圧力損失が少ない。スプレー塔は、液の噴霧にかなりの動力が必要であるが、構造が簡単で建設費が安く、ガスの圧力損失が少ない。スプレー塔には、液の飛沫同伴を防止する手段を設けることが好ましい。   There are no particular limitations on the gas-liquid contact device used in the apparatus of the present invention, and examples thereof include a packed tower, a wet wall tower, a plate tower, a spray tower, a scrubber, a bubble tower, and a bubble stirring tank. Among these, a packed tower and a spray tower can be preferably used. The packed tower has a simple structure, is easy to handle, and has a low pressure loss of gas. The spray tower requires considerable power to spray the liquid, but has a simple structure, low construction cost, and low gas pressure loss. The spray tower is preferably provided with means for preventing liquid entrainment.

本発明装置に用いる好気性生物処理槽に特に制限はなく、例えば、機械撹拌式エアレーションタンク、散気式エアレーションタンクのいずれをも用いることができる。好気性生物処理方式に特に制限はなく、例えば、押出流れ型又は完全混合型の標準活性汚泥法、ステップエアレーション法、コンタクトスタビリゼーション法などを挙げることができる。なお、必要に応じて、処理された処理液を固液分離するための固液分離部を設けてもよい。   There is no restriction | limiting in particular in the aerobic biological treatment tank used for this invention apparatus, For example, any of a mechanical stirring type aeration tank and an aeration type aeration tank can be used. The aerobic biological treatment method is not particularly limited, and examples thereof include an extruded flow type or a fully mixed type standard activated sludge method, a step aeration method, and a contact stabilization method. In addition, you may provide the solid-liquid separation part for carrying out solid-liquid separation of the processed process liquid as needed.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、液中に存在するH2S、HS-及びS2-の硫黄の合計を、全S2-と表示する。全S2-濃度は、溶存硫化物測定用検知管[光明理化学工業(株)、200SB]を用いて測定した。また、実施例及び比較例において表示されるナトリウムイオン濃度は、液中に存在する中性塩に由来するナトリウムイオンを除いたナトリウムイオン濃度である。ナトリウムイオン濃度は、JIS K 0102 15.1にしたがって酸消費量(pH4.8)を測定することにより求めた。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples and comparative examples, the total of sulfur in H 2 S, HS and S 2− present in the liquid is expressed as all S 2− . The total S 2− concentration was measured using a detector tube for measuring dissolved sulfide [Komei Chemical Co., Ltd., 200SB]. Moreover, the sodium ion concentration displayed in an Example and a comparative example is a sodium ion concentration except the sodium ion derived from the neutral salt which exists in a liquid. The sodium ion concentration was determined by measuring the acid consumption (pH 4.8) according to JIS K 0102 15.1.

実施例1
化学工場の高負荷嫌気処理設備から発生する嫌気性バイオガスと類似の試験用混合ガスを用いて、図1に示す硫黄酸化槽を備えた充填塔ガス吸収方式の生物脱硫試験を行った。
試験用混合ガスの組成は、二酸化炭素29.85体積%、硫化水素0.15体積%、窒素70.00体積%である。充填塔の寸法は、内径30mm、高さ4,000mmであり、称呼寸法6mmの磁製ラシヒリングを高さ2,500mmまで充填した。硫黄酸化槽の寸法は、長さ300mm、幅100mm、高さ600mm、実容量10Lであり、工場排水の活性汚泥混合液を槽に入れ、チオ硫酸ナトリウム550mg/Lを添加した工場排水を2週間供給して硫黄酸化細菌の馴養を行ったのち、試験を開始した。
充填塔に試験用混合ガスを350L(標準状態)/h流入させ、硫黄酸化槽から流出する処理液をアルカリ性吸収液として34L/h循環させた。硫黄酸化槽に0.6モル/L水酸化ナトリウム水溶液を添加して、pH8.8及び循環吸収液のMアルカリ度が0.5モル/Lを保たれるように制御した。硫黄酸化細菌により吸収された硫化水素の一部は硫酸イオンにまで酸化されるために、Mアルカリ度は0.6モル/Lより低下し、約0.5モル/Lとなった。充填塔入口のpHは硫黄酸化槽と同じpH8.8であったが、吸収塔内で二酸化炭素、硫化水素などの酸性ガスを吸収するために、充填塔出口のpHは8.3まで低下した。このとき、充填塔から排出される処理ガスの硫化水素濃度は30ppm(体積比)であり、硫化水素の除去率は98.0%であった。
実施例2
硫黄酸化槽のpH制御用の水酸化ナトリウム水溶液の濃度を2.7モル/Lとした以外は、実施例1と同じ操作を行い、硫黄酸化槽のpHを8.8に制御した。硫黄酸化細菌により吸収された硫化水素の一部は硫酸イオンにまで酸化されるために、Mアルカリ度は2.7モル/Lより低下し、約2.5モル/Lとなった。充填塔出口のpHは8.7で、充填塔から排出される処理ガスの硫化水素濃度は25ppm(体積比)であり、硫化水素の除去率は98.3%であった。
Example 1
Using a mixed gas for test similar to anaerobic biogas generated from a high-load anaerobic treatment facility in a chemical factory, a biodesulfurization test of a packed tower gas absorption system equipped with a sulfur oxidation tank shown in FIG. 1 was conducted.
The composition of the test gas mixture is 29.85% by volume of carbon dioxide, 0.15% by volume of hydrogen sulfide, and 70.00% by volume of nitrogen. The dimensions of the packed tower were an inner diameter of 30 mm and a height of 4,000 mm, and a magnetic Raschig ring having a nominal dimension of 6 mm was packed to a height of 2500 mm. The dimensions of the sulfur oxidation tank are length 300mm, width 100mm, height 600mm, actual capacity 10L, put the activated sludge mixed liquid of factory wastewater into the tank, and add factory wastewater with sodium thiosulfate 550mg / L for 2 weeks After supplying and acclimatizing the sulfur-oxidizing bacteria, the test was started.
The test mixed gas was introduced into the packed tower at 350 L (standard state) / h, and the treatment liquid flowing out from the sulfur oxidation tank was circulated as 34 L / h as an alkaline absorbent. A 0.6 mol / L sodium hydroxide aqueous solution was added to the sulfur oxidation tank to control the pH 8.8 and the M alkalinity of the circulating absorbent to be maintained at 0.5 mol / L. Part of the hydrogen sulfide absorbed by the sulfur-oxidizing bacteria is oxidized to sulfate ions, so that the M alkalinity is reduced from 0.6 mol / L to about 0.5 mol / L. The pH at the inlet of the packed tower was 8.8, the same as that of the sulfur oxidation tank, but the pH at the outlet of the packed tower was lowered to 8.3 in order to absorb acidic gases such as carbon dioxide and hydrogen sulfide in the absorption tower. . At this time, the hydrogen sulfide concentration of the processing gas discharged from the packed tower was 30 ppm (volume ratio), and the removal rate of hydrogen sulfide was 98.0%.
Example 2
The same operation as in Example 1 was performed except that the concentration of the sodium hydroxide aqueous solution for pH control of the sulfur oxidation tank was 2.7 mol / L, and the pH of the sulfur oxidation tank was controlled to 8.8. Part of the hydrogen sulfide absorbed by the sulfur-oxidizing bacteria was oxidized to sulfate ions, so that the M alkalinity decreased from 2.7 mol / L to about 2.5 mol / L. The pH at the outlet of the packed tower was 8.7, the hydrogen sulfide concentration of the processing gas discharged from the packed tower was 25 ppm (volume ratio), and the removal rate of hydrogen sulfide was 98.3%.

比較例1
硫黄酸化槽のpH制御用の水酸化ナトリウム水溶液の濃度を0.11モル/Lとした以外は、実施例1と同じ操作を行い、硫黄酸化槽のpHを8.8に制御した。このとき、充填塔出口から流出する吸収液のpHは7.3で、充填塔から排出される処理ガスの硫化水素濃度は130ppm(体積比)であり、硫化水素の除去率は91.3%であった。
比較例2
硫黄酸化槽のpH制御用の水酸化ナトリウム水溶液の濃度を5.0モル/Lとした以外は、実施例1と同じ操作を行い、硫黄酸化槽のpHを8.8に制御した。硫黄酸化槽の周囲の壁や吸収塔内部に重炭酸ナトリウムと思われる析出物が観察された。この析出物のために吸収塔内で偏流が起こったためか、充填塔から排出される処理ガスの硫化水素濃度は安定せず、平均で90ppm(体積比)であった。さらに運転を継続すると、充填塔の差圧が上昇してガスを流せなくなった。
実施例1〜2及び比較例1〜2の結果を、第1表に示す。
Comparative Example 1
The same operation as in Example 1 was performed except that the concentration of the sodium hydroxide aqueous solution for controlling the pH of the sulfur oxidation tank was 0.11 mol / L, and the pH of the sulfur oxidation tank was controlled to 8.8. At this time, the pH of the absorption liquid flowing out from the packed tower outlet is 7.3, the hydrogen sulfide concentration of the processing gas discharged from the packed tower is 130 ppm (volume ratio), and the removal rate of hydrogen sulfide is 91.3%. Met.
Comparative Example 2
The same operation as in Example 1 was performed except that the concentration of the sodium hydroxide aqueous solution for pH control of the sulfur oxidation tank was 5.0 mol / L, and the pH of the sulfur oxidation tank was controlled to 8.8. Precipitates that seem to be sodium bicarbonate were observed on the wall around the sulfur oxidation tank and inside the absorption tower. The concentration of hydrogen sulfide in the treatment gas discharged from the packed tower was not stable and averaged 90 ppm (volume ratio) because of the precipitating flow in the absorption tower due to this deposit. When the operation was continued further, the differential pressure in the packed tower increased and gas could not flow.
The results of Examples 1-2 and Comparative Examples 1-2 are shown in Table 1.

Figure 2007038188
Figure 2007038188

第1表に見られるように、中性塩由来のナトリウムイオンを除いたナトリウムイオン濃度が0.5モル/L又は2.5モル/Lである実施例1〜2においては、充填塔における硫化水素の除去率が高く、処理ガス中の硫化水素濃度が30ppm(体積比)以下となっている。これに対して、中性塩由来のナトリウムイオンを除いたナトリウムイオン濃度が0.1モル/Lである比較例1においては、充填塔における硫化水素の除去率が低く、処理ガス中の硫化水素濃度が130ppm(体積比)となっている。中性塩由来のナトリウムイオンを除いたナトリウムイオン濃度が5.0モル/Lである比較例2における硫化水素除去率の低下は、析出物により充填塔で偏流を起こしたためと考えられる。なお、炭酸塩が蓄積して、安定運転は続けられなかった。   As seen in Table 1, in Examples 1 and 2 where the sodium ion concentration excluding sodium ions derived from neutral salts is 0.5 mol / L or 2.5 mol / L, sulfurization in a packed column The removal rate of hydrogen is high, and the concentration of hydrogen sulfide in the processing gas is 30 ppm (volume ratio) or less. On the other hand, in Comparative Example 1 where the sodium ion concentration excluding sodium ions derived from neutral salts is 0.1 mol / L, the removal rate of hydrogen sulfide in the packed tower is low, and hydrogen sulfide in the process gas The concentration is 130 ppm (volume ratio). The decrease in the hydrogen sulfide removal rate in Comparative Example 2 in which the sodium ion concentration excluding sodium ions derived from neutral salts is 5.0 mol / L is considered to be caused by drift in the packed tower due to the precipitate. In addition, carbonate accumulated and stable operation could not be continued.

参考例1
脱イオン水に水酸化ナトリウムを溶解して、ナトリウムイオン濃度0.1モル/L、0.25モル/L、0.5モル/L、1.0モル/L、2.5モル/L、5.0モル/Lの水溶液を調製した。これらの水溶液をろ過板付洗浄びんに入れ、試験用混合ガスを通気し、試験用混合ガスが平衡に達した溶液を得た。得られた平衡溶液について、pH及び全S2-濃度を測定した。結果を、第2表に示す。
Reference example 1
Sodium hydroxide is dissolved in deionized water to obtain a sodium ion concentration of 0.1 mol / L, 0.25 mol / L, 0.5 mol / L, 1.0 mol / L, 2.5 mol / L, A 5.0 mol / L aqueous solution was prepared. These aqueous solutions were put into a washing bottle with a filter plate, and a test mixed gas was vented to obtain a solution in which the test mixed gas reached equilibrium. The resulting equilibrium solution was measured for pH and total S 2− concentration. The results are shown in Table 2.

Figure 2007038188
Figure 2007038188

第2表に見られるように、ナトリウムイオン濃度が高いほど、試験用混合ガスと平衡に達した溶液のpHが高く、かつ全S2-濃度が高くなる。ナトリウムイオン濃度1モル/Lの水溶液は、ナトリウムイオン濃度0.1モル/Lのものと比べると、約10倍の全S2-を溶解することができる。 As can be seen in Table 2, the higher the sodium ion concentration, the higher the pH of the solution that has reached equilibrium with the test gas mixture and the higher the total S 2− concentration. An aqueous solution having a sodium ion concentration of 1 mol / L can dissolve about 10 times as much total S 2− as that of a sodium ion concentration of 0.1 mol / L.

参考例2
試験用混合ガスとして、ガスA(二酸化炭素1.00体積%、硫化水素0.15体積%、窒素98.85体積%)、ガスB(二酸化炭素5.00体積%、硫化水素0.15体積%、窒素94.85体積%)、ガスC(二酸化炭素10.00体積%、硫化水素0.15体積%、窒素89.85体積%)、ガスD(二酸化炭素30.00体積%、硫化水素0.15体積%、窒素69.85体積%)又はガスE(二酸化炭素50.00体積%、硫化水素0.15体積%、窒素49.85体積%)を用い、充填塔入口の吸収液のナトリウムイオン濃度を0.1モル/L、0.5モル/L、1.0モル/L、2.5モル/L、3.5モル/L又は5.0モル/Lに調整して、実施例1と同じ操作を行い、定常状態に達したときの充填塔から流出する吸収液のpHを測定した。
試験用混合ガスの二酸化炭素濃度及びナトリウムイオン濃度と吸収液のpHの関係を、第3表に示す。
Reference example 2
As test gas mixtures, gas A (1.00% by volume of carbon dioxide, 0.15% by volume of hydrogen sulfide, 98.85% by volume of nitrogen), gas B (5.00% by volume of carbon dioxide, 0.15% by volume of hydrogen sulfide) %, Nitrogen 94.85% by volume), gas C (10.0% by volume of carbon dioxide, 0.15% by volume of hydrogen sulfide, 89.85% by volume of nitrogen), gas D (30.00% by volume of carbon dioxide, hydrogen sulfide) 0.15 vol%, nitrogen 69.85 vol%) or gas E (carbon dioxide 50.00 vol%, hydrogen sulfide 0.15 vol%, nitrogen 49.85 vol%) The sodium ion concentration was adjusted to 0.1 mol / L, 0.5 mol / L, 1.0 mol / L, 2.5 mol / L, 3.5 mol / L or 5.0 mol / L, The same operation as in Example 1 was performed, and the pH of the absorbing solution flowing out from the packed tower when the steady state was reached was measured.
Table 3 shows the relationship between the carbon dioxide concentration and sodium ion concentration of the test gas mixture and the pH of the absorbing solution.

Figure 2007038188
Figure 2007038188

第3表に見られるように、二酸化炭素濃度が高い場合は、ナトリウムイオン濃度が3.5モル/Lを超えると、析出物が発生するために、ナトリウムイオン濃度には上限がある。一般的に、工場において二酸化炭素濃度が大幅に変動することはないので、平均的な二酸化炭素濃度に合わせて、ナトリウムイオン濃度を決定することができる。   As seen in Table 3, when the carbon dioxide concentration is high, precipitates are generated when the sodium ion concentration exceeds 3.5 mol / L, so that there is an upper limit on the sodium ion concentration. Generally, since the carbon dioxide concentration does not fluctuate greatly in a factory, the sodium ion concentration can be determined in accordance with the average carbon dioxide concentration.

本発明の硫化水素含有ガスの脱硫方法及び脱硫装置によれば、高濃度の二酸化炭素を含む硫化水素含有ガスをアルカリ性吸収液を用いて処理して、二酸化炭素によるアルカリの消費にもとづく吸収液のpHの低下が少なく、効果的に硫化水素を高い除去率で除去することができる。   According to the hydrogen sulfide-containing gas desulfurization method and desulfurization apparatus of the present invention, a hydrogen sulfide-containing gas containing high-concentration carbon dioxide is treated with an alkaline absorption liquid, and the absorption liquid based on the consumption of alkali by carbon dioxide is obtained. There is little decrease in pH, and hydrogen sulfide can be effectively removed at a high removal rate.

本発明方法の一態様の工程系統図である。It is a process flow diagram of one mode of the method of the present invention.

符号の説明Explanation of symbols

1 充填塔
2 液分散器
3 送液管
4 好気性生物処理槽
5 好気性酸化部
6 固液分離部
7 散気管
8 ポンプ
9 返送液管
DESCRIPTION OF SYMBOLS 1 Packing tower 2 Liquid disperser 3 Liquid supply pipe 4 Aerobic biological treatment tank 5 Aerobic oxidation part 6 Solid-liquid separation part 7 Air diffuser pipe 8 Pump 9 Return liquid pipe

Claims (4)

硫化水素と二酸化炭素とを含むガスを、中性塩由来のアルカリ金属イオンを除いたアルカリ金属イオン濃度が0.25〜3.5モル/Lであるアルカリ性吸収液と接触させて、硫化水素を該吸収液に移行させたのち、該吸収液を硫黄酸化細菌を用いた好気性生物処理槽に供給し、該好気性生物処理槽から流出する処理液を前記アルカリ性吸収液として循環使用することを特徴とする硫化水素含有ガスの脱硫方法。   A gas containing hydrogen sulfide and carbon dioxide is brought into contact with an alkaline absorbing liquid having an alkali metal ion concentration of 0.25 to 3.5 mol / L excluding alkali metal ions derived from neutral salts, to thereby form hydrogen sulfide. After being transferred to the absorption liquid, the absorption liquid is supplied to an aerobic biological treatment tank using sulfur-oxidizing bacteria, and the treatment liquid flowing out from the aerobic biological treatment tank is circulated and used as the alkaline absorption liquid. A method for desulfurization of a gas containing hydrogen sulfide. アルカリ金属イオンがナトリウムイオン又はカリウムイオンであり、アルカリ金属イオンが水酸化物、炭酸塩又は重炭酸塩として供給される請求項1記載の硫化水素含有ガスの脱硫方法。   The method for desulfurization of a hydrogen sulfide-containing gas according to claim 1, wherein the alkali metal ions are sodium ions or potassium ions, and the alkali metal ions are supplied as hydroxides, carbonates or bicarbonates. 硫化水素と二酸化炭素とを含むガスをアルカリ性吸収液と接触させる気液接触装置、硫化水素が移行した該吸収液を硫黄酸化細菌により処理する好気性生物処理槽及び処理された吸収液を気液接触装置に送液する送液路を有することを特徴とする硫化水素含有ガスの脱硫装置。   A gas-liquid contact device for contacting a gas containing hydrogen sulfide and carbon dioxide with an alkaline absorption liquid, an aerobic biological treatment tank for treating the absorption liquid to which hydrogen sulfide has migrated with sulfur-oxidizing bacteria, and a gas-liquid for the treated absorption liquid A desulfurization apparatus for a hydrogen sulfide-containing gas, characterized by having a liquid supply path for supplying liquid to a contact device. 硫化水素と二酸化炭素とを含むガスをアルカリ性吸収液と接触させる気液接触装置、硫化水素が移行した該吸収液を硫黄酸化細菌により処理する好気性生物処理槽、処理された吸収液を固液分離する固液分離部及び固液分離された液を気液接触装置に送液する送液路を有することを特徴とする硫化水素含有ガスの脱硫装置。
A gas-liquid contact device for contacting a gas containing hydrogen sulfide and carbon dioxide with an alkaline absorbent, an aerobic biological treatment tank for treating the absorbed liquid to which hydrogen sulfide has been transferred with sulfur-oxidizing bacteria, and a solid solution for the treated absorbent A desulfurization apparatus for a hydrogen sulfide-containing gas, comprising: a solid-liquid separation unit for separation; and a liquid feed path for feeding the liquid separated into a gas-liquid contact device.
JP2005228137A 2005-08-05 2005-08-05 Method and apparatus for desulfurization of gas containing hydrogen sulfide Active JP4862314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228137A JP4862314B2 (en) 2005-08-05 2005-08-05 Method and apparatus for desulfurization of gas containing hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228137A JP4862314B2 (en) 2005-08-05 2005-08-05 Method and apparatus for desulfurization of gas containing hydrogen sulfide

Publications (2)

Publication Number Publication Date
JP2007038188A true JP2007038188A (en) 2007-02-15
JP4862314B2 JP4862314B2 (en) 2012-01-25

Family

ID=37796661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228137A Active JP4862314B2 (en) 2005-08-05 2005-08-05 Method and apparatus for desulfurization of gas containing hydrogen sulfide

Country Status (1)

Country Link
JP (1) JP4862314B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100732A1 (en) * 2009-03-04 2010-09-10 リンコスモス エルエルシー Method for removing harmful substance and apparatus for removing harmful substance
CN104211270A (en) * 2014-10-11 2014-12-17 江苏同禾药业有限公司 Method for treating cyclization waste water in production process of lipoic acid
KR20160071185A (en) * 2014-12-11 2016-06-21 강석웅 Biogas desulfurization apparatus
JP2021531960A (en) * 2018-07-19 2021-11-25 ストラ エンソ オーワイジェイ Biological treatment of industrial alkaline streams
CN114958687A (en) * 2022-06-24 2022-08-30 广州金鹏环保工程有限公司 Alkali-resistant Stevens halomonas and application thereof in treatment of hydrogen sulfide waste gas
CN115090101A (en) * 2022-07-19 2022-09-23 华夏碧水环保科技股份有限公司 Comprehensive treatment method for removing sulfur, water and carbon dioxide from biogas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106223991B (en) * 2016-09-14 2019-07-23 煤科集团沈阳研究院有限公司 Mine air ejectment and water curtain absorb hydrogen sulphide disposal unit and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197022A (en) * 1981-05-26 1982-12-03 Shell Int Research Removal of h2s and co2 from gas stream
JPS6336815A (en) * 1986-07-28 1988-02-17 Mitsubishi Chem Ind Ltd Method for purifying gas
JPH0568849A (en) * 1991-09-18 1993-03-23 Kurita Water Ind Ltd Method and device for desulfurizing digestion gas
JPH05171482A (en) * 1991-12-19 1993-07-09 Kurita Water Ind Ltd Method for removing gaseous hydrogen sulfide
JPH0839090A (en) * 1994-08-03 1996-02-13 Kurita Water Ind Ltd Desulfurization equipment of anaerobic biological reaction gas
JPH10109013A (en) * 1996-10-04 1998-04-28 Hisaji Koyama Magnesium oxide and regenerated sulfuric acid recovering type flue gas desulfurization apparatus
JP2002079051A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Method for deodorizing hydrogen sulfide containing gas
JP2002079294A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Biological desulfurization method and apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197022A (en) * 1981-05-26 1982-12-03 Shell Int Research Removal of h2s and co2 from gas stream
JPS6336815A (en) * 1986-07-28 1988-02-17 Mitsubishi Chem Ind Ltd Method for purifying gas
JPH0568849A (en) * 1991-09-18 1993-03-23 Kurita Water Ind Ltd Method and device for desulfurizing digestion gas
JP3235131B2 (en) * 1991-09-18 2001-12-04 栗田工業株式会社 Digestion gas desulfurization method and apparatus
JPH05171482A (en) * 1991-12-19 1993-07-09 Kurita Water Ind Ltd Method for removing gaseous hydrogen sulfide
JPH0839090A (en) * 1994-08-03 1996-02-13 Kurita Water Ind Ltd Desulfurization equipment of anaerobic biological reaction gas
JPH10109013A (en) * 1996-10-04 1998-04-28 Hisaji Koyama Magnesium oxide and regenerated sulfuric acid recovering type flue gas desulfurization apparatus
JP2002079051A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Method for deodorizing hydrogen sulfide containing gas
JP2002079294A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Biological desulfurization method and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100732A1 (en) * 2009-03-04 2010-09-10 リンコスモス エルエルシー Method for removing harmful substance and apparatus for removing harmful substance
CN104211270A (en) * 2014-10-11 2014-12-17 江苏同禾药业有限公司 Method for treating cyclization waste water in production process of lipoic acid
KR20160071185A (en) * 2014-12-11 2016-06-21 강석웅 Biogas desulfurization apparatus
KR101694321B1 (en) 2014-12-11 2017-01-10 강석웅 Biogas desulfurization apparatus
JP2021531960A (en) * 2018-07-19 2021-11-25 ストラ エンソ オーワイジェイ Biological treatment of industrial alkaline streams
CN114958687A (en) * 2022-06-24 2022-08-30 广州金鹏环保工程有限公司 Alkali-resistant Stevens halomonas and application thereof in treatment of hydrogen sulfide waste gas
CN114958687B (en) * 2022-06-24 2023-06-02 广州金鹏环保工程有限公司 Alkali-resistant Stevens halomonas and application thereof in treatment of hydrogen sulfide waste gas
CN115090101A (en) * 2022-07-19 2022-09-23 华夏碧水环保科技股份有限公司 Comprehensive treatment method for removing sulfur, water and carbon dioxide from biogas

Also Published As

Publication number Publication date
JP4862314B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP2011072940A (en) Treatment method of reducing selenium-containing waste water
JP2007038169A (en) Method and apparatus for removing acid gas
CN103833166B (en) A kind of methyldiethanolamine (MDEA) process for treating industrial waste water
WO2009101090A1 (en) Method and apparatus for biological treatment of spent caustic
JP2007125484A (en) Nitrogen-containing wastewater treatment method
WO2015186590A1 (en) Method for treating liquid containing organic amine compound
CN100336579C (en) Method and installation for purifying gas
JP5098121B2 (en) Method for desulfurization of hydrogen sulfide-containing gas
JP2006263676A (en) Combustion waste gas-purification system
EP0518585B1 (en) Flue gas desulfurization process
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
JP2007038044A (en) Bio-desulfurization method and bio-desulfurization apparatus
JP2001062247A (en) Method and system for desulfurizing exhaust gas
JPH09187793A (en) Purifying method of waste water and the like
US10493423B2 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP2005288371A (en) Wastewater treatment method
JP3493735B2 (en) Anaerobic reaction gas desulfurization unit
JP2001348346A (en) Method for purifying methane fermentation gas
JPH0847696A (en) Desulfurizing device for anaerobic biological reaction gas
JP2005262182A (en) Anaerobic treatment apparatus
JP2006021119A (en) Fluid treatment method and fluid treatment system
JP4862234B2 (en) Method for treating waste water containing hydrazine and chelating organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250