JPS6336815A - Method for purifying gas - Google Patents

Method for purifying gas

Info

Publication number
JPS6336815A
JPS6336815A JP61177092A JP17709286A JPS6336815A JP S6336815 A JPS6336815 A JP S6336815A JP 61177092 A JP61177092 A JP 61177092A JP 17709286 A JP17709286 A JP 17709286A JP S6336815 A JPS6336815 A JP S6336815A
Authority
JP
Japan
Prior art keywords
gas
contact
alkali carbonate
soln
carbonate solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61177092A
Other languages
Japanese (ja)
Inventor
Tsutomu Takeuchi
竹内 孜
Mitsumasa Kitai
北井 三正
Hirotaka Ryuto
博孝 龍頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61177092A priority Critical patent/JPS6336815A/en
Publication of JPS6336815A publication Critical patent/JPS6336815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To improve the efficiency in removing H2S by bringing a gas contg. CO2 and H2S into contact with an aq. soln. of an alkali carbonate, then bringing the gas into contact with an aq. soln. of an alkali carbonate contg. V<5+>, separating the S generated by the contact of the aq. soln. with an oxidizing agent, and circulating the soln. CONSTITUTION:The gas contg. CO2 and H2S is introduced into a first absorption tower 1, and brought into contact with an aq. soln. of an alkali carbonate such as an aq. K2CO3 soln. The liq. absorbent is heated in a regeneration tower 2 to liberate the absorbed CO2 and H2S, and then circulated as the regenerated liq. absorbent from a duct 9. Meanwhile, the gas is introduced into a second absorption tower 3, and brought into contact with an aq. K2CO3 soln. contg. V<5+>. The H2S and CO2 in the gas are absorbed, and an oxidizing agent is added to the liq. absorbent from a tank 6 for an aq. soln. of an oxidizing agent. The absorbent is recovered in a tank 4 for a hot aq. K2CO3 soln. and passed through a strainer 5 to separate deposited solid S. The absorbent is then circulated to the second absorption tower 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスの精製法に関するもので、詳しくは、不純
物としてCO2及びH2Sを含有するガスを炭酸アルカ
リ水溶液と接触させることにより精製する方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying gas, and more specifically, a method for purifying gas containing CO2 and H2S as impurities by bringing it into contact with an aqueous alkali carbonate solution. It is about improvement.

〔従来の技術〕[Conventional technology]

例えば、高湿に保持されたコークス層に、02含有ガス
を通気することによりコークスをガス化してCOを製造
する場合、発生するCOガス中には相当量のCo、及び
H2Sが含有されるが、このガスを各種化学反応の原料
として用いる友めには、これを精製してCo、及びH2
Sを除去する必要がある。このようなガスの精製法とし
ては、一般に、ガスを炭酸アルカリ水溶液と接触処理す
る方法が知られている。この方法は通常、吸収塔におい
てガスを熱炭酸カリウム水溶液と連続的に接触させ、C
O,及びH2Sを吸収させ、次いで、処理後の吸収液を
再生塔において加熱することにより発生するCO,及び
H,S’iパージして吸収液の再生を行ない、これを再
び吸収塔に循環することにより実施される。これを化学
式で示すと次の通りである。
For example, when CO is produced by gasifying coke by passing O2-containing gas through a coke layer kept at high humidity, the generated CO gas contains a considerable amount of Co and H2S. For those who use this gas as a raw material for various chemical reactions, it can be purified to produce Co and H2.
It is necessary to remove S. As a method for purifying such a gas, a method of contacting the gas with an aqueous alkali carbonate solution is generally known. This method usually involves continuously contacting the gas with a hot aqueous solution of potassium carbonate in an absorption tower, and
O, and H2S are absorbed, and then the treated absorption liquid is heated in a regeneration tower to purge the CO, H, and S'i generated to regenerate the absorption liquid, which is then recycled to the absorption tower again. It is implemented by The chemical formula for this is as follows.

x2cos + Co2+a、o = 、2KHOO3
に2co、 + H3S    = KHCO3+ K
H8〔発明が解決しようとする問題点〕 しかしながら、この方法ではCO,は比較的容易に除去
することができるが、Itsをトレースまで除去するこ
とは難しい。HIBの精奥効果は再生塔における吸収液
の再生率を高めれば、かなシ改着することができるが、
この吸収液の再生率を高めるためには、多量の熱エネル
ギーを必要とし工業的には不利な方法とな力、また、再
生率を高めても、対象とするガスによっては、精製効果
に限界があつ之。
x2cos + Co2+a, o = , 2KHOO3
2co, + H3S = KHCO3 + K
H8 [Problem to be Solved by the Invention] However, with this method, although CO can be removed relatively easily, it is difficult to remove Its to the trace level. The ultimate effect of HIB can be improved by increasing the regeneration rate of the absorption liquid in the regeneration tower, but
In order to increase the regeneration rate of this absorption liquid, a large amount of thermal energy is required, which is an industrially disadvantageous method.Also, even if the regeneration rate is increased, the purification effect may be limited depending on the target gas. That's it.

本発明は上記実情に鑑み、CO!とHIBを含有するガ
スを炭酸アルカリ水溶液を吸収液として用いて精製する
に当り、H,Sf、効率的に除去することのできる方法
の提供を目的とするものである。
In view of the above circumstances, the present invention was developed by CO! The object of the present invention is to provide a method that can efficiently remove H and Sf when purifying a gas containing HIB and HIB using an aqueous alkali carbonate solution as an absorption liquid.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは炭酸アルカリ水溶液中にj価のバナジウム
が存在する場合に、 H2Sの吸収が効果的に行なわれ
ることを見い出し、この知見に基いて更に検討し、工業
的有利にCO□及びH,Sを除去することができるプロ
セスを完成した。
The present inventors discovered that H2S absorption is effectively carried out when j-valent vanadium is present in an aqueous alkali carbonate solution.Based on this knowledge, the present inventors conducted further studies and found that CO□ and H2S can be absorbed with industrial advantage. , we have completed a process that can remove S.

すなわち、本発明の要旨は、Cog及びHISを含有す
るガスを炭酸アルカリ水溶液と接触させると共に、処理
後の炭酸アルカリ水溶液を加熱することにより再生した
のち循環使用するガスの精製法において、炭酸アルカリ
水溶液と接触させ念後のガスを更に、j価のバナジウム
を含有する炭酸アルカリ水溶液と接触させ、一方、処理
後のバナジウム含有炭酸アルカリ水溶液を酸化剤と接触
させ、析出する固体イオウを分離した後、循環使用する
ことを特徴とするガスの精製法に存する。
That is, the gist of the present invention is to provide a gas purification method in which a gas containing Cog and HIS is brought into contact with an aqueous alkali carbonate solution, and the treated aqueous alkali carbonate solution is regenerated and then used for circulation. After contacting the pretreated gas with an aqueous alkali carbonate solution containing j-valent vanadium, and contacting the aqueous alkali carbonate solution containing vanadium after the treatment with an oxidizing agent to separate the precipitated solid sulfur, A gas purification method characterized by cyclic use.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では不純物として、CO,及びH2El’i含有
するガスをN型するものであるが、これら不純成分の含
有量は通常、Co2の場合には、70〜≠Ovowチで
あり、F12Sの場合には、/Qθ〜/θ、0θOpp
mである。対象となる主体ガスは炭酸アルカリに対して
不活性なガスであれば特に限定されないが、通常、CO
ガスが代表的である。このようなガスの具体例としては
、例えば、troo℃以上、好ましくは7100℃以上
の温度に保持され念コークス充tf14層中に、0!と
CO。
In the present invention, the gas containing CO and H2El'i as impurities is N-type, but the content of these impurity components is usually 70 to ≠ Ovow in the case of Co2, and in the case of F12S. /Qθ~/θ, 0θOpp
It is m. The target main gas is not particularly limited as long as it is inert to alkali carbonates, but usually CO
Gas is a typical example. A specific example of such a gas is, for example, in a tf14 layer filled with coke that is maintained at a temperature of 7100°C or higher, preferably 7100°C or higher. and C.O.

の混合ガス又はこれk Ntあるいはcoで希釈し念ガ
スを通気することによシ発生する粗coガスが挙げられ
る。この場合、通気するガスの組成は例えば、0!とC
o2の2成分のときには、0! : CO2=りs %
 s o : y 〜s oであり、02、CO,とN
tあるいはCOの3成分のときには、02 : Cog
 : NtあるいはCO=/θ〜弘o:10〜参〇:2
θ〜?θである。
Examples include crude cobalt gas, which is generated by diluting this mixed gas with nitrogen or cobalt and aerating nitrogen gas. In this case, the composition of the gas to be vented is, for example, 0! and C
When there are two components of o2, 0! : CO2=Lis %
s o: y ~ s o, 02, CO, and N
When there are three components of t or CO, 02: Cog
: Nt or CO=/θ~Hiroo:10~San〇:2
θ~? It is θ.

本発明ではこの様にして得られCO,及びH,Sを不純
物として含有するガスを炭酸アルカリ水溶液と接触させ
、ガス中のC02及びH2Sを吸収させ除去するが、こ
こで用いられる炭酸アルカリとしては通常、炭酸カリウ
ム又は炭酸ナトリウムであり、その濃度は70〜弘θw
t%である。
In the present invention, the gas containing CO, H, and S as impurities obtained in this manner is brought into contact with an aqueous alkali carbonate solution to absorb and remove CO2 and H2S in the gas, but the alkali carbonate used here is Usually, it is potassium carbonate or sodium carbonate, and its concentration is 70 to 90%
t%.

また、炭酸アルカリ水溶液中には、例えば、ジェタノー
ルアミン、硼酸、メタバナジン酸カリウムなどの公知の
添加剤を少量、含んでいても差し支えない。工業的に実
施する場合は、アルカリ水溶液との接触は吸収塔で行な
われ、アルカリ水溶液の再生を再生塔で行なうのが好ま
しい。
Further, the aqueous alkali carbonate solution may contain a small amount of known additives such as jetanolamine, boric acid, potassium metavanadate, and the like. In industrial implementation, contact with the aqueous alkali solution is preferably carried out in an absorption tower, and regeneration of the aqueous alkali solution is preferably carried out in a regeneration tower.

吸収塔での接触処理は通常、常法に従って、吸収塔の下
部よりガスを供給し、一方、上部より炭酸アルカリ水溶
液を噴罎することによう行なわれる。この際の条件は通
常、加圧又は常圧下で弘θ〜700℃、好ましくはt0
〜り0℃である。
The contact treatment in the absorption tower is usually carried out in accordance with a conventional method by supplying gas from the lower part of the absorption tower, while injecting an aqueous alkali carbonate solution from the upper part. The conditions at this time are usually 0 to 700°C under pressure or normal pressure, preferably t0
-0°C.

この接触処理により、ガス中の002とH!Sの大部分
を吸収し元板収液を、次いで、再生塔において通常、7
10℃以上に加熱し、塔頂よりco2711ス及びH,
Sガスを放出することにより、塔底より再生された吸収
液を回収する。そして、この再生し念吸収液は吸収塔に
循環され再使用される。本発明では再生塔において、吸
収液をCo21吸収するのに不都合のないレベルまで再
生する必要があるが、套壁以上の再生をすることは工卆
的に不利であシ、通常、その再生率(炭酸水素アルカリ
モルt/全アルカリ金属化合物モル債×100)を/!
〜−!係程度とするのが望ましい。
By this contact treatment, 002 and H! in the gas! Most of the S is absorbed and the original plate is then processed in a regeneration tower, usually for 7
Heating to 10℃ or higher, CO2711 gas and H,
By releasing the S gas, the regenerated absorption liquid is recovered from the bottom of the column. This regenerated absorption liquid is then circulated to the absorption tower and reused. In the present invention, it is necessary to regenerate the absorption liquid in the regeneration tower to a level that is not inconvenient for absorbing Co21, but it is technically disadvantageous to regenerate more than the mantle wall, and the regeneration rate is usually limited. (alkali hydrogen carbonate mol t/total alkali metal compound mol bond x 100) /!
~-! It is desirable that the

一方、上述の接触処理を終えた微量のH!Sを含有する
ガスは更に、第2吸収塔において5価バナジウムを含有
する炭酸アルカリ水溶液と接触処理される。ここで用い
る炭酸アルカリ水溶液としては、上述した最初の吸収処
理において説明したものと同様なものが挙げられ、また
、処理操作及び処理条件も同様なもので差し支えない。
On the other hand, a trace amount of H! after the above-mentioned contact treatment! The gas containing S is further contacted with an aqueous alkali carbonate solution containing pentavalent vanadium in the second absorption tower. The aqueous alkali carbonate solution used here may be the same as that explained in the first absorption treatment above, and the treatment operations and treatment conditions may also be the same.

炭酸アルカリ中に存在させる5価バナジウムとしては、
通常、五酸化バナジウム、バナジン酸アルカリ、メタバ
ナジン酸アルカリなどの炭酸アルカリ水溶液中に溶解す
る5価バナジウム化合物が好ましいが、場合により、3
価又はμ価のバナジウム化合物を用い、系内で5価バナ
ジウムを生成させても差し支えない。この5価バナジウ
ムの存在量は通常、炭酸アルカリ水溶液に対して、■と
して150〜10,00099m1好ましくは/θθθ
〜jθθOppmである。
As pentavalent vanadium present in alkali carbonate,
Usually, pentavalent vanadium compounds that are dissolved in aqueous aqueous carbonate solutions such as vanadium pentoxide, alkali vanadate, and alkali metavanadate are preferred;
It is also possible to generate pentavalent vanadium in the system using a vanadium compound having a valence or μ valence. The amount of pentavalent vanadium present is usually 150 to 10,00099 m1, preferably /θθθ
~jθθOppm.

この5価バナジウムの含有量があtp少ないと、ガス中
に含有される微量のHIEJを第2吸収塔において効果
的に除去することができず、ま念、あまり多くても効果
に変りはないので経済的でない。
If the content of this pentavalent vanadium is too low atp, the trace amount of HIEJ contained in the gas cannot be effectively removed in the second absorption tower, and even if it is too large, the effect will not change. Therefore, it is not economical.

第2吸収塔で用いt吸収液は循環使用されるが、この場
合、ガスとの接触処理により炭酸アルカリ水溶液中にイ
オウ成分が吸収され、また、バナジウム成分が弘価又は
3価に還元されているので、吸収液の循環に先立ち、酸
化剤と接触処理することが必要である。要するに、吸収
液全酸化剤と接触処理することにより、イオウ成分が固
体となり析出し、ま九、弘価又は3価となったバナジウ
ム成分が5価に戻る。この処理を施さないで吸収液を循
環使用した場合には。
The t-absorbent liquid used in the second absorption tower is recycled, but in this case, the sulfur component is absorbed into the alkaline carbonate aqueous solution by contact treatment with gas, and the vanadium component is reduced to valent or trivalent. Therefore, it is necessary to contact the absorbent with an oxidizing agent prior to circulation. In short, by contacting the absorption liquid with the total oxidizing agent, the sulfur component becomes solid and precipitates, and the vanadium component, which has become valent, valent, or trivalent, returns to its pentavalent state. If the absorbent is used for circulation without this treatment.

第2吸収塔でのH,Sの精製効果は最初の吸収塔。The H and S purification effect in the second absorption tower is the same as that of the first absorption tower.

のKm効果と変らなくなってしまう。It becomes no different from the Km effect of .

酸化処理に用いる酸化剤としては通常、過酸化水素又は
亜硝酸アルカリが最も望ましい。この酸化剤の使用量は
あまり少ないとイオウ成分の析出及びバナジウム成分の
酸化を良好に行なうことができず、逆に、あまシ多くて
も効果に変Qはないので、通常、吸収液中のSに対して
、7〜3モル倍である。また、この酸化処理は通常、吸
収液の移送途中のパイプ中又は攪拌槽中にて、440〜
100℃の温度で酸化剤の水溶液を混合することにより
行なわれる。そして、処理後の吸収液は析出しt固体イ
オウを例えば、ストレーナ−などで分離したのち第2吸
収塔に循環される。
As the oxidizing agent used in the oxidation treatment, hydrogen peroxide or alkali nitrite is usually most desirable. If the amount of this oxidizing agent used is too small, the precipitation of sulfur components and the oxidation of vanadium components cannot be performed well.On the other hand, even if the amount of oxidizing agent is too large, there is no change in the effect. It is 7 to 3 times the mole of S. In addition, this oxidation treatment is usually carried out in a pipe or stirring tank during the transfer of the absorption liquid.
This is done by mixing an aqueous solution of the oxidizing agent at a temperature of 100°C. After the treatment, the absorbed liquid is circulated to the second absorption tower after separating the precipitated solid sulfur using, for example, a strainer.

〔実施例〕〔Example〕

次に、本発明を実施例により更に祥細に説明するが、本
発明はその要旨を超えない限り、以下の実施例に限定さ
れるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例/〜≠ 第1図のフローシートに示すj所響プロセスにおいて、
粕COガスのa製処庁を連続的に実施した。
Example/~≠ In the j-echo process shown in the flow sheet of Fig. 1,
A processing of lees CO gas was carried out continuously.

先ず、導管7より充填塔タイプの第1吸収塔/の下部へ
粗COガス(C02含有y%) 30 wa1%、H2
S含帽1jθθppm )を700ゴ/hrで導入し、
一方、上部から25wt%炭酸カリウム水溶液(ジェタ
ノールアミン/、!wt%及び硼酸o、swt%含有)
からなる吸収液’(i−20d/hrでスプレーし、常
圧下、60℃の温度で接触処理を行なう。次いで、吸収
液を塔底より抜き出し、導管!により再生塔−の上部に
導入し、730℃の温度に加熱し、吸収したCO,及び
H2Sf、塔頂よりパージして再生(再生率コ!%)す
る。
First, crude CO gas (C02 content y%) 30 wa 1%, H2
S containing 1jθθppm) was introduced at 700 go/hr,
On the other hand, from the top, 25wt% potassium carbonate aqueous solution (containing jetanolamine/,!wt% and boric acid o, swt%)
An absorption liquid consisting of 1-20d/hr is sprayed and contact treatment is carried out at a temperature of 60°C under normal pressure.Then, the absorption liquid is extracted from the bottom of the tower and introduced into the upper part of the regeneration tower through a conduit. It is heated to a temperature of 730°C, and the absorbed CO and H2Sf are purged from the top of the column and regenerated (regeneration rate: 0.9%).

再生液は2の下部より導管りを経て第1吸収塔上部に連
続的に循環される。
The regenerated liquid is continuously circulated from the lower part of the absorber 2 to the upper part of the first absorption tower via a conduit.

また、第1吸収塔/の頂部から排出されたガスは引き続
き導管/θより、第2吸収塔3の下部に導入され、上部
よρスプレーされる60℃の2 j wtチ炭酸カリウ
ム水溶液/jゴ/hrと接触処理される。
Further, the gas discharged from the top of the first absorption tower / is subsequently introduced into the lower part of the second absorption tower 3 through the conduit /θ, and a 60°C 2 j wt potassium thicarbonate aqueous solution /j is sprayed from the upper part. contact treatment with Go/hr.

導?!//全経て第コ吸収塔の下方よシ抜き出した吸収
液はざ0℃の温度で、酸化剤水溶液タンク乙からの酸化
剤水溶液が添加され、次いで、熱炭酸カリ水溶液タンク
≠に一旦回収した後ストレーナ−jを通すことにより析
出し定置体イオウを分離し、再び第2吸収塔に循環した
Guide? ! // After all, the oxidizing agent aqueous solution from the oxidizing agent aqueous solution tank B was added to the absorption liquid extracted from the bottom of the No. 1 absorption tower at a temperature of 0℃, and then it was once collected into the hot potassium carbonate aqueous solution tank ≠ The precipitated stationary sulfur was separated by passing through a post-strainer j and circulated to the second absorption tower again.

このような連続的なガスの精製法を第2吸収塔のyl!
+成分、酸化剤を変えて実施し、系内が安定状■となつ
tのち吸収液中のv5“濃度、精製ガス中のCO,及び
H,S濃度を測定し念ところ、第1表に示す結果を得t
0 比較例/ 実施例/において、第2吸収塔の吸収液としてバナジウ
ム成分も含まない炭酸カリウム水溶液を用いた以外は実
施例/と同様に実施し念。
This continuous gas purification method is carried out in the second absorption tower!
+ component and oxidizing agent were changed, and after the system became stable, the v5 concentration in the absorption liquid and the CO, H, and S concentrations in the purified gas were measured. I got the result shown
0 Comparative Example/Example was carried out in the same manner as in Example, except that an aqueous potassium carbonate solution containing no vanadium component was used as the absorption liquid in the second absorption tower.

結果を第1表に併記し念。The results are also recorded in Table 1.

比較例2〜3 実施例/まtは実施例≠において、第2吸収塔より抜き
出した吸収液を酸化剤処理することなく第コ吸収塔に循
環使用する以外、実施例/または実施列弘と同様に実施
しt0結果を第1表に併記し念。
Comparative Examples 2 to 3 Examples/Mat are the same as Examples/or Examples ≠ except that the absorption liquid extracted from the second absorption tower is recycled to the second absorption tower without being treated with an oxidizing agent. Perform the same procedure and record the t0 results in Table 1.

*/)バナジウム成分の使用量 炭酸カリウム水溶液に対するVとして の全バナジウムの重量割合を示す。*/) Amount of vanadium component used As V for potassium carbonate aqueous solution The weight percentage of total vanadium is shown.

*、2)酸化剤の使用を 吸収液中のイオウ成分に対する酸化剤 のモル比率を示す。*, 2) Use of oxidizing agent Oxidizing agent for sulfur components in absorption liquid indicates the molar ratio of

*3)吸収液中の■5+濃度 吸収液中に存在する3価バナジウムの 重量割合を示す。*3) ■5+ concentration in absorption liquid of trivalent vanadium present in the absorption liquid. Weight percentages are shown.

この値はサンプルを硫酸酸性下、V5+を7エロン水溶
液で発色させ、これをn−ブタノールで抽出し、4?O
nmの波長で吸光度を小+1定して標準添加法にて求め
た。
This value was obtained by developing a sample with a 7-elon aqueous solution of V5+ under acidic sulfuric acid, and extracting this with n-butanol. O
The absorbance was determined by the standard addition method at a wavelength of 1 nm.

〔発明の効果〕〔Effect of the invention〕

本発明では第コ吸収塔に常にS価バナジウムリ を含有する炭酸アルカル水溶液が循環されるので、第1
吸収塔で十分に吸収することのできなかったH!Sを効
率的に吸収することができる。
In the present invention, an aqueous alkali carbonate solution containing S-valent vanadium is constantly circulated to the first absorption tower.
H! which could not be sufficiently absorbed by the absorption tower! S can be efficiently absorbed.

従って本発明方法では再生塔に於ける再生率を低く抑え
ても第λ吸収塔で、残存するH2Sを簡単に除去するこ
とができ、CO,及びH213を含まない精製ガスを工
業的有利に得ることができる。
Therefore, in the method of the present invention, even if the regeneration rate in the regeneration tower is kept low, the remaining H2S can be easily removed in the λth absorption tower, and purified gas free of CO and H213 can be obtained industrially advantageously. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で行なった粗COガスの精製プ
ロセスを示すフローシートである。 /:第1吸収塔  =:再生塔 3:第コ吸収塔  ダニ炭酸カリ水溶液夕/りSニスト
レーナ−ル二酸化剤水溶液タンク/2:リボイラー 出 願 人  三菱化成工菜株式会社 代 理 人   弁理士 長谷用    −ほか/名
FIG. 1 is a flow sheet showing a crude CO gas purification process carried out in an example of the present invention. /: 1st absorption tower =: Regeneration tower 3: 2nd absorption tower Potassium carbonate aqueous solution / S strainer - Dioxidant aqueous solution tank / 2: Reboiler Applicant: Mitsubishi Kasei Kosai Co., Ltd. Representative: Patent attorney For Hase - others/names

Claims (1)

【特許請求の範囲】 (1)不純物としてCO_2及びH_2Sを含有するガ
スを炭酸アルカリ水溶液と接触させると共に、処理後の
炭酸アルカリ水溶液を加熱することにより再生したのち
循環使用するガスの精製法において、炭酸アルカリ水溶
液と接触させた後のガスを更に、5価のバナジウムを含
有する炭酸アルカリ水溶液と接触させ、一方、処理後の
バナジウム含有炭酸アルカリ水溶液を酸化剤と接触させ
、析出する固体イオウを分離した後、循環再使用するこ
とを特徴とするガスの精製法。 (2)5価バナジウムが五酸化バナジウム又はメタバナ
ジン酸アルカリであることを特徴とする特許請求の範囲
第1項記載の精製法。 (3)5価バナジウムの含有量がVとして、炭酸アルカ
リ水溶液に対して、150〜5000ppmであること
を特徴とする特許請求の範囲第1項記載の精製法。 (4)酸化剤が過酸化水素又は亜硝酸アルカリであるこ
とを特徴とする特許請求の範囲第1項記載の精製法。 (6)CO_2及びH_2Sを含有するガスがCOを主
体とするガスであることを特徴とする特許請求の範囲第
1項記載の精製法。 (6)5価バナジウムを含む炭酸アルカリ水溶液の接触
を40〜100℃の温度で行なうことを特徴とする特許
請求の範囲第1項記載の精製法。
[Claims] (1) A gas purification method in which a gas containing CO_2 and H_2S as impurities is brought into contact with an aqueous alkali carbonate solution, and the treated aqueous alkali carbonate solution is regenerated and then recycled for use, The gas after being brought into contact with the aqueous alkali carbonate solution is further brought into contact with an aqueous alkali carbonate solution containing pentavalent vanadium, while the aqueous alkali carbonate solution containing vanadium after the treatment is brought into contact with an oxidizing agent to separate the precipitated solid sulfur. A gas purification method characterized by recycling and reusing the gas. (2) The purification method according to claim 1, wherein the pentavalent vanadium is vanadium pentoxide or alkali metavanadate. (3) The purification method according to claim 1, characterized in that the content of pentavalent vanadium (V) is 150 to 5000 ppm based on the aqueous alkali carbonate solution. (4) The purification method according to claim 1, wherein the oxidizing agent is hydrogen peroxide or an alkali nitrite. (6) The purification method according to claim 1, wherein the gas containing CO_2 and H_2S is a gas mainly composed of CO. (6) The purification method according to claim 1, characterized in that the contact with an aqueous alkali carbonate solution containing pentavalent vanadium is carried out at a temperature of 40 to 100°C.
JP61177092A 1986-07-28 1986-07-28 Method for purifying gas Pending JPS6336815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177092A JPS6336815A (en) 1986-07-28 1986-07-28 Method for purifying gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177092A JPS6336815A (en) 1986-07-28 1986-07-28 Method for purifying gas

Publications (1)

Publication Number Publication Date
JPS6336815A true JPS6336815A (en) 1988-02-17

Family

ID=16024990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177092A Pending JPS6336815A (en) 1986-07-28 1986-07-28 Method for purifying gas

Country Status (1)

Country Link
JP (1) JPS6336815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113226A1 (en) * 2003-06-18 2004-12-29 Kabushiki Kaisha Toshiba System and method for collecting carbon dioxide in exhaust gas
JP2006035059A (en) * 2004-07-26 2006-02-09 Toshiba Corp System and method for recovering carbon dioxide in exhaust gas
JP2007038188A (en) * 2005-08-05 2007-02-15 Kurita Water Ind Ltd Method and apparatus for desulfurizing hydrogen sulfide-containing gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113226A1 (en) * 2003-06-18 2004-12-29 Kabushiki Kaisha Toshiba System and method for collecting carbon dioxide in exhaust gas
JP2006035059A (en) * 2004-07-26 2006-02-09 Toshiba Corp System and method for recovering carbon dioxide in exhaust gas
JP2007038188A (en) * 2005-08-05 2007-02-15 Kurita Water Ind Ltd Method and apparatus for desulfurizing hydrogen sulfide-containing gas

Similar Documents

Publication Publication Date Title
US5223173A (en) Method and composition for the removal of hydrogen sulfide from gaseous streams
US4477419A (en) Process for the recovery of CO2 from flue gases
EP0279667B1 (en) Process for the removal of hydrogen sulfide and optionally carbon dioxide from gaseous streams
CN1104935C (en) Process for removing sulphur dioxide from flue gases
EP0244249B1 (en) Process for the removal of hydrogen sulfide from gaseous streams
US4496371A (en) Process for removal of hydrogen sulfide and carbon dioxide from gas streams
CN112566706A (en) Process for the recovery of ethylene oxide
US6309609B1 (en) Apparatus for treating a gas containing hydrogen sulphide and sulphur dioxide, comprising a step for depleting the recycled solvent in sulphur
CA1186490A (en) Process for the removal of h.sub.2s and co.sub.2 from gaseous streams
US4124685A (en) Method for substantially complete removal of hydrogen sulfide from sulfur bearing industrial gases
US4163043A (en) Process for removing H2 S and CO2 from gases and regenerating the adsorbing solution
JPS59120224A (en) Method and apparatus for regulating ammonia content in washing fluid of gas washing
JPH0712411B2 (en) Removal of hydrogen sulfide from sour gas streams
PH26404A (en) Removal of hydrogen sulfide from fluid streams with minimum production of solids
US4091074A (en) Method for regenerating iron-EDTA solutions used for scrubbing plug gases
JPS61191504A (en) Removal of hydrogen sulfide from gas stream
EP1456123B1 (en) Method of recovering sulfurous components in a sulfur-recovery process
JPS61181516A (en) Treatment of gaseous mixture
US3687615A (en) Desulfurization of flue gas
KR20020051011A (en) Apparatus and method for purifying Coke oven gas
US4781901A (en) Method and composition for the removal of hydrogen sulfide and carbon dioxide from gaseous streams
US4816238A (en) Method and composition for the removal of hydrogen sulfide from gaseous streams
US4297330A (en) Process of selectively desulfurizing gases
WO2001019496A1 (en) Method and composition for removing co2 and h2s from gas mixtures
US4871468A (en) Method and composition for the removal of hydrogen sulfide and carbon dioxide from gaseous streams