JPH05171482A - Method for removing gaseous hydrogen sulfide - Google Patents

Method for removing gaseous hydrogen sulfide

Info

Publication number
JPH05171482A
JPH05171482A JP3336792A JP33679291A JPH05171482A JP H05171482 A JPH05171482 A JP H05171482A JP 3336792 A JP3336792 A JP 3336792A JP 33679291 A JP33679291 A JP 33679291A JP H05171482 A JPH05171482 A JP H05171482A
Authority
JP
Japan
Prior art keywords
alkali
gas
absorbent
hydrogen sulfide
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3336792A
Other languages
Japanese (ja)
Other versions
JP3208813B2 (en
Inventor
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP33679291A priority Critical patent/JP3208813B2/en
Publication of JPH05171482A publication Critical patent/JPH05171482A/en
Application granted granted Critical
Publication of JP3208813B2 publication Critical patent/JP3208813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To easily and efficiently regenerate and recycle an alkaline absorbent and to recover H2S as sulfur without oxidizing the H2S to sulfuric acid in the method in which a raw gas contg. H2S is brought into contact with the absorbent to remove H2S. CONSTITUTION:An alkaline absorbent having absorbed hydrogen sulfide is electrolyzed and regenerated, and the regenerated absorbent is circulated and used to remove hydrogen sulfide. H2S is fixed as S<2-> in the absorbent of Na0H, etc., according to 2NaOH+H2S Na2S+2H2O. The S<2-> is electrolyzed into S at a positive electrode 8A according to S<2-> S+2e<->. The generated S is dissolved in the absorbent as alkali polysulfides. H2 is generated at a negative electrode 8B according to 2H<+>+2e<-> H. The overall chemical equation is expressed by Na2S+2H2O NaOH+S+H2, alkalinity is restored, and alkali need not be supplied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は硫化水素ガスの除去方法
に係り、特に、嫌気性生物処理の際に生成する硫化水素
ガス(以下「H2 S」と記す。)を含むガスから、H2
Sを低コストで効率的に除去すると共に、H2 Sを硫黄
(S)として回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing hydrogen sulfide gas, and more particularly, to a method for removing H 2 S from a gas containing hydrogen sulfide gas (hereinafter referred to as "H 2 S") generated during anaerobic biological treatment. 2
The present invention relates to a method of efficiently removing S at low cost and recovering H 2 S as sulfur (S).

【0002】[0002]

【従来の技術】従来、H2 S含有ガスからH2 Sを除去
する方法としては、次の〜の方法がある。 湿式法:苛性ソーダ(NaOH)を吸収液として、
原ガスをアルカリ洗浄する。 乾式法:鉄材を用いてH2 Sを硫化鉄化合物の形態
で固定化する。 生物酸化法:水に再吸収させ、生物的に硫酸に酸化
させて系外へ排出する。
Conventionally, as a method for removing H 2 S from the H 2 S-containing gas, the following ~ methods. Wet method: Using caustic soda (NaOH) as an absorbent,
Clean the raw gas with alkali. Dry method: H 2 S is immobilized in the form of an iron sulfide compound using an iron material. Bio-oxidation method: Resorbed in water, biologically oxidized to sulfuric acid, and discharged out of the system.

【0003】[0003]

【発明が解決しようとする課題】上記従来のH2 Sの除
去方法はそれぞれ次のような欠点を有し、好適な処理法
とは言えない。即ち、の湿式法では、酸性ガスである
2 SをNaOHで吸収することから、吸収液は常にア
ルカリ性であることが必要とされ、この結果、中和コス
トが高くつく上に、排液は強アルカリのまま一部捨てら
れることから、残存NaOHの無駄が生じる。の乾式
法では、鉄材が常に余力(H2 S吸収能力)を残した状
態で、鉄材を交換する必要がある上に、この交換時に空
気酸化による硫酸の生成と発熱があり、作業の危険性が
危惧される。また、の生物酸化法では、吸収液中のH
2 Sを生物酸化する際に、最終酸化態である硫酸にまで
反応が進行するため、この硫酸の中和のためにアルカリ
が必要である。その上、吸収液として水を用いると、そ
のH2 S吸収効率がアルカリ液と比べて劣ることから、
吸収塔が大型化する。
The conventional methods of removing H 2 S described above have the following drawbacks, respectively, and cannot be said to be suitable processing methods. That is, in the wet method, since H 2 S, which is an acidic gas, is absorbed by NaOH, it is necessary that the absorbing solution is always alkaline. As a result, the neutralization cost is high and the drainage solution is Since some of the strong alkali is discarded, residual NaOH is wasted. In the dry method, the iron material must be replaced while the iron material always retains its reserve capacity (H 2 S absorption capacity), and at the time of this replacement, sulfuric acid is generated and heat is generated due to air oxidation, which is a work risk. Is afraid. In addition, in the biological oxidation method of H
When biologically oxidizing 2 S, the reaction proceeds to sulfuric acid, which is the final oxidation state, and therefore an alkali is necessary for neutralizing this sulfuric acid. Moreover, when water is used as the absorbing liquid, its H 2 S absorption efficiency is inferior to that of the alkaline liquid,
The absorption tower becomes larger.

【0004】このようなことから、従来、H2 S吸収効
率の良いアルカリ吸収液を用いてH2 S吸収を行ない、
余剰のアルカリを回収する技術、或いは、H2 Sを硫酸
にまで酸化することなく回収する技術の出願が望まれて
いた。
[0004] For this reason, conventionally, performs H 2 S absorption by using H 2 S absorption efficient alkaline absorbing solution,
There has been a demand for application of a technique for recovering excess alkali or a technique for recovering H 2 S without oxidizing it to sulfuric acid.

【0005】なお、従来、窒素酸化物及び硫黄酸化物を
含むガスを鉄系吸収液で浄化し、用いた吸収液の電解再
生を行なうことは知られている(特開昭53−2625
7)。しかしながら、この方法は、酸化物系ガスを鉄系
吸収液で吸収した場合についての技術であり、H2 Sを
アルカリ吸収液で吸収する技術とは、対象ガス成分や吸
収液が異なる。従来、H2 Sガスを吸収したアルカリ吸
収液の効率的な再生技術についての提案はなされていな
い。
Incidentally, it has been conventionally known that a gas containing nitrogen oxides and sulfur oxides is purified with an iron-based absorbing solution and electrolytic regeneration of the absorbing solution used is carried out (Japanese Patent Laid-Open No. 53-2625).
7). However, this method is a technique in the case where the oxide-based gas is absorbed by the iron-based absorbing liquid, and the target gas component and the absorbing liquid are different from the technique of absorbing H 2 S by the alkaline absorbing liquid. Hitherto, no proposal has been made on an efficient regeneration technique for an alkali absorbing liquid that has absorbed H 2 S gas.

【0006】本発明は上記従来の実情に鑑みてなされた
ものであって、H2 Sを含む原ガスをアルカリ吸収液で
接触させてH2 Sを除去する方法において、アルカリ吸
収液を容易かつ効率的に再生して循環再使用すると共
に、H2 Sを硫酸にまで酸化することなくSとして効率
的に回収することができるH2 Sの除去方法を提供する
ことを目的とする。
The present invention was made in view of the above conventional circumstances, in the method of the raw gas containing H 2 S is contacted with an alkaline absorbing solution for removing H 2 S, and facilitates the alkaline absorbing solution An object of the present invention is to provide a method for removing H 2 S that can be efficiently regenerated and recycled for reuse, and that can be efficiently recovered as S without oxidizing H 2 S to sulfuric acid.

【0007】[0007]

【課題を解決するための手段】本発明のH2 Sの除去方
法は、硫化水素ガスを含む原ガスをアルカリ吸収液と接
触させて硫化水素ガスを除去する方法において、硫化水
素ガスを吸収したアルカリ吸収液を電気分解して再生
し、再生液を前記原ガスの硫化水素ガス除去処理工程に
循環使用することを特徴とする。
The method of removing H 2 S of the present invention is a method of removing hydrogen sulfide gas by bringing a raw gas containing hydrogen sulfide gas into contact with an alkali absorbing liquid to remove hydrogen sulfide gas. It is characterized in that the alkali absorbing liquid is electrolyzed and regenerated, and the regenerated liquid is circulated and used in the hydrogen sulfide gas removal treatment step of the raw gas.

【0008】以下に図面を参照して本発明を詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0009】図1は本発明のH2 Sの除去方法の一実施
方法を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of the H 2 S removing method of the present invention.

【0010】図中、1はガス洗浄塔、2は電解槽であ
る。ガス洗浄塔1の底部には原ガスの導入管3及び吸収
液の排出管4が、上部には処理ガスの排出管5がそれぞ
れ接続されている。また、ガス洗浄塔1内の上部には、
吸収液の散水板6が設けられており、この散水板6に
は、ポンプ7Aを備える循環配管7が接続されており、
電解槽2内の液が供給されるように構成されている。
In the figure, 1 is a gas cleaning tower and 2 is an electrolytic cell. A raw gas introduction pipe 3 and an absorption liquid discharge pipe 4 are connected to the bottom of the gas cleaning tower 1, and a processing gas discharge pipe 5 is connected to the upper portion. In addition, in the upper part of the gas cleaning tower 1,
A sprinkler plate 6 for absorbing liquid is provided, and a circulation pipe 7 including a pump 7A is connected to the sprinkler plate 6.
The liquid in the electrolytic bath 2 is supplied.

【0011】電解槽2には排出管4より、ガス洗浄塔1
の吸収液が送給されるように構成されており、また、こ
の電解槽2内の液中に浸漬するように、陽極(正極)8
A及び陰極(負極)8Bが設けられている。9は直流電
源、10は吸収液引抜管である。
The gas cleaning tower 1 is connected to the electrolytic cell 2 through the discharge pipe 4.
Of the anode (positive electrode) 8 so as to be immersed in the liquid in the electrolytic cell 2.
A and a cathode (negative electrode) 8B are provided. Reference numeral 9 is a DC power source, and 10 is an absorbing liquid drawing tube.

【0012】このような装置により、本発明を実施する
には、まず、H2 Sを含む原ガスを導入管3よりガス洗
浄塔1に導入すると共に、アルカリ吸収液を散水板6よ
り散布して、原ガスをアルカリ吸収液と向流接触させて
アルカリ吸収液中にH2 Sを吸収させる。H2 Sが吸収
除去された処理ガスは排出管5より系外へ排出する。一
方、H2 Sを吸収したアルカリ吸収液は、排出管4より
電解槽2に送給し、電解槽2内で直流電源9の電流を流
して電気分解する。即ち、アルカリ吸収液中では、H2
Sは硫黄イオンS2-の形で固定されているため、このS
2-を含む液を電解処理することにより、陽極(正極)8
Aにおいて、S2-が酸化されて、Sが生成し、このSは
液中で多硫化アルカリとなり溶解する。一方、陰極(負
極)8Bにおいて、液中の水素イオンH+ が還元されて
水素ガスH2 が生成する。
In order to carry out the present invention with such an apparatus, first, a raw gas containing H 2 S is introduced into the gas washing tower 1 through the introduction pipe 3, and an alkali absorbing liquid is sprinkled through the water spray plate 6. Then, the raw gas is brought into countercurrent contact with the alkali absorbing solution to absorb H 2 S in the alkali absorbing solution. The processing gas from which H 2 S has been absorbed and removed is discharged from the system through the exhaust pipe 5. On the other hand, the alkali absorbing solution that has absorbed H 2 S is sent to the electrolytic cell 2 through the discharge pipe 4, and the current of the DC power supply 9 is passed inside the electrolytic cell 2 to be electrolyzed. That is, in the alkali absorbing liquid, H 2
Since S is fixed in the form of sulfur ion S 2-
Anode (positive electrode) 8 by electrolyzing a solution containing 2-
In A, S 2− is oxidized to produce S, and this S becomes alkali polysulfide in the liquid and dissolves. On the other hand, in the cathode (negative electrode) 8B, hydrogen ions H + in the liquid are reduced to generate hydrogen gas H 2 .

【0013】このような電気分解によりアルカリの再生
及びS2-の除去がなされた液は、循環配管7によりガス
洗浄塔1に送給され、アルカリ吸収液として循環再使用
される。循環再使用していると、多硫化が進み、アルカ
リ吸収液の粘度が高くなってくるので、一部を引き抜
き、酸で中和し、生成する元素状硫黄の沈殿は回収する
(図示せず)。
The liquid in which the alkali is regenerated and the S 2− is removed by such electrolysis is fed to the gas cleaning tower 1 through the circulation pipe 7 and is circulated and reused as the alkali absorbing liquid. When recycled and reused, polysulphurization proceeds and the viscosity of the alkali absorption liquid increases, so a part of it is withdrawn, neutralized with acid, and the precipitate of elemental sulfur that forms is collected (not shown). ).

【0014】なお、本発明において、アルカリ吸収液と
しては、NaOH、Na2 CO3 等のアルカリ度を含む
水溶液が挙げられ、そのpHは、H2 Sの吸収効率の面
から、9以上であることが望ましい。
In the present invention, the alkali absorbing solution may be an aqueous solution containing alkalinity such as NaOH, Na 2 CO 3 or the like, and its pH is 9 or more from the viewpoint of H 2 S absorption efficiency. Is desirable.

【0015】また、電気分解時の標準酸化還元電位(2
5℃,イオン強度0)は、1.23Vより低くすること
が重要である。即ち、水の電気分解(2H2 O→O2
4H+ +4e- )に必要な電位が+1.23Vであり、
2-からSが生成する(S2-→S+2e- )に必要な電
位が−0.48Vであることから、正極側の反応をS2-
の酸化によるS生成に留めるために、電位は1.23V
未満とする。これよりも高い電位であると水の電気分解
が生じ投入エネルギーの無駄となり、好ましくない。た
だし、液中に、SO3 イオンやS24 イオンが含まれ
る場合には、それぞれ+0.17V,−0.08V以下
でないと、これらの酸化によるアルカリや電気の消費が
起こり、好ましくない。
The standard redox potential (2
It is important that the ionic strength 0) at 5 ° C. be lower than 1.23V. That is, electrolysis of water (2H 2 O → O 2 +
4H + + 4e ) requires a potential of + 1.23V,
Since the potential required to generate S from S 2− (S 2 → → S + 2e ) is −0.48 V, the reaction on the positive electrode side is S 2 −.
The potential is 1.23V in order to keep the generation of S by the oxidation of
Less than If the potential is higher than this, electrolysis of water occurs and the input energy is wasted, which is not preferable. However, when SO 3 ions and S 2 O 4 ions are contained in the liquid, alkali and electricity consumption due to these oxidations are required unless they are +0.17 V and −0.08 V or less, respectively, which is not preferable.

【0016】[0016]

【作用】H2 SガスはNaOH等のアルカリ吸収液によ
り、次の反応でS2-の形で固定される。 H2 S+2NaOH→Na2 S+2H2 O(ガス吸収) このH2 Sを吸収したアルカリ吸収液を電気分解する
と、次の反応により、S2-はSに酸化され、またH+
2 に還元されることによりアルカリが再生される。ま
た、生成したSはアルカリ中では多硫化アルカリ(Na
2X )となり溶解する。
The H 2 S gas is fixed in the form of S 2-in the next reaction by an alkali absorbing solution such as NaOH. H 2 S + 2NaOH → Na 2 S + 2H 2 O (gas absorption) When this alkaline absorbent that has absorbed H 2 S is electrolyzed, S 2− is oxidized to S and H + is reduced to H 2 by the following reaction. As a result, the alkali is regenerated. Further, the generated S is alkali polysulfide (Na
2 S X ) and dissolves.

【0017】正極側:S2-→S+2e- (Sの回収) 負極側:2H+ +2e- →H2 (ガス放出) 正・負極の電気分解反応 Na2 S+2H2 O→S+H2 +2NaOH(アルカリ
の再生)
Positive electrode side: S 2- → S + 2e (recovery of S) Negative electrode side: 2H + + 2e → H 2 (gas release) Electrolysis reaction of positive and negative electrodes Na 2 S + 2H 2 O → S + H 2 + 2NaOH (of alkali) Playback)

【0018】[0018]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0019】実施例1 図1に示す方法により、H2 Sの除去及びアルカリ吸収
液の再生、S回収を行なった。
Example 1 By the method shown in FIG. 1, H 2 S was removed, the alkali absorbing solution was regenerated, and S was recovered.

【0020】即ち、500μリットル/リットルのH2
S含有原ガスを5リットルのガス洗浄塔に10リットル
/分で通気した。一方、0.5NのNaOH水溶液を
0.01リットル/分でガス洗浄塔の上部から通水し、
2 Sを吸収した液を底部から連続的に抜き出し電解槽
へ送給した。
That is, 500 μl / l of H 2
The S-containing raw gas was bubbled through a 5 liter gas scrubber at 10 liters / minute. On the other hand, a 0.5 N NaOH aqueous solution was passed from the top of the gas washing tower at 0.01 liter / min,
The liquid having absorbed H 2 S was continuously extracted from the bottom and fed to the electrolytic cell.

【0021】このとき、H2 Sの除去効率は99%であ
った。比較のため行なった水によるガス洗浄におけるH
2 Sの除去効率は50%であり、アルカリ吸収液によれ
ば、効率的にアルカリを吸収除去できることが確認され
た。
At this time, the removal efficiency of H 2 S was 99%. H in gas cleaning with water performed for comparison
The removal efficiency of 2 S was 50%, and it was confirmed that the alkali absorbing solution can efficiently absorb and remove the alkali.

【0022】ガス洗浄塔からのH2 Sを吸収したアルカ
リ吸収液は5mmφの炭素電極を設置した0.5リット
ル容の電解槽内にて、5Vの直流電圧をかけ、連続的に
電気分解を行なった。
The H 2 S-absorbed alkaline absorbing solution from the gas cleaning tower is continuously electrolyzed by applying a DC voltage of 5 V in a 0.5 liter electrolytic cell equipped with a 5 mmφ carbon electrode. I did.

【0023】その結果、陽極(正極)からO2 ガスの発
生は殆ど認められず、陰極(負極)からは毎分5mlの
2 ガスが発生した。
As a result, almost no O 2 gas was generated from the anode (positive electrode), and 5 ml of H 2 gas was generated from the cathode (negative electrode) per minute.

【0024】電解槽内の液は経時的に黄変し、粘度が徐
々に高くなっていったが、洗浄塔にアルカリ吸収液とし
て循環再使用し、30日間連続運転を行なった。
Although the liquid in the electrolytic cell turned yellow with time and the viscosity gradually increased, it was circulated and reused as an alkali absorbing liquid in the washing tower and continuously operated for 30 days.

【0025】この連続運転の間、H2 Sの除去率は初期
値(99%)を維持し、ガス洗浄塔に循環されるアルカ
リ吸収液のpHは常に12以上であった。この吸収液の
一部を引き抜き、塩酸で中和し、元素状硫黄の沈殿を回
収した。
During this continuous operation, the removal rate of H 2 S was maintained at the initial value (99%), and the pH of the alkali absorption liquid circulated in the gas cleaning tower was always 12 or more. A part of this absorption liquid was drawn out and neutralized with hydrochloric acid to collect a precipitate of elemental sulfur.

【0026】一方、比較のため、電気分解を行なわずに
連続運転を行なったところ、運転開始後1日目にH2
除去率が低下し、アルカリ吸収液からもH2 S臭が認め
られた。このため、系内のアルカリ吸収液の半量を定期
的に新しいNaOH水溶液に入れ替え、運転を繰り返す
ことにより、H2 S除去率を維持することができた。
On the other hand, for comparison, when the continuous operation was performed without electrolysis, H 2 S
The removal rate decreased, and an H 2 S odor was also observed in the alkali absorbing solution. Therefore, the H 2 S removal rate could be maintained by periodically replacing half of the alkali absorption liquid in the system with a new NaOH aqueous solution and repeating the operation.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明のH2 Sの除
去方法によれば、H2 Sの除去効率の良いアルカリ吸収
液によるH2 Sの吸収除去方法において、吸収液のアル
カリ度を容易かつ効率的に再生すると共に、H2 SをS
として生成させることが可能とされる。なお、生成した
Sは多硫化アルカリとして溶解するので電極の汚染はな
い。
As described above in detail, according to the method H 2 S removal of the present invention, in an absorption method for removing H 2 S by removing efficient alkaline absorption liquid H 2 S, alkalinity of the absorbent To easily and efficiently reproduce H 2 S and
Can be generated as. Since the generated S dissolves as alkali polysulfide, the electrodes are not contaminated.

【0028】このため、アルカリ吸収液の補給が不要と
なり、処理コストの低減が図れる。また、H2 Sを固体
のSとして回収することが可能とされ、回収作業が容易
となる上に、Sの再資源化が図れ、工業的に極めて有利
である。
Therefore, it is not necessary to replenish the alkali absorbing solution, and the processing cost can be reduced. Further, it is possible to collect H 2 S as solid S, which facilitates the recovery work, and is also industrially extremely advantageous because S can be recycled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のH2 Sの除去方法の一実施方法を示す
断面図である。
FIG. 1 is a cross-sectional view showing an implementation method of the H 2 S removal method of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス洗浄塔 2 電解槽 6 散水板 8A 陽極 8B 陰極 1 Gas Washing Tower 2 Electrolysis Tank 6 Sprinkler Plate 8A Anode 8B Cathode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 硫化水素ガスを含む原ガスをアルカリ吸
収液と接触させて硫化水素ガスを除去する方法におい
て、 硫化水素ガスを吸収したアルカリ吸収液を電気分解して
再生し、再生液を前記原ガスの硫化水素ガス除去処理工
程に循環使用することを特徴とする硫化水素ガスの除去
方法。
1. A method for removing hydrogen sulfide gas by contacting a raw gas containing hydrogen sulfide gas with an alkali absorbing liquid, wherein the alkali absorbing liquid absorbing hydrogen sulfide gas is electrolyzed and regenerated, and the regenerated liquid is A method for removing hydrogen sulfide gas, characterized by being recycled for use in a process for removing hydrogen sulfide gas from a raw gas.
JP33679291A 1991-12-19 1991-12-19 How to remove hydrogen sulfide gas Expired - Lifetime JP3208813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33679291A JP3208813B2 (en) 1991-12-19 1991-12-19 How to remove hydrogen sulfide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33679291A JP3208813B2 (en) 1991-12-19 1991-12-19 How to remove hydrogen sulfide gas

Publications (2)

Publication Number Publication Date
JPH05171482A true JPH05171482A (en) 1993-07-09
JP3208813B2 JP3208813B2 (en) 2001-09-17

Family

ID=18302733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33679291A Expired - Lifetime JP3208813B2 (en) 1991-12-19 1991-12-19 How to remove hydrogen sulfide gas

Country Status (1)

Country Link
JP (1) JP3208813B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456807A (en) * 1994-03-09 1995-10-10 Gas Research Institute Method and apparatus for treating nitrogen oxide-containing gas streams using a combined electrochemical-sorbent approach
JPH07263398A (en) * 1994-03-25 1995-10-13 Nec Corp Wet treating device
JP2007038188A (en) * 2005-08-05 2007-02-15 Kurita Water Ind Ltd Method and apparatus for desulfurizing hydrogen sulfide-containing gas
JP2015039651A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water
JP2015039652A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456807A (en) * 1994-03-09 1995-10-10 Gas Research Institute Method and apparatus for treating nitrogen oxide-containing gas streams using a combined electrochemical-sorbent approach
JPH07263398A (en) * 1994-03-25 1995-10-13 Nec Corp Wet treating device
JP2007038188A (en) * 2005-08-05 2007-02-15 Kurita Water Ind Ltd Method and apparatus for desulfurizing hydrogen sulfide-containing gas
JP2015039651A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water
JP2015039652A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water

Also Published As

Publication number Publication date
JP3208813B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US4051001A (en) Process for regenerating etching solution
US20150322580A1 (en) Treatment of hydrogen sulfide
CA1069463A (en) Method for removing hydrogen sulfide
TWI566825B (en) Flue gas desulfurization and denitrification method
CN112320818A (en) Method for oxidizing sulfite in flue gas desulfurization slurry
JP2010059502A (en) Treatment method and device for copper etching waste solution
JP3208813B2 (en) How to remove hydrogen sulfide gas
AU2013364034A1 (en) Treatment of hydrogen sulfide
JP3609735B2 (en) Etching solution regeneration method
JP2008006409A (en) Method for regenerating exhaust gas absorbed solution
CN113213685A (en) Desulfurization product sulfur recycling treatment process
JPS58181706A (en) Method for recovering sulfur and hydrogen from hydrogen sulfide
AU2002332463B2 (en) Methods and apparatus for reducing sulfur impurities and improving current efficiencies of inert anode aluminum production cells
JPH042794A (en) Method for recovering hydrogen from hydrogen sulfide
CN1248770C (en) Desulfurizing process and equipment able to regenerates sulfurizing agent
JPH08276187A (en) Method for electrochemical processing of sulfite-containing solution
JP2010000453A (en) Exhaust gas clarification method and equipment
CN110872651B (en) Method for removing chloride ions in chlorine-containing sulfuric acid solution by adopting fluidized bed electrode
CN110790361B (en) Bioelectrochemical sulfur recovery system and method for treating sulfide-containing waste gas/wastewater
JPH0543641B2 (en)
JP2005248245A (en) Process of refining nickel leachate
RU2764882C2 (en) Method for obtaining elemental sulfur
US4235853A (en) Method for sulfur dioxide control II
SU893998A1 (en) Method of coke gas purification from hydrogen sulphide and hydrogen cyanide
JPH09103789A (en) Oxidation treatment method for aqueous solution containing oxidizable sulfur oxygen compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9