JP2008006409A - Method for regenerating exhaust gas absorbed solution - Google Patents

Method for regenerating exhaust gas absorbed solution Download PDF

Info

Publication number
JP2008006409A
JP2008006409A JP2006181853A JP2006181853A JP2008006409A JP 2008006409 A JP2008006409 A JP 2008006409A JP 2006181853 A JP2006181853 A JP 2006181853A JP 2006181853 A JP2006181853 A JP 2006181853A JP 2008006409 A JP2008006409 A JP 2008006409A
Authority
JP
Japan
Prior art keywords
exhaust gas
chamber
exchange membrane
liquid
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006181853A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
康夫 鈴木
Nobuyoshi Shoji
信義 正司
Yukio Matsumura
幸夫 松村
Osamu Oguma
治 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Engineering Co Ltd
Original Assignee
AGC Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Engineering Co Ltd filed Critical AGC Engineering Co Ltd
Priority to JP2006181853A priority Critical patent/JP2008006409A/en
Publication of JP2008006409A publication Critical patent/JP2008006409A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating an absorbing solution which is through with the absorption of an exhaust gas to be generated by an absorption device in an exhaust gas desulfurization process, in an environmentally beneficial and low cost way, by adding no chemical. <P>SOLUTION: The exhaust gas desulfurization process desulfurizes the exhaust gas containing a sulfur oxide such as sulfur dioxide by absorption of the exhaust gas into the absorbing solution composed of sodium hydroxide as an absorbent. In this process, the absorbing solution including the absorbed exhaust gas, is directly fed into an intermediate chamber of an electrolytic device with three chambers such as a cathodic chamber formed of a cationic exchange membrane arranged opposite to a cathode, an anodic chamber formed of an anionic exchange membrane arranged opposite to an anode, between the cathode and the anode, and the intermediate chamber formed of the cationic exchange membrane and the anionic exchange membrane. Further, a solution containing sulfuric acid is recovered from the anodic chamber by electrolytic treatment, and the solution containing the sodium hydroxide generated in the cathodic chamber and an outlet solution of the intermediate chamber are mixed into a regenerated absorbing solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二酸化硫黄等の硫黄酸化物を含む排ガスを、水酸化ナトリウムを吸収剤とする吸収液に吸収させて脱硫する排ガス脱硫プロセスにおいて、排ガスを吸収した吸収液(以降において「排ガス吸収液」ともいう)を電解処理して液中から硫黄酸化物を除去して再生吸収液とし、排ガスの吸収に利用する方法に関する。   In the exhaust gas desulfurization process in which exhaust gas containing sulfur oxides such as sulfur dioxide is absorbed by an absorption liquid using sodium hydroxide as an absorbent and desulfurized, the present invention absorbs the exhaust gas (hereinafter referred to as "exhaust gas absorption liquid"). It is also related to a method of removing sulfur oxides from the liquid to obtain a regenerated absorbent, which is used for absorbing exhaust gas.

ボイラー等の排ガスから硫黄酸化物を除去する脱硫方法として様々な方法が開発されており、吸収剤として水酸化ナトリウム、水酸化マグネシウム、石灰、消石灰等が用いられるのが一般的である。これらの吸収剤は脱硫工程で硫酸塩、亜硫酸塩に変化し、排ガスを吸収した後の排ガス吸収液は、亜硫酸ナトリウム、硫酸ナトリウム、石膏等の副産物を回収するか、排液や廃棄物として二次処理を実施した後、廃棄されている。   Various methods have been developed as desulfurization methods for removing sulfur oxides from exhaust gas such as boilers, and sodium hydroxide, magnesium hydroxide, lime, slaked lime, etc. are generally used as absorbents. These absorbents change into sulfate and sulfite during the desulfurization process, and the exhaust gas absorption liquid after absorbing exhaust gas recovers by-products such as sodium sulfite, sodium sulfate, and gypsum, or is used as waste liquid or waste. Discarded after the next treatment.

そのため、技術的に完成されている石灰・石膏法においては、多量の副生石膏が発生することから、副生石膏の再利用先の確保が必要であり、今後、廃棄処理するための処分費や処分先の確保が問題になると予想される。   Therefore, the technically completed lime / gypsum method generates a large amount of by-product gypsum, so it is necessary to secure a reuse destination of the by-product gypsum, and disposal costs and disposal for disposal in the future. Ensuring the future is expected to be a problem.

又、排液の環境上有益で且つ安価な再生処理技術は、未だ十分には完成されておらず、例えば、水酸化ナトリウムを吸収剤とした吸収液を用いる脱硫装置において、排ガス吸収液を酸化した後、濃縮結晶化し、更に電気分解法にて水酸化ナトリウム含有液と硫酸含有液とに分離し、得られた水酸化ナトリウム含有液を新たな吸収液(再生吸収液)として利用する方法が知られている(特許文献1参照)。   In addition, the recycling treatment technology that is environmentally beneficial and inexpensive has not yet been sufficiently completed. For example, in a desulfurization apparatus that uses an absorbing solution containing sodium hydroxide as an absorbent, the exhaust gas absorbing solution is oxidized. Then, it is concentrated and crystallized, further separated into a sodium hydroxide-containing liquid and a sulfuric acid-containing liquid by electrolysis, and the obtained sodium hydroxide-containing liquid is used as a new absorbent (regenerated absorbent). It is known (see Patent Document 1).

特開平11−244650号公報Japanese Patent Laid-Open No. 11-244650

しかし、特許文献1に記載の排ガス吸収液の処理方法では、電気分解の他に前処理として酸化及び濃縮が必要であり、かなりの費用を要している。そこで本発明は、排ガス脱硫プロセスにおいて吸収装置で生成する排ガス吸収液を、如何なる薬品も追加することなく、環境上有益に且つ安価に再生する方法を提供することを目的とするものである。   However, the method for treating an exhaust gas absorbing solution described in Patent Document 1 requires oxidation and concentration as a pretreatment in addition to electrolysis, which requires considerable costs. Accordingly, an object of the present invention is to provide a method for regenerating an exhaust gas absorbing solution produced by an absorption device in an exhaust gas desulfurization process in an environmentally beneficial and inexpensive manner without adding any chemicals.

上記課題を解決した本発明の請求項1記載の発明は、二酸化硫黄等の硫黄酸化物を含む排ガスを水酸化ナトリウムを吸収剤とする吸収液に吸収させて脱硫する排ガス脱硫プロセスにおいて、排ガスを吸収した吸収液を電解処理して液中から硫黄酸化物を除去して再生吸収液とし、排ガスの吸収に利用する方法であって、陰極と陽極との間に、前記陰極と対向して陽イオン交換膜を配して形成される陰極室と、前記陽極と対向して陰イオン交換膜を配して形成される陽極室と、前記陽イオン交換膜と前記陰イオン交換膜とで形成される中間室とを備える3室電解装置の前記中間室に、排ガスを吸収した吸収液を直接送って電解処理を行い、前期陽極室から硫酸含有液を回収するとともに、前記陰極室で生成した水酸化ナトリウム含有液と前記中間室からの出口液とを混合して再生吸収液とすることを特徴とする排ガス吸収液の再生方法である。   The invention according to claim 1 of the present invention which has solved the above problems is an exhaust gas desulfurization process in which an exhaust gas containing sulfur oxides such as sulfur dioxide is absorbed in an absorbing solution containing sodium hydroxide and desulfurized. The absorbed liquid is subjected to electrolytic treatment to remove sulfur oxides from the liquid to obtain a regenerated absorbent, which is used to absorb exhaust gas, and is used between the cathode and the anode so as to face the cathode. A cathode chamber formed by arranging an ion exchange membrane; an anode chamber formed by arranging an anion exchange membrane facing the anode; and the cation exchange membrane and the anion exchange membrane. The intermediate chamber of the three-chamber electrolysis apparatus provided with the intermediate chamber is subjected to electrolytic treatment by directly sending the absorbing liquid that has absorbed the exhaust gas to recover the sulfuric acid-containing liquid from the previous anode chamber, and the water generated in the cathode chamber Sodium oxide-containing liquid and the above A regeneration method of an exhaust gas absorbing liquid, characterized in that by mixing the outlet fluid from the chamber to the regenerated absorbent solution.

請求項2記載の発明は、再生吸収液のpHを6.3〜7.3に調整することを特徴とする請求項1記載の排ガス吸収液の再生方法である。   The invention according to claim 2 is the method for regenerating an exhaust gas absorbent according to claim 1, wherein the pH of the regenerated absorbent is adjusted to 6.3 to 7.3.

請求項3記載の発明は、再生吸収液のpHを3室電解装置の電極間に供給される電流量により調節することを特徴とする請求項2記載の排ガス吸収液の再生方法である。   A third aspect of the present invention is the exhaust gas absorbing liquid regeneration method according to the second aspect, wherein the pH of the regeneration absorbing liquid is adjusted by the amount of current supplied between the electrodes of the three-chamber electrolysis apparatus.

請求項4記載の発明は、陽極室から回収した硫酸含有液に含まれる亜硫酸を酸化して硫酸にすることを特徴とする請求項1〜3の何れか1項に記載の排ガス吸収液の再生方法である。   The invention according to claim 4 regenerates the exhaust gas absorbing liquid according to any one of claims 1 to 3, wherein sulfurous acid contained in the sulfuric acid-containing liquid recovered from the anode chamber is oxidized to sulfuric acid. Is the method.

本発明によれば、水酸化ナトリウムを吸収剤とする排ガス脱硫プロセスにおいて吸収装置で生成する排ガス吸収液を、酸化処理や濃縮処理を行うことなく、電解装置で処理するだけで水酸化ナトリウム含有液と硫酸含有液とに分離回収することができ、安価に再生吸収液が得られる。従って、本発明の排ガス吸収液の再生方法を用いることで、外部から水酸化ナトリウムの追加補給することなく、排ガス脱硫処理を実施することができる。また、硫酸含有液からも品位の高い再生硫酸が得られる。更に、廃棄物も無く、環境にも優しい。   According to the present invention, a sodium hydroxide-containing liquid can be obtained by simply treating an exhaust gas absorbent produced by an absorber in an exhaust gas desulfurization process using sodium hydroxide as an absorbent, without performing an oxidation treatment or a concentration treatment, using an electrolytic device. And a sulfuric acid-containing liquid can be separated and recovered, and a regenerated absorbent can be obtained at a low cost. Therefore, by using the method for regenerating an exhaust gas absorbing solution of the present invention, exhaust gas desulfurization treatment can be performed without additional supply of sodium hydroxide from the outside. Also, high-quality regenerated sulfuric acid can be obtained from the sulfuric acid-containing liquid. Furthermore, there is no waste and it is environmentally friendly.

以下、本発明を図面に示す実施の形態によってさらに詳説する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、実施の形態を示す排ガス脱硫設備のフローシートである。ボイラー等から発生する二硫化硫黄(SO)等の硫黄酸化物を含んだ排ガス07は吸収装置01に導かれ、塔頂から散布される吸収液と接触し、脱硫される。ここで、吸収液は水酸化ナトリウムを吸収剤とする水溶液であり、排ガス07との接触により(1)式のように亜硫酸ナトリウムを生成し、更にこの亜硫酸ナトリウムが新たなSOと反応して(2)式のように亜硫酸水素ナトリウムを生成する。そのため、排ガス07を吸収した排ガス吸収液は亜硫酸水素ナトリウムを主成分として含む水溶液となる。
SO+2NaOH → NaSO+HO …(1)
SO+NaSO +H2 O → 2NaHSO …(2)
FIG. 1 is a flow sheet of an exhaust gas desulfurization facility showing an embodiment. The exhaust gas 07 containing sulfur oxides such as sulfur disulfide (SO 2 ) generated from a boiler or the like is led to the absorption device 01 and is contacted with the absorbing liquid sprayed from the top of the tower to be desulfurized. Here, the absorbing solution is an aqueous solution containing sodium hydroxide as an absorbent, and forms sodium sulfite as shown in the formula (1) by contact with the exhaust gas 07. Further, this sodium sulfite reacts with new SO 2. (2) Sodium bisulfite is produced as shown in the formula. Therefore, the exhaust gas absorption liquid that has absorbed the exhaust gas 07 is an aqueous solution containing sodium hydrogen sulfite as a main component.
SO 2 + 2NaOH → Na 2 SO 3 + H 2 O (1)
SO 2 + Na 2 SO 3 + H 2 O → 2NaHSO 3 (2)

また、排ガス07に含まれる煤塵等の固形物は、吸収装置01に送られる前にEP、サイクロン等の集塵装置(図示せず)により集塵除去されるが、一部は排ガス07と共に吸収装置01に流入する。そして、排ガス吸収液中の固形物濃度が除々に上昇し、吸収装置01の充填部等の閉塞を引き起こす。これを防ぐために、吸収装置01の底部から排ガス吸収液の一部を抜き出し、濾過送り吸収液ライン14にて固液分離装置04に送り、固液分離装置04にて固形物を除去した濾過液15を吸収装置01に戻す。固液分離装置04としては、フィルタープレス、プリコートフィルター等の圧力式濾過装置を例示できる。   In addition, solids such as dust contained in the exhaust gas 07 are collected and removed by a dust collector (not shown) such as EP or cyclone before being sent to the absorber 01, but a part is absorbed together with the exhaust gas 07. It flows into the device 01. Then, the solid concentration in the exhaust gas absorption liquid gradually increases, causing the filling portion of the absorption device 01 to be blocked. In order to prevent this, a part of the exhaust gas absorption liquid is extracted from the bottom of the absorption device 01, sent to the solid-liquid separation device 04 through the filtration feed absorption liquid line 14, and the filtrate from which the solid matter has been removed by the solid-liquid separation device 04. 15 is returned to the absorber 01. Examples of the solid-liquid separation device 04 include pressure filtration devices such as filter presses and precoat filters.

このようにして硫黄酸化物(SO2 )が除去された排ガスは、吸収装置01の上部より清浄ガス08として大気に排出される。 The exhaust gas from which the sulfur oxide (SO 2 ) has been removed in this way is discharged into the atmosphere as clean gas 08 from the upper part of the absorber 01.

以上は、水酸化ナトリウムを吸収剤とする一般的な脱硫プロセスであり、本発明においては適宜変更可能である。   The above is a general desulfurization process using sodium hydroxide as an absorbent, and can be appropriately changed in the present invention.

一方、上記で生成した排ガス吸収液は、吸収装置01の底部から抜き取られ、排ガス吸収液電解装置送り09aを通じて3室電解装置02に送られる。尚、電解処理能力によっては、排ガス吸収液の一部を吸収塔循環戻り09bを通じて吸収装置01に返送してもよい。   On the other hand, the generated exhaust gas absorbing liquid is extracted from the bottom of the absorbing device 01 and sent to the three-chamber electrolyzing device 02 through the exhaust gas absorbing solution electrolyzing device feeding 09a. Depending on the electrolytic treatment capacity, a part of the exhaust gas absorption liquid may be returned to the absorber 01 through the absorption tower circulation return 09b.

図2は、3室電解装置02の構成を示す模式図である。図示されるように、3室電解装置02は、陰極19と陽極23との間に、陰極19と対向して陽イオン交換膜21を配して形成される陰極室20と、陽極23と対向して陰イオン交換膜24を配して形成される陽極室25と、陽イオン交換膜21と陰イオン交換膜24とで形成される中間室22とを備えている。   FIG. 2 is a schematic diagram showing the configuration of the three-chamber electrolyzer 02. As shown in the figure, the three-chamber electrolysis device 02 is opposed to the anode 23 and the cathode chamber 20 formed by disposing a cation exchange membrane 21 between the cathode 19 and the anode 23 so as to face the cathode 19. Thus, an anode chamber 25 formed by arranging the anion exchange membrane 24 and an intermediate chamber 22 formed by the cation exchange membrane 21 and the anion exchange membrane 24 are provided.

本発明では、排ガス吸収液を、従来のように酸化処理や濃縮処理を介することなく、3室電解装置02の中間室22に直接供給する。3室電解装置02では、陽極23と陰極19間に整流器03を用いて電流を流すと、陰極室20では下記(3)式で示す反応が、中間室22では下記(4)式で示す反応が、陽極室25では下記(5)式で示す反応がそれぞれ起こる。
陰極室反応:Na+H2O → NaOH+1/2 H2…(3)
中間室反応:2NaHSO3 −HSO3 −Na → NaHSO3 …(4)
陽極室反応:HSO3 +1/2 H2 O → 1/2 H2SO4 +1/2 H2SO3 …(5)
In the present invention, the exhaust gas absorbing solution is directly supplied to the intermediate chamber 22 of the three-chamber electrolysis device 02 without using an oxidation treatment or a concentration treatment as in the prior art. In the three-chamber electrolysis device 02, when a current is passed between the anode 23 and the cathode 19 using the rectifier 03, the reaction expressed by the following formula (3) in the cathode chamber 20 and the reaction expressed by the following formula (4) in the intermediate chamber 22. However, in the anode chamber 25, the reactions shown by the following formula (5) occur, respectively.
Cathode chamber reaction: Na + + H 2 O → NaOH + 1/2 H 2 (3)
Intermediate chamber reaction: 2NaHSO 3 -HSO 3 - -Na + → NaHSO 3 ... (4)
Anode chamber reaction: HSO 3 +1/2 H 2 O → 1/2 H 2 SO 4 +1/2 H 2 SO 3 (5)

即ち、中間室22において、排ガス吸収液中のナトリウムイオンが陽イオン交換膜21を通り陰極室20に移動し、陰極室20にて水酸化ナトリウムが生成する。また、排ガス吸収液中の亜硫酸イオンが陰イオン交換膜24を通り陽極室25に移動し、陽極室25にて硫酸が生成する。   That is, in the intermediate chamber 22, sodium ions in the exhaust gas absorption liquid move to the cathode chamber 20 through the cation exchange membrane 21, and sodium hydroxide is generated in the cathode chamber 20. Further, sulfite ions in the exhaust gas absorbing solution move to the anode chamber 25 through the anion exchange membrane 24, and sulfuric acid is generated in the anode chamber 25.

そして、陰極室20にて生成した水酸化ナトリウムを含む陰極出口液10aを、中間室出口液10bとともに再生吸収液ライン10を通じて吸収装置01に送り、新たな吸収液(再生吸収液)として塔頂から散布し、排ガス07の硫黄酸化物の吸収脱硫に使用する。   Then, the cathode outlet liquid 10a containing sodium hydroxide generated in the cathode chamber 20 is sent to the absorption device 01 through the regenerated absorbent line 10 together with the intermediate chamber outlet liquid 10b, and the top of the tower is obtained as a new absorbent (regenerated absorbent). And used for absorption desulfurization of sulfur oxides of exhaust gas 07.

再生吸収液のpHは、6.3〜7.3とするのが好ましく、6.3〜6.8とするのがより好ましい。再生吸収液のpHは、主に亜硫酸ナトリウムと亜硫酸水素ナトリウムの濃度比率(モル分率)により定まり、亜硫酸水素ナトリウムのモル分率が高まる程再生吸収液のpHは低下する。吸収装置01での吸収効率は、吸収液のpHが高い程、言い換えれば亜硫酸水素ナトリウムのモル分率が低い程吸収効率は高まる。一方、3室電解装置02の電流効率は、排ガス吸収液のpHが低い程、言い換えれば亜硫酸水素ナトリウムのモル分率が高い程高くなる。そこで、本発明では、再生吸収液のpHを上記範囲に調整する。   The pH of the regenerated absorbent is preferably 6.3 to 7.3, and more preferably 6.3 to 6.8. The pH of the regenerated absorbent is mainly determined by the concentration ratio (molar fraction) of sodium sulfite and sodium bisulfite, and the pH of the regenerated absorbent decreases as the molar fraction of sodium bisulfite increases. The absorption efficiency of the absorption device 01 increases as the pH of the absorption liquid increases, in other words, as the molar fraction of sodium bisulfite decreases. On the other hand, the current efficiency of the three-chamber electrolysis device 02 increases as the pH of the exhaust gas absorbing solution decreases, in other words, as the molar fraction of sodium bisulfite increases. Therefore, in the present invention, the pH of the regenerated absorbent is adjusted to the above range.

再生吸収液のpHを調節する方法として、3室電解装置02にて除去する硫黄酸化物量と、再生吸収液に吸収された硫黄酸化物量とをバランスさせることが必要であり、そのためには、3室電解装置02の陰極19と陽極23との間に供給する電流量を整流器03にて変化させ、3質電解装置02での電気分解の進行具合を調整して再生吸収液のpHを上記範囲に調節する方法が好適である。   As a method of adjusting the pH of the regenerated absorbent, it is necessary to balance the amount of sulfur oxide removed by the three-chamber electrolyzer 02 with the amount of sulfur oxide absorbed by the regenerated absorbent. The amount of current supplied between the cathode 19 and the anode 23 of the room electrolyzer 02 is changed by the rectifier 03 to adjust the progress of the electrolysis in the three-phase electrolyzer 02 and the pH of the regenerated absorbent is in the above range. The method of adjusting to is suitable.

一方、陽極室25では、(5)式に示すように、亜硫酸も副生する。しかし、その大部分は陽極23で酸化され、硫酸となる。このときの酸化効率を高めるためには、陽極室内の流速は速い方が望ましく、具体的には0.01〜0.2m/sとすることが好ましく、0.03〜0.1m/sとすることがより好ましい。   On the other hand, in the anode chamber 25, as shown in the equation (5), sulfurous acid is also by-produced. However, most of it is oxidized at the anode 23 to become sulfuric acid. In order to increase the oxidation efficiency at this time, it is desirable that the flow rate in the anode chamber is high, specifically 0.01 to 0.2 m / s, preferably 0.03 to 0.1 m / s. More preferably.

また、陽極室25における硫酸濃度は、電流効率を高めるためには2.5モル/Lより低い方が望ましく、1モル/L以下がより望ましい。このような濃度調整のために、陽極室出口液12を陽極室循環槽05に送り、陽極室入口硫酸ライン11を通じて陽極室12に循環させ、循環の間に陽極室循環槽05に補給水18を添加する。   In addition, the sulfuric acid concentration in the anode chamber 25 is preferably lower than 2.5 mol / L and more preferably 1 mol / L or less in order to increase current efficiency. In order to adjust the concentration, the anode chamber outlet liquid 12 is sent to the anode chamber circulation tank 05 and is circulated to the anode chamber 12 through the anode chamber inlet sulfuric acid line 11. Add.

そして、上記の如く濃度調整された硫酸含有液は、硫酸回収ライン13を通じて回収される。   Then, the sulfuric acid-containing liquid whose concentration is adjusted as described above is recovered through the sulfuric acid recovery line 13.

また、残存する亜硫酸を酸化して硫酸回収率をより高めるために、陽極室循環槽05から一部の液を抜き出し、亜硫酸酸化回収装置06にて、例えば、貴金属触媒法、オゾン酸化法、活性炭触媒法等により酸化して硫酸に変える。   Further, in order to oxidize the remaining sulfurous acid and increase the sulfuric acid recovery rate, a part of the liquid is extracted from the anode chamber circulation tank 05, and the sulfurous acid oxidation recovery device 06 uses, for example, a noble metal catalyst method, ozone oxidation method, activated carbon It is oxidized into sulfuric acid by the catalytic method.

上記の如く、排ガス吸収液は3室電解装置02にて亜硫酸水素イオン等が除去され、陰極室20から再生吸収液が回収されるが、3室電解装置02での亜硫酸水素イオン等の除去率は小さい程電流効率が良く、中間室22での脱塩による濃度変化率(脱塩率)として0.5〜5%とするのが望ましく、0.5〜2%とするのがより望ましい。また、亜硫酸イオンと亜硫酸水素イオンとの存在比も電流効率に大きく影響し、排ガス吸収液と再生吸収液とのpH差(再生pH変化量)として0.01〜0.5上昇させるのが好ましく、0.01〜0.2上昇させるのがより好ましい。例えば、排ガス吸収液のpHが6.80の場合、再生吸収液のpHを6.85、即ち再生pH変化量0.05とするのが好ましい。   As described above, the bisulfite ions are removed from the exhaust gas absorbing solution in the three-chamber electrolyzer 02 and the regenerated absorbent is recovered from the cathode chamber 20, but the removal rate of bisulfite ions and the like in the three-chamber electrolyzer 02 Is smaller, the better the current efficiency, and the concentration change rate (desalting rate) by desalting in the intermediate chamber 22 is preferably 0.5 to 5%, more preferably 0.5 to 2%. The abundance ratio between sulfite ions and hydrogen sulfite ions also greatly affects the current efficiency, and it is preferable to increase the pH difference (regeneration pH change amount) between the exhaust gas absorption liquid and the regeneration absorption liquid by 0.01 to 0.5. , 0.01 to 0.2 is more preferable. For example, when the pH of the exhaust gas absorbing liquid is 6.80, the pH of the regenerated absorbing liquid is preferably 6.85, that is, the regenerated pH change amount is 0.05.

また、3室電解装置02での亜硫酸水素イオンの除去電流効率は、中間室に供給する排ガス吸収液の流速に影響される。中間室内の排ガス吸収液の液流速が速い程電流効率が増大するが、実用的な範囲から考えると中間室内の排ガス吸収液の流速は0.03〜0.2m/sが好ましく、0.1〜0.15m/sがより好ましい。   Moreover, the bisulfite ion removal current efficiency in the three-chamber electrolyzer 02 is affected by the flow rate of the exhaust gas absorbent supplied to the intermediate chamber. The current efficiency increases as the liquid flow rate of the exhaust gas absorbing liquid in the intermediate chamber increases, but considering the practical range, the flow rate of the exhaust gas absorbing liquid in the intermediate chamber is preferably 0.03 to 0.2 m / s. -0.15 m / s is more preferable.

更に、3室電解装置02での電流量及び運転温度は、運転コストに大きく影響する。具体的には、電流密度は0.3〜2.0kA/m2が好ましく、0.3〜1.0kA/m2がより好ましい。また、運転温度は20〜80℃が好ましく、40〜60℃がより好ましい。 Furthermore, the amount of current and the operating temperature in the three-chamber electrolyzer 02 greatly affect the operating cost. Specifically, the current density is preferably 0.3~2.0kA / m 2, 0.3~1.0kA / m 2 is more preferable. The operating temperature is preferably 20-80 ° C, more preferably 40-60 ° C.

尚、3室電解装置02の構成材料には制限がなく、陽極23としては、一般的な酸素発生電極が好適であり、例えば、チタンもしくはSUS基材に白金メッキした物、あるいは、チタン基材に白金、イリジウム、タンタル等の酸化貴金属単体、もしくは複合物を被服された物、さらにはカーボン、炭素繊維、鉛等を使用できる。陰極19としては、一般的な水素発生電極が好適であり、例えば、ステンレススチール、ニッケル、ラネーニッケル、鉄、さらにはカーボン、炭素繊維等を使用できる。陰イオン交換膜24としては、殆どの陰イオン交換膜が使用できるが、例えば、セレミオンAMV、AMT、AMD、AHT、APS(旭硝子株式会社の製品名)等が亜硫酸イオンにとっては高度に透過可能であり、好適である。陽イオン交換膜21としては、セレミオンCMT、セレミオンCMD、セレミオンCMF(何れも旭硝子株式会社の製品名)等を使用できる。   The constituent material of the three-chamber electrolyzer 02 is not limited, and a general oxygen generating electrode is suitable as the anode 23. For example, a titanium or SUS base material plated with platinum, or a titanium base material Further, it is possible to use a precious metal simple substance such as platinum, iridium or tantalum or a substance coated with a composite, carbon, carbon fiber, lead or the like. As the cathode 19, a general hydrogen generating electrode is suitable. For example, stainless steel, nickel, Raney nickel, iron, carbon, carbon fiber, or the like can be used. Most anion exchange membranes can be used as the anion exchange membrane 24. For example, Selemion AMV, AMT, AMD, AHT, APS (product name of Asahi Glass Co., Ltd.) and the like are highly permeable to sulfite ions. Yes, it is preferred. As the cation exchange membrane 21, Selemion CMT, Selemion CMD, Selemion CMF (all are product names of Asahi Glass Co., Ltd.) and the like can be used.

物質収支においては、3室電解装置02にて再生する過程において亜硫酸イオンの移動とともに排ガス吸収液中から水和水が移動するため、排ガス吸収液の容量が減少して全塩濃度が上昇する。排ガス吸収液の濃度管理方法として、吸収装置01に補給水16を連続または間欠的に添加し、排ガス吸収液の電気伝導度にて全塩濃度を管理する方法が好適である。排ガス吸収液の全塩濃度は、吸収効率、電流効率等の効率を高める為には高い方が良いが、結晶析出によるトラブルを回避するため、100〜220g/Lとすることが好ましく、100〜150g/Lとすることがより好ましい。   In the material balance, since the hydration water moves from the exhaust gas absorption liquid along with the movement of sulfite ions in the process of regeneration in the three-chamber electrolyzer 02, the capacity of the exhaust gas absorption liquid decreases and the total salt concentration increases. As a method for managing the concentration of the exhaust gas absorption liquid, a method in which the makeup water 16 is continuously or intermittently added to the absorber 01 and the total salt concentration is managed by the electric conductivity of the exhaust gas absorption liquid is preferable. The total salt concentration of the exhaust gas absorption liquid is preferably high in order to increase the efficiency such as absorption efficiency and current efficiency, but is preferably set to 100 to 220 g / L in order to avoid troubles due to crystal precipitation. More preferably, it is 150 g / L.

また、排ガス吸収液の再生運転を継続していくと煤塵から溶出した不純物の濃度が上昇し、吸収装置01や3室電解装置02での結晶析出等の弊害を生ずるばかりでなく、吸収効率並びに電流効率の低下を招くようになる。そこで、排ガス吸収液の一部を吸収液排水ライン17より定期的に排出し、不純物濃度を調整する濃度調整手段を備えることが好ましい。   Moreover, if the regeneration operation of the exhaust gas absorbing liquid is continued, the concentration of impurities eluted from the dust increases, which causes not only harmful effects such as crystal precipitation in the absorption device 01 and the three-chamber electrolysis device 02, but also the absorption efficiency and The current efficiency is reduced. Therefore, it is preferable to provide a concentration adjusting means for periodically discharging a part of the exhaust gas absorbing liquid from the absorbing liquid drain line 17 and adjusting the impurity concentration.

(実施例)
図1に示す構成の排ガス脱硫設備、図2に示す構成の3室電解装置を用いて排ガス吸収と排ガス吸収液の再生運転を実施した。
(Example)
Exhaust gas absorption and exhaust gas absorption liquid regeneration operation were carried out using the exhaust gas desulfurization equipment having the configuration shown in FIG. 1 and the three-chamber electrolysis apparatus having the configuration shown in FIG.

排ガスとして石炭ボイラー排ガスを使用し、下記条件にて脱硫を行った。
<排ガス>
・排ガス流量:480Nm3 /h
・温度:50℃
・SO2 濃度:1,556ppm
・H2 O濃度:10vol%
<吸収装置>
・液ガス比率:4.0L/Nm3
・ダスト濃度:207mg/Nm3
・供給再生吸収液のpH:6.7
・排ガス吸収液の濃度(全塩濃度):150g/L
・流量:1.9m3/h
A coal boiler exhaust gas was used as the exhaust gas, and desulfurization was performed under the following conditions.
<Exhaust gas>
・ Exhaust gas flow rate: 480 Nm 3 / h
・ Temperature: 50 ℃
・ SO 2 concentration: 1,556 ppm
・ H 2 O concentration: 10 vol%
<Absorber>
Liquid gas ratio: 4.0 L / Nm 3
・ Dust concentration: 207 mg / Nm 3
-PH of the supplied regeneration absorbing solution: 6.7
・ Exhaust gas absorption liquid concentration (total salt concentration): 150 g / L
・ Flow rate: 1.9m 3 / h

この操作条件下での脱硫結果は、以下のとおりである。
・SO2 濃度:133ppm
・吸収装置の脱硫率:91.4%
The desulfurization results under these operating conditions are as follows.
・ SO 2 concentration: 133 ppm
・ Desulfurization rate of absorber: 91.4%

また、吸収装置で生成した排ガス吸収液を3室電解装置に供給し、再生を実施した。再生条件及び結果は以下のとおりである。
・排ガス吸収液分配流量比率〔排ガス吸収液電解装置送り09aの流量/(排ガス吸収液電解装置送り09aの流量+排ガス吸収液吸収塔循環戻り09bの流量)〕:0.2
・排ガス吸収液のpH:6.7
・電解装置運転電流密度:0.5kA/m2
・電解装置運転電圧:4.0V
・再生吸収液:pH6.8
・再生電流効率:70%(一価イオンとして計算)
・陽極室から得られた硫酸の濃度:6.0質量%
この場合の再生電力原単位は、2.4kWh/kg(SO)であった。
Moreover, the exhaust gas absorption liquid produced | generated with the absorber was supplied to the three-chamber electrolysis apparatus, and reproduction | regeneration was implemented. The regeneration conditions and results are as follows.
Exhaust gas absorbent distribution flow ratio [Flow rate of exhaust gas absorbent electrolyzer feed 09a / (Flow rate of exhaust gas absorbent electrolyzer feed 09a + Flow rate of exhaust gas absorbent absorption tower circulation return 09b)]: 0.2
-PH of exhaust gas absorbing solution: 6.7
Electrolyzer operating current density: 0.5 kA / m 2
-Electrolyzer operating voltage: 4.0V
・ Regeneration absorbent: pH 6.8
・ Regeneration current efficiency: 70% (calculated as monovalent ions)
Concentration of sulfuric acid obtained from the anode chamber: 6.0% by mass
In this case, the unit of regeneration power was 2.4 kWh / kg (SO 2 ).

以上の条件下の運転において、排ガス吸収液に水酸化ナトリウムの追加補給なしで排ガス脱硫操作を連続に安定して行うことができた。また、回収硫酸として、高品位のものを得ることができた。   In the operation under the above conditions, the exhaust gas desulfurization operation could be continuously performed stably without additional supplementation of sodium hydroxide to the exhaust gas absorbing solution. Also, high quality sulfuric acid could be obtained as the recovered sulfuric acid.

(比較例)
実施例で得られた吸収液を用いて従来方法でのNaOH回収を実施した。回収条件及び結果は以下の通りである。
即ち、排ガス吸収液にNaOHを添加しpH11とした後、空気を吹き込み、NaSOをNaSOに酸化し、3室電解装置に供給し、再生(NaOH回収)を実施した。
・電解装置運転電流密度:0.5kA/m
・電解装置運転電圧:4.0V
・再生電流効率:33%(NaOH添加分考慮)
・陽極室から得られた硫酸の濃度:12%
・陰極室から得られたNaOH濃度:13%
この場合の再生電力原単位は、5.1kWh/kg(SO)であった。
(Comparative example)
NaOH recovery by the conventional method was implemented using the absorption liquid obtained in the Example. The collection conditions and results are as follows.
That is, NaOH was added to the exhaust gas absorbing solution to adjust the pH to 11, and then air was blown to oxidize Na 2 SO 3 to Na 2 SO 4, which was supplied to a three-chamber electrolyzer and regenerated (NaOH recovery).
Electrolyzer operating current density: 0.5 kA / m 2
-Electrolyzer operating voltage: 4.0V
・ Regeneration current efficiency: 33% (considering the amount of NaOH added)
-Concentration of sulfuric acid obtained from the anode chamber: 12%
-NaOH concentration obtained from the cathode chamber: 13%
In this case, the unit of regeneration electric power was 5.1 kWh / kg (SO 2 ).

本発明の実施の形態を示したフローシートである。It is the flow sheet which showed embodiment of this invention. 本発明で用いる3室電解装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the three-chamber electrolysis apparatus used by this invention.

符号の説明Explanation of symbols

01…吸収装置、02…3室電解装置、03…整流器、04…濾過器、05…陽極室循環槽、06…亜硫酸酸化回収装置、07…排ガス、08…清浄ガス、09a…排ガス吸収液電解装置送り、09b…排ガス吸収液吸収塔循環戻り、10…再生吸収液、10a…陰極室出口液、10b…中間室出口液、11…陽極室入口硫酸、12…陽極室出口硫酸、13…硫酸回収ライン、14…濾過送り吸収液ライン、15…濾過液、16…補給水、17…吸収液排水ライン、18…補給水、19…陰極、20…陰極室、21…陽イオン交換膜、22…中間室、23…陽極、24…陰イオン交換膜、25…陽極室 01 ... Absorber, 02 ... Three-chamber electrolyzer, 03 ... Rectifier, 04 ... Filter, 05 ... Anode chamber circulation tank, 06 ... Sulfurous acid oxidation recovery device, 07 ... Exhaust gas, 08 ... Clean gas, 09a ... Exhaust gas absorption liquid electrolysis Equipment feed, 09b ... exhaust gas absorption liquid circulation return, 10 ... regeneration absorption liquid, 10a ... cathode chamber outlet liquid, 10b ... intermediate chamber outlet liquid, 11 ... anode chamber inlet sulfuric acid, 12 ... anode chamber outlet sulfuric acid, 13 ... sulfuric acid Recovery line, 14 ... Filtration feed absorption liquid line, 15 ... Filtrate, 16 ... Makeup water, 17 ... Absorption liquid drainage line, 18 ... Makeup water, 19 ... Cathode, 20 ... Cathode chamber, 21 ... Cation exchange membrane, 22 ... Intermediate chamber, 23 ... Anode, 24 ... Anion exchange membrane, 25 ... Anode chamber

Claims (4)

二酸化硫黄等の硫黄酸化物を含む排ガスを水酸化ナトリウムを吸収剤とする吸収液に吸収させて脱硫する排ガス脱硫プロセスにおいて、排ガスを吸収した吸収液を電解処理して液中から硫黄酸化物を除去して再生吸収液とし、排ガスの吸収に利用する方法であって、
陰極と陽極との間に、前記陰極と対向して陽イオン交換膜を配して形成される陰極室と、前記陽極と対向して陰イオン交換膜を配して形成される陽極室と、前記陽イオン交換膜と前記陰イオン交換膜とで形成される中間室とを備える3室電解装置の前記中間室に、排ガスを吸収した吸収液を直接送って電解処理を行い、前期陽極室から硫酸含有液を回収するとともに、前記陰極室で生成した水酸化ナトリウム含有液と前記中間室からの出口液とを混合して再生吸収液とすることを特徴とする排ガス吸収液の再生方法。
In an exhaust gas desulfurization process in which exhaust gas containing sulfur oxides such as sulfur dioxide is absorbed in an absorbing solution containing sodium hydroxide and desulfurized, the absorbing solution that has absorbed the exhaust gas is electrolytically treated to remove sulfur oxides from the solution. It is a method that removes it as a regenerated absorbent and uses it to absorb exhaust gas,
A cathode chamber formed by disposing a cation exchange membrane facing the cathode between the cathode and the anode; an anode chamber formed by disposing an anion exchange membrane facing the anode; The intermediate chamber of a three-chamber electrolysis apparatus provided with an intermediate chamber formed by the cation exchange membrane and the anion exchange membrane is subjected to electrolytic treatment by directly sending an absorbing solution that has absorbed exhaust gas. A method for regenerating an exhaust gas absorbing liquid, comprising recovering a sulfuric acid-containing liquid and mixing a sodium hydroxide-containing liquid generated in the cathode chamber and an outlet liquid from the intermediate chamber to obtain a regenerating absorbent.
再生吸収液のpHを6.3〜7.3に調整することを特徴とする請求項1記載の排ガス吸収液の再生方法。   The method for regenerating an exhaust gas absorbent according to claim 1, wherein the pH of the regenerated absorbent is adjusted to 6.3 to 7.3. 再生吸収液のpHを3室電解装置の電極間に供給される電流量により調節することを特徴とする請求項2記載の排ガス吸収液の再生方法。   The method for regenerating an exhaust gas absorbing liquid according to claim 2, wherein the pH of the regenerating absorbent is adjusted by the amount of current supplied between the electrodes of the three-chamber electrolyzer. 陽極室から回収した硫酸含有液に含まれる亜硫酸を酸化して硫酸にすることを特徴とする請求項1〜3の何れか1記載の排ガス吸収液の再生方法。   The method for regenerating an exhaust gas absorbing liquid according to any one of claims 1 to 3, wherein sulfurous acid contained in the sulfuric acid-containing liquid recovered from the anode chamber is oxidized to sulfuric acid.
JP2006181853A 2006-06-30 2006-06-30 Method for regenerating exhaust gas absorbed solution Pending JP2008006409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181853A JP2008006409A (en) 2006-06-30 2006-06-30 Method for regenerating exhaust gas absorbed solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181853A JP2008006409A (en) 2006-06-30 2006-06-30 Method for regenerating exhaust gas absorbed solution

Publications (1)

Publication Number Publication Date
JP2008006409A true JP2008006409A (en) 2008-01-17

Family

ID=39065106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181853A Pending JP2008006409A (en) 2006-06-30 2006-06-30 Method for regenerating exhaust gas absorbed solution

Country Status (1)

Country Link
JP (1) JP2008006409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101010A (en) * 2009-12-18 2011-06-22 上海交通大学 Electrolysis circulating flue gas desulfurization method utilizing reclamation semidry method
CN104474862A (en) * 2014-11-13 2015-04-01 中国石油化工股份有限公司 Skid-mounted desulfurized tail gas purifying oxidation absorption liquid recycling apparatus
CN110776132A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge process and device for regenerated wastewater of boiler make-up water treatment system of coal-fired power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126579A (en) * 1974-03-25 1975-10-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126579A (en) * 1974-03-25 1975-10-04

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101010A (en) * 2009-12-18 2011-06-22 上海交通大学 Electrolysis circulating flue gas desulfurization method utilizing reclamation semidry method
CN102101010B (en) * 2009-12-18 2013-05-01 上海交通大学 Electrolysis circulating flue gas desulfurization method utilizing reclamation semidry method
CN104474862A (en) * 2014-11-13 2015-04-01 中国石油化工股份有限公司 Skid-mounted desulfurized tail gas purifying oxidation absorption liquid recycling apparatus
CN110776132A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge process and device for regenerated wastewater of boiler make-up water treatment system of coal-fired power plant

Similar Documents

Publication Publication Date Title
JP7083875B2 (en) Method for Producing Lithium Hydroxide Monohydrate from Boiled Water
US9222149B2 (en) Preparation of lithium carbonate from lithium chloride containing brines
KR101549980B1 (en) Manufacturing method carbonates of alkali metal ion or alkali earth metal ion using Electrolysis Unit
US9845539B2 (en) Treatment of hydrogen sulfide
US20060144715A1 (en) Production of ultra pure salt
JP2006326458A (en) Desulfurization method and apparatus of exhaust gas containing sulfur oxide
KR20040084997A (en) Method of and apparatus for regenerating adsorbent
JP2001026418A (en) Recovering method of industrially useful inorganic material and industrially useful inorganic material recovered by the same
JP2008100211A (en) Mixed gas separation method and system
CA1069463A (en) Method for removing hydrogen sulfide
AU2013364034B2 (en) Treatment of hydrogen sulfide
JP2008006409A (en) Method for regenerating exhaust gas absorbed solution
JP4458320B2 (en) Waste treatment method and equipment
JPH09271781A (en) Method of removing nitrogen from waste water
HU213383B (en) Method for producing aqueous sodium chloride solution and crystalline sodium chloride
JP3208813B2 (en) How to remove hydrogen sulfide gas
CN113213685A (en) Desulfurization product sulfur recycling treatment process
JPH06210129A (en) Waste gas treatment
JPH05220334A (en) Waste liquid treatment and equipment for flue gas desulfurizer
JP3741400B2 (en) Exhaust gas desulfurization method and apparatus
KR100952305B1 (en) Electrolytic recycle method of contaminated carbonate solution and its device
CN112962110B (en) Method for refining by-product salt after incineration
EP4079720A1 (en) The production of formic acid or formaldehyde from carbon dioxide
WO2024016115A1 (en) Co2 capture and desorption apparatus and method
JPH05111614A (en) Treatment of exhaust gas

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301