JP2007038169A - Method and apparatus for removing acid gas - Google Patents

Method and apparatus for removing acid gas Download PDF

Info

Publication number
JP2007038169A
JP2007038169A JP2005226925A JP2005226925A JP2007038169A JP 2007038169 A JP2007038169 A JP 2007038169A JP 2005226925 A JP2005226925 A JP 2005226925A JP 2005226925 A JP2005226925 A JP 2005226925A JP 2007038169 A JP2007038169 A JP 2007038169A
Authority
JP
Japan
Prior art keywords
gas
liquid
acid gas
tower
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005226925A
Other languages
Japanese (ja)
Inventor
Nobuhiro Oda
信博 織田
Toshihiro Kiyokawa
智弘 清川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005226925A priority Critical patent/JP2007038169A/en
Publication of JP2007038169A publication Critical patent/JP2007038169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treating Waste Gases (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for removing an acid gas capable of lowering alkali consumption and removing the acid gas to a low concentration level without generating a large amount of a spent desulfurizing agent, and without requiring to make a gas-liquid ratio small or an absorption tower large. <P>SOLUTION: The method for removing an acid gas comprises introducing an exhaust gas containing the acid gas to a gas-liquid contact tower, bringing the exhaust gas into contact with an alkali liquid to absorb the acid gas, and removing the acid gas remaining in a gas discharging from the gas-liquid contact tower by an anion exchanger. The apparatus for removing an acid gas comprises the gas-liquid contact tower for bringing the exhaust gas containing the acid gas into contact with an alkali liquid to absorb the acid gas, an anion exchange tower for removing the acid gas remaining in a gas discharging from the gas-liquid contact tower, an organism oxidation tank for aerobically oxidizing and decomposing the acid gas absorbed in a liquid discharging from the gas-liquid contact tower, a means for circulating organism culture medium in the organism oxidation tank to the gas-liquid contact tower, a means for regenerating an anion exchange resin, and a means for introducing the regenerated liquid of the anion exchanger to the organism oxidation tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸性ガスの除去方法及び除去装置に関する。さらに詳しくは、本発明は、硫化水素などの酸性ガスを含有する排ガスを、気液接触塔でアルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体を用いて除去することにより、処理ガス中の酸性ガスを極めて低濃度まで減少することができる酸性ガスの除去方法及び除去装置に関する。   The present invention relates to an acid gas removal method and a removal apparatus. More specifically, the present invention relates to an acidic gas remaining in a gas flowing out of a gas-liquid contact tower by contacting an exhaust gas containing an acidic gas such as hydrogen sulfide with an alkali liquid in a gas-liquid contact tower to absorb the acidic gas. The present invention relates to an acid gas removal method and an apparatus capable of reducing the acid gas in a processing gas to an extremely low concentration by removing the gas using an anion exchanger.

化学工場、製紙工場、食品飲料製造工場、ゴミ焼却場、し尿処理場、下水処理場などから排出される排ガスには、硫化水素、硫化カルボニル、塩化水素、臭化水素、硫黄酸化物、窒素酸化物、二酸化炭素などの酸性ガスを含有するものが多い。従来より、硫化水素などの酸性ガスの処理方法としては、酸化鉄などとの化学反応による除去や、微生物による酸化分解などが行われている。   Exhaust gas discharged from chemical factories, paper mills, food and beverage manufacturing factories, garbage incineration plants, human waste treatment plants, sewage treatment plants, etc. includes hydrogen sulfide, carbonyl sulfide, hydrogen chloride, hydrogen bromide, sulfur oxides, nitrogen oxides Many products contain acid gases such as carbon dioxide. Conventionally, as a method for treating an acidic gas such as hydrogen sulfide, removal by a chemical reaction with iron oxide or the like, or oxidative decomposition by a microorganism is performed.

例えば、廃熱と廃棄物を活用して、簡便かつ経済性に優れたガス中の硫化水素を除去する脱硫方法として、鉄廃棄物を酸処理して鉄含有溶液を製造し、該鉄含有溶液を加水分解したのち、さらに焼成することによって得られた酸化鉄を排ガスの脱硫剤として使用する方法が提案されている(特許文献1)。しかし、酸化鉄などとの化学反応では、大量の使用済みの脱硫剤が発生し、その再生処理は容易ではない。   For example, as a desulfurization method that uses waste heat and waste to remove hydrogen sulfide in a gas that is simple and excellent in economy, iron waste is acid-treated to produce an iron-containing solution, and the iron-containing solution A method has been proposed in which iron oxide obtained by further calcining and then firing is used as a desulfurization agent for exhaust gas (Patent Document 1). However, a chemical reaction with iron oxide or the like generates a large amount of used desulfurization agent, and the regeneration treatment is not easy.

有機性排水の嫌気性消化処理工程から発生する消化ガス中に含まれる硫化水素などを脱硫する装置として、硫化水素を酸化分解する微生物が付着した充填材層を有する生物脱硫塔と、該塔に消化ガスを導入する手段と、処理ガスを排出する手段と、前記生物脱硫塔に空気又は酸素を供給する手段とを備えた消化ガスの脱硫装置が提案されている(特許文献2)。   As an apparatus for desulfurizing hydrogen sulfide contained in digestion gas generated from the anaerobic digestion process of organic wastewater, a biological desulfurization tower having a filler layer to which microorganisms that oxidize and decompose hydrogen sulfide are attached, and There has been proposed a digestion gas desulfurization apparatus provided with a means for introducing digestion gas, a means for discharging process gas, and a means for supplying air or oxygen to the biological desulfurization tower (Patent Document 2).

また、メタンガスの含有率を低下させず、低コストで効率よく、しかも高い脱硫率で脱硫でき、かつ脱硫に伴って新たな廃液を生じない消化ガスの脱硫方法として、有機性物質の嫌気性微生物消化により発生する消化ガスを、酸素を混合することなく、有機性物質の好気性微生物酸化における処理液からなる洗浄液のスプレー液と接触させて、消化ガス中の硫化水素を洗浄液に吸収させる吸収工程と、吸収工程で得られた吸収液を好気性微生物酸化して、吸収された硫化水素を酸化する酸化工程とを含む消化ガスの脱硫方法が提案されている(特許文献3)。   In addition, anaerobic microorganisms of organic substances can be used as a desulfurization method for digestion gas that does not reduce the content of methane gas, can be efficiently desulfurized at a low cost, and does not produce a new waste liquid as a result of desulfurization. Absorption process in which digestion gas generated by digestion is brought into contact with the spray solution of the cleaning liquid consisting of the processing liquid in the aerobic microbial oxidation of organic substances without mixing oxygen, and the hydrogen sulfide in the digestion gas is absorbed by the cleaning liquid A digestion gas desulfurization method is proposed that includes an aerobic microorganism oxidation of the absorption liquid obtained in the absorption step and oxidation of the absorbed hydrogen sulfide (Patent Document 3).

さらに、有機性物質の嫌気性微生物消化により発生する消化ガスから、硫化水素を除去するとともに、臭気ガスを脱臭するための消化ガスと臭気ガスの同時処理方法として、嫌気性消化施設の消化液の一部を好気性酸化装置に導入して好気性酸化を行う方法であって、嫌気性微生物消化により発生する消化ガスを、好気性酸化装置における混合液又は処理液からなる洗浄液と接触させて、硫化水素を洗浄液に吸収させる吸収工程と、吸収工程で得られた吸収液を好気性酸化装置において好気性微生物酸化して硫化水素を酸化する酸化工程と、嫌気性消化により派生する臭気ガスを酸化工程に導入して脱臭及び好気性微生物酸化を行う工程とからなる消化ガスと臭気ガスの同時処理方法が提案されている(特許文献4)。しかし、生物酸化法によって硫化水素などを低濃度まで処理するためには、気液比を小さくする必要があるために、吸収が塔が大きく、高価になるなどの問題がある。   Furthermore, as a method of simultaneous treatment of digestion gas and odor gas to remove hydrogen sulfide from the digestion gas generated by anaerobic microbial digestion of organic substances and deodorize odor gas, A method of performing aerobic oxidation by introducing a part into an aerobic oxidizer, wherein digestion gas generated by anaerobic microbial digestion is brought into contact with a cleaning liquid composed of a mixed liquid or a processing liquid in the aerobic oxidizer, An absorption process for absorbing hydrogen sulfide into the cleaning liquid, an oxidation process for oxidizing hydrogen sulfide by oxidizing the absorption liquid obtained in the absorption process in an aerobic oxidizer, and oxidizing odor gas derived from anaerobic digestion A method for simultaneous treatment of digestive gas and odorous gas comprising a step of introducing into the process and performing deodorization and aerobic microorganism oxidation has been proposed (Patent Document 4). However, in order to treat hydrogen sulfide or the like to a low concentration by the bio-oxidation method, it is necessary to reduce the gas-liquid ratio, so that there is a problem that absorption is large and expensive.

また、硫化水素含有ガスを、大容量の設備を必要とすることなく、多量のアルカリを使用することなく、低コストで効率的に処理して、硫化水素濃度の低い処理ガスを得る方法として、硫化水素を含む原ガスを活性汚泥、生物処理水又は工水と接触させて、原ガス中の硫化水素を粗取りする一次脱硫工程と、一次脱硫工程の処理ガスを湿式又は乾式でアルカリと接触させてガス中に残留する硫化水素を除去する二次脱硫工程とを有する硫化水素含有ガスの脱硫方法が提案されている(特許文献5)。しかし、硫化水素含有ガス中の炭酸ガスの濃度比が高いと、アルカリが炭酸ガスに消費され、ランニング費用が高価となる。   Further, as a method of obtaining a processing gas having a low hydrogen sulfide concentration by efficiently processing a hydrogen sulfide-containing gas at a low cost without using a large amount of equipment, without using a large amount of alkali, The primary gas containing hydrogen sulfide is brought into contact with activated sludge, biologically treated water or industrial water, and the hydrogen sulfide in the raw gas is roughly removed, and the treated gas in the primary desulfurizing process is contacted with alkali in a wet or dry manner. A hydrogen sulfide-containing gas desulfurization method having a secondary desulfurization step of removing hydrogen sulfide remaining in the gas has been proposed (Patent Document 5). However, if the concentration ratio of carbon dioxide gas in the hydrogen sulfide-containing gas is high, alkali is consumed in the carbon dioxide gas and the running cost becomes high.

また、微生物を運転開始当初に高密度で保持し、かつ長期間その状態を維持できる脱臭装置として、臭気ガスを微生物を用いて脱臭する脱臭装置であって、微生物と、繊維表面にアニオン交換樹脂を処理した不織布を含む、微生物をイオン的な吸引力によって付着させて保持し、かつ通気性を有する担体とを備えた脱臭装置が提案されている(特許文献6)。しかし、この装置において、イオン交換樹脂は微生物を多く担持するために利用されるものであり、硫化水素の生物酸化を組み合わせたアルカリ吸収プロセスに残留する硫化水素、悪臭成分の吸着に有効でなく、また、再生も行われないので、生物脱硫プロセス処理後の精製には有効ではない。
特開2004−230304号公報 特開平2−26615号公報 特許第3235131号公報 特許第3413856号公報 特開2002−79051号公報 特開2001−205042号公報
In addition, as a deodorizing device that maintains microorganisms at a high density at the beginning of operation and can maintain the state for a long period of time, it is a deodorizing device that deodorizes odorous gas using microorganisms, and an anion exchange resin on the surface of the microorganisms and fibers. There has been proposed a deodorizing apparatus including a non-woven fabric that has been treated with a carrier that adheres and holds microorganisms by ionic suction and has air permeability (Patent Document 6). However, in this apparatus, the ion exchange resin is used to support a large amount of microorganisms, and is not effective for adsorption of hydrogen sulfide remaining in the alkali absorption process combined with biological oxidation of hydrogen sulfide, malodorous components, In addition, since regeneration is not performed, it is not effective for purification after the biological desulfurization process.
JP 2004-230304 A JP-A-2-26615 Japanese Patent No. 3235131 Japanese Patent No. 3413856 JP 2002-79051 A JP 2001-205042 A

本発明は、再生処理が容易ではない使用済みの脱硫剤が大量に発生することなく、生物脱硫プロセス処理装置単独のように気液比を小さく、吸収塔を大きくする必要がなく、炭酸ガスによるアルカリ消費量が少なく、酸性ガスを低濃度まで除去することができる酸性ガスの除去方法及び除去装置を提供することを目的としてなされたものである。   The present invention does not generate a large amount of used desulfurization agent that is not easy to regenerate, reduces the gas-liquid ratio unlike the biological desulfurization process unit alone, and does not require a large absorption tower. An object of the present invention is to provide a method and an apparatus for removing acid gas that can remove acid gas to a low concentration with low alkali consumption.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、酸性ガスを含有する排ガスを気液接触塔に導入し、アルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体を用いて除去することにより、硫化水素などの酸性ガスを極めて低濃度まで除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have introduced an exhaust gas containing an acid gas into a gas-liquid contact tower, brought into contact with an alkali liquid to absorb the acid gas, and gas-liquid contact. It was found that acidic gas such as hydrogen sulfide can be removed to an extremely low concentration by removing the acidic gas remaining in the gas flowing out from the tower using an anion exchanger, and the present invention was completed based on this finding. It came to do.

すなわち、本発明は、
(1)酸性ガスを含有する排ガスを気液接触塔に導入し、アルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体により除去することを特徴とする酸性ガスの除去方法、
(2)酸性ガスが、硫化水素である(1)記載の酸性ガスの除去方法、
(3)排ガスが、硫化水素の10体積倍以上の炭酸ガスを含有する(2)記載の酸性ガスの除去方法、
(4)アニオン交換体が、アニオン交換樹脂である(1)記載の酸性ガスの除去方法、
(5)アニオン交換樹脂が、第四級アンモニウム基を有する強塩基性アニオン交換樹脂である(4)記載の酸性ガスの除去方法、
(6)アニオン交換体が、0.1〜10重量%の水酸化ナトリウム水溶液、炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を用いて再生されたものである(1)又は(4)記載の酸性ガスの除去方法、
(7)気液接触塔から流出する液を生物酸化槽に導き、吸収された硫化水素を好気的に酸化分解する(2)記載の酸性ガスの除去方法、
(8)アニオン交換体の再生液を、生物酸化槽に供給する(6)記載の酸性ガスの除去方法、
(9)生物酸化槽の生物培養液を、気液接触塔に導入するアルカリ液として循環使用する(7)記載の酸性ガスの除去方法、
(10)酸性ガスを含有する排ガスとアルカリ液を接触させて酸性ガスをアルカリ液に吸収させる気液接触塔及び気液接触塔から流出するガス中に残存する酸性ガスを吸収除去するアニオン交換体塔を有することを特徴とする酸性ガスの除去装置、及び、
(11)酸性ガスを含有する排ガスとアルカリ液を接触させて酸性ガスをアルカリ液に吸収させる気液接触塔、気液接触塔から流出するガス中に残存する酸性ガスを吸収除去するアニオン交換体塔、気液接触塔から流出する液に吸収された酸性ガスを好気的に酸化分解する生物酸化槽、生物酸化槽の生物培養液を気液接触塔に循環する手段、アニオン交換体を再生する手段及びアニオン交換体の再生液を生物酸化槽に導入する手段を有することを特徴とする酸性ガスの除去装置、
を提供するものである。
That is, the present invention
(1) An exhaust gas containing an acid gas is introduced into a gas-liquid contact tower, brought into contact with an alkali liquid to absorb the acid gas, and the acid gas remaining in the gas flowing out of the gas-liquid contact tower is removed by an anion exchanger. Acid gas removal method, characterized by
(2) The method for removing acidic gas according to (1), wherein the acidic gas is hydrogen sulfide,
(3) The method for removing acidic gas according to (2), wherein the exhaust gas contains carbon dioxide gas that is 10 volume times or more of hydrogen sulfide.
(4) The method for removing acidic gas according to (1), wherein the anion exchanger is an anion exchange resin,
(5) The method for removing acidic gas according to (4), wherein the anion exchange resin is a strongly basic anion exchange resin having a quaternary ammonium group,
(6) The acid gas according to (1) or (4), wherein the anion exchanger is regenerated using a 0.1 to 10% by weight sodium hydroxide aqueous solution, sodium carbonate aqueous solution or sodium hydrogen carbonate aqueous solution. Removal method,
(7) The method of removing acid gas according to (2), wherein the liquid flowing out from the gas-liquid contact tower is guided to a biological oxidation tank, and the absorbed hydrogen sulfide is aerobically oxidized and decomposed.
(8) The method for removing acid gas according to (6), wherein the regeneration solution of the anion exchanger is supplied to the biological oxidation tank,
(9) The method for removing acidic gas according to (7), wherein the biological culture solution in the biological oxidation tank is circulated and used as an alkaline solution to be introduced into the gas-liquid contact tower.
(10) A gas-liquid contact tower for contacting an exhaust gas containing an acid gas with an alkali liquid to absorb the acid gas into the alkali liquid, and an anion exchanger for absorbing and removing the acid gas remaining in the gas flowing out from the gas-liquid contact tower An acid gas removing device characterized by having a tower; and
(11) A gas-liquid contact tower for contacting an exhaust gas containing an acid gas with an alkali liquid to absorb the acid gas into the alkali liquid, and an anion exchanger for absorbing and removing the acid gas remaining in the gas flowing out from the gas-liquid contact tower A biological oxidation tank that aerobically oxidatively decomposes acid gas absorbed in the liquid flowing out from the tower and gas-liquid contact tower, means for circulating the biological culture solution in the biological oxidation tank to the gas-liquid contact tower, and regeneration of the anion exchanger An acid gas removing device, characterized in that it has means for introducing the regenerated solution of the anion exchanger into the biological oxidation tank,
Is to provide.

本発明の酸性ガスの除去方法及び除去装置によれば、硫化水素などの酸性ガスを含有する排ガスを、気液接触塔でアルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体、とりわけアニオン交換樹脂を用いて除去することにより、低コストで効果的に処理ガス中の酸性ガスを極めて低濃度まで減少することができる。   According to the method and apparatus for removing an acidic gas of the present invention, an exhaust gas containing an acidic gas such as hydrogen sulfide is brought into contact with an alkali liquid in a gas-liquid contact tower to absorb the acidic gas, and flows out from the gas-liquid contact tower. By removing the acidic gas remaining in the gas to be processed using an anion exchanger, particularly an anion exchange resin, the acidic gas in the processing gas can be effectively reduced to a very low concentration at low cost.

本発明の酸性ガスの除去方法においては、酸性ガスを含有する排ガスを気液接触塔に導入し、アルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体により除去する。本発明方法により除去することができる酸性ガスとしては、例えば、硫化水素、硫化カルボニル、塩化水素、臭化水素、硫黄酸化物、窒素酸化物、二酸化炭素などを挙げることができる。本発明方法は、これらの中で、硫化水素を含有する排ガスの処理に好適に適用することができ、排水の嫌気性消化により発生した硫化水素を含有する排ガスの処理に特に好適に適用することができる。   In the method for removing acidic gas of the present invention, an exhaust gas containing acidic gas is introduced into a gas-liquid contact tower, brought into contact with an alkali liquid to absorb the acidic gas, and remains in the gas flowing out of the gas-liquid contact tower. Acid gas is removed by an anion exchanger. Examples of the acidic gas that can be removed by the method of the present invention include hydrogen sulfide, carbonyl sulfide, hydrogen chloride, hydrogen bromide, sulfur oxide, nitrogen oxide, and carbon dioxide. Among these, the method of the present invention can be preferably applied to the treatment of exhaust gas containing hydrogen sulfide, and particularly preferably applied to the treatment of exhaust gas containing hydrogen sulfide generated by anaerobic digestion of waste water. Can do.

図1は、本発明方法の一態様の工程系統図である。本態様においては、硫化水素を含む排ガスを気液接触塔1に送り、塔頂の液分散器2から供給されるアルカリ液と接触させる。排ガス中の硫化水素は、アルカリ液に移行し、硫化水素の大部分が除去されたガスが塔頂の排気管から排出され、さらにアニオン交換体としてアニオン交換樹脂を充填したアニオン交換樹脂塔3において残留する硫化水素がアニオン交換樹脂により除去され、硫化水素濃度の低い処理ガスとして排出される。本発明方法によれば、気液接触塔から流出する硫化水素濃度数十ppm(体積比)程度のガスから、アニオン交換樹脂塔においてさらに硫化水素を除去し、硫化水素濃度1ppm(体積比)以下の処理ガスとすることができる。気液接触塔において硫化水素を吸収したアルカリ液は、送液管4を経由して生物酸化槽5へ送られる。生物酸化槽においては、槽底の散気管6から空気が供給され、硫化物イオンが硫黄酸化細菌により酸化されて硫黄単体、亜硫酸イオン、硫酸イオンなどになる。生物酸化槽内の液は、ポンプ7により返送液管8を経由して気液接触塔に送られ、アルカリ液として循環使用される。生物酸化槽からは、過剰の液が溢流液として排出される。   FIG. 1 is a process flow diagram of one embodiment of the method of the present invention. In this embodiment, the exhaust gas containing hydrogen sulfide is sent to the gas-liquid contact tower 1 and brought into contact with the alkaline liquid supplied from the liquid disperser 2 at the top of the tower. In the anion exchange resin tower 3 in which the hydrogen sulfide in the exhaust gas is transferred to the alkaline liquid, the gas from which most of the hydrogen sulfide has been removed is discharged from the exhaust pipe at the top of the tower, and further filled with an anion exchange resin as an anion exchanger. Residual hydrogen sulfide is removed by the anion exchange resin and discharged as a processing gas having a low hydrogen sulfide concentration. According to the method of the present invention, hydrogen sulfide is further removed from the gas having a hydrogen sulfide concentration of several tens of ppm (volume ratio) flowing out of the gas-liquid contact tower in the anion exchange resin tower, and the hydrogen sulfide concentration is 1 ppm (volume ratio) or less. Can be used as a processing gas. The alkaline liquid that has absorbed hydrogen sulfide in the gas-liquid contact tower is sent to the biological oxidation tank 5 via the liquid feeding pipe 4. In the biological oxidation tank, air is supplied from the diffusion tube 6 at the bottom of the tank, and sulfide ions are oxidized by sulfur-oxidizing bacteria to form sulfur alone, sulfite ions, sulfate ions, and the like. The liquid in the biological oxidation tank is sent to the gas-liquid contact tower via the return liquid pipe 8 by the pump 7 and circulated and used as an alkaline liquid. Excess liquid is discharged from the biological oxidation tank as overflow liquid.

本発明方法において、吸収剤として用いるアニオン交換樹脂は、再生して繰り返し使用することができる。図1に示す態様においては、アニオン交換樹脂は水酸化ナトリウム水溶液により再生され、その再生液は、再生液配管9を経由して生物酸化槽に供給される。本発明方法に用いるアニオン交換体としては、アニオン交換樹脂の他にアニオン交換繊維やアニオン交換シート等が適用可である。このうち、アニオン交換樹脂としては特に制限はなく、例えば、強塩基性I型アニオン交換樹脂、強塩基性II型アニオン交換樹脂、弱塩基性アニオン交換樹脂などを挙げることができる。これらの中で、強塩基性I型アニオン交換樹脂及び強塩基性II型アニオン交換樹脂は、HS-イオンを強く吸着し、硫化水素濃度の低い処理ガスを得ることができるので、特に好適に用いることができる。 In the method of the present invention, the anion exchange resin used as the absorbent can be regenerated and used repeatedly. In the embodiment shown in FIG. 1, the anion exchange resin is regenerated with an aqueous sodium hydroxide solution, and the regenerated solution is supplied to the biological oxidation tank via the regenerated solution pipe 9. As an anion exchanger used in the method of the present invention, anion exchange fibers, anion exchange sheets and the like can be applied in addition to an anion exchange resin. Among these, there is no restriction | limiting in particular as an anion exchange resin, For example, a strong basic type I anion exchange resin, a strong basic type II anion exchange resin, a weak basic anion exchange resin etc. can be mentioned. Among these, the strongly basic type I anion exchange resin and the strongly basic type II anion exchange resin are particularly preferably used because they can strongly adsorb HS 2 ions and obtain a treatment gas having a low hydrogen sulfide concentration. be able to.

本発明方法において、アニオン交換体がHS-イオンを吸着して破過点に達したときには、アルカリ水溶液を用いて再生することができる。アルカリ水溶液としては、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液及び炭酸水素ナトリウム水溶液を好適に用いることができ、水酸化ナトリウム水溶液を特に好適に用いることができる。アルカリ水溶液の濃度は、0.1〜10重量%であることが好ましく、2〜7重量%であることがより好ましい。アルカリ水溶液の濃度が0.1重量%未満であると、アニオン交換体の再生に多量のアルカリ水溶液を必要とするおそれがある。アルカリ水溶液の濃度が10重量%を超えると、炭酸水素ナトリウムが析出するおそれがある。 In the method of the present invention, when the anion exchanger adsorbs HS - ions and reaches the breakthrough point, it can be regenerated using an aqueous alkaline solution. As the alkaline aqueous solution, a sodium hydroxide aqueous solution, a sodium carbonate aqueous solution and a sodium hydrogen carbonate aqueous solution can be suitably used, and a sodium hydroxide aqueous solution can be particularly suitably used. The concentration of the alkaline aqueous solution is preferably 0.1 to 10% by weight, and more preferably 2 to 7% by weight. If the concentration of the aqueous alkaline solution is less than 0.1% by weight, a large amount of the aqueous alkaline solution may be required for the regeneration of the anion exchanger. When the concentration of the alkaline aqueous solution exceeds 10% by weight, sodium hydrogen carbonate may be precipitated.

本発明方法においては、気液接触塔から流出する硫化水素を吸収した液を生物酸化槽に導き、好気的に酸化分解することが好ましい。硫化水素は硫黄酸化細菌により好気的に酸化分解され、H2S+O→S(ゼロ)+H2O、S2-+2O2→SO4 2-などの反応により無害、無臭の分子状の硫黄、硫酸イオンなどとなる。本発明方法に用いる硫黄酸化細菌としては、例えば、チオバチルス属、チオトリックス属、ベギアトア属、チオマリヌス属、シュードモナス属などの細菌を挙げることができる。本発明方法においては、硫化水素含有ガスの処理に先立って、硫黄酸化細菌を下水、産業排水などの活性汚泥から馴養することが好ましい。硫黄酸化細菌の馴養は、チオ硫酸塩、硫化ナトリウム、亜硫酸塩などの不揮発性の還元性硫黄化合物を用いて行うことが好ましい。不揮発性の還元性硫黄化合物を用いることにより、還元性硫黄化合物の放散による大気汚染を防止することができる。好気性活性汚泥法により発生した活性汚泥を生物酸化槽に入れ、不揮発性の還元性化合物を添加した培養液、下水、産業排水などを供給し、曝気しつつ処理することにより、硫黄酸化細菌を馴養することができる。処理水中に還元性硫黄化合物が検出されなくなることにより、硫黄酸化細菌の馴養の完了を確認することができる。 In the method of the present invention, it is preferable that the liquid that has absorbed hydrogen sulfide flowing out of the gas-liquid contact tower is led to a biological oxidation tank and aerobically oxidatively decomposed. Hydrogen sulfide is aerobically oxidatively decomposed by sulfur-oxidizing bacteria, and harmless and odorless molecular sulfur is generated by reactions such as H 2 S + O → S (zero) + H 2 O, S 2 + 2O 2 → SO 4 2− , Such as sulfate ion. Examples of the sulfur-oxidizing bacterium used in the method of the present invention include bacteria such as thiobacillus genus, thiotrix genus, begiatoa genus, thiomarinus genus, and pseudomonas genus. In the method of the present invention, it is preferable to acclimate sulfur-oxidizing bacteria from activated sludge such as sewage and industrial wastewater prior to the treatment of the hydrogen sulfide-containing gas. Acclimatization of sulfur-oxidizing bacteria is preferably performed using a non-volatile reducing sulfur compound such as thiosulfate, sodium sulfide, sulfite. By using a non-volatile reducing sulfur compound, air pollution due to the emission of the reducing sulfur compound can be prevented. Activated sludge generated by the aerobic activated sludge method is placed in a bio-oxidation tank, and culture solution, sewage, industrial wastewater, etc. added with non-volatile reducing compounds are supplied and treated with aeration to remove sulfur-oxidizing bacteria. Can be accustomed. The completion of acclimatization of the sulfur-oxidizing bacteria can be confirmed by the fact that no reducing sulfur compound is detected in the treated water.

本発明方法においては、アニオン交換体の再生液を、生物酸化槽に供給することが好ましい。生物酸化槽の液はpH7.5〜9に保たれ、酸性ガスの吸収のために気液接触塔に循環されるので、アルカリ性であるアニオン交換体の再生液をpH調整剤として有効に活用することができる。また、アニオン交換体の再生により脱着した硫化水素イオン又は硫化水素は、生物酸化槽内で好気的に酸化分解されて無害、無臭の分子状の硫黄や硫酸イオンなどとなる。   In the method of the present invention, it is preferable to supply the regenerated solution of the anion exchanger to the biological oxidation tank. Since the liquid in the biological oxidation tank is maintained at pH 7.5-9 and is circulated to the gas-liquid contact tower for absorption of acidic gas, the alkaline anion exchanger regenerating liquid is effectively utilized as a pH adjuster. be able to. Further, the hydrogen sulfide ions or hydrogen sulfide desorbed by the regeneration of the anion exchanger are aerobically oxidized and decomposed in the biological oxidation tank to be harmless and odorless molecular sulfur or sulfate ions.

本発明の酸性ガスの除去装置の第一の態様は、酸性ガスを含有する排ガスとアルカリ液を接触させて酸性ガスをアルカリ液に吸収させる気液接触塔及び気液接触塔から流出するガス中に残存する酸性ガスを吸収除去するアニオン交換体塔を有する装置である。
本発明の酸性ガスの除去装置の第二の態様は、酸性ガスを含有する排ガスとアルカリ液を接触させて酸性ガスをアルカリ液に吸収させる気液接触塔、気液接触塔から流出するガス中に残存する酸性ガスを吸収除去するアニオン交換体塔、気液接触塔から流出する液に吸収された酸性ガスを好気的に酸化分解する生物酸化槽、生物酸化槽の生物培養液を気液接触塔に循環する手段、アニオン交換体を再生する手段及びアニオン交換体の再生液を生物酸化槽に導入する手段を有する装置である。
The first aspect of the acidic gas removal apparatus of the present invention is a gas-liquid contact tower in which an exhaust gas containing an acidic gas and an alkaline liquid are brought into contact with each other to absorb the acidic gas into the alkaline liquid. Is an apparatus having an anion exchanger tower for absorbing and removing the remaining acidic gas.
The second aspect of the acidic gas removal apparatus of the present invention is a gas-liquid contact tower that makes an exhaust gas containing an acidic gas and an alkaline liquid come into contact with each other to absorb the acidic gas into the alkaline liquid. The anion exchanger tower that absorbs and removes the acid gas remaining in the gas, the biooxidation tank that aerobically oxidatively decomposes the acid gas absorbed in the liquid flowing out of the gas-liquid contact tower, and the biological culture liquid in the biooxidation tank It is an apparatus having means for circulating to the contact tower, means for regenerating the anion exchanger, and means for introducing the regenerated liquid of the anion exchanger into the biological oxidation tank.

本発明装置に用いる気液接触塔に特に制限はなく、例えば、充填塔、濡れ壁塔、段塔、スプレー塔、気泡塔などを挙げることができる。これらの中で、充填塔及びスプレー塔を好適に用いることができる。充填塔は、構造が簡単で取り扱いが容易であり、ガスの圧力損失が少ない。スプレー塔は、液の噴霧にかなりの動力が必要であるが、構造が簡単で建設費が安く、ガスの圧力損失が少ない。スプレー塔には、液の飛沫同伴を防止する手段を設けることが好ましい。   The gas-liquid contact tower used in the apparatus of the present invention is not particularly limited, and examples thereof include a packed tower, a wet wall tower, a plate tower, a spray tower, and a bubble tower. Among these, a packed tower and a spray tower can be preferably used. The packed tower has a simple structure, is easy to handle, and has a low pressure loss of gas. The spray tower requires considerable power to spray the liquid, but has a simple structure, low construction cost, and low gas pressure loss. The spray tower is preferably provided with means for preventing liquid entrainment.

本発明装置において、気液接触塔から流出するガスをアニオン交換体と接触させる手段に特に制限はなく、例えば、固定床方式、詳しくは網状物や薄板スリット多孔体にアニオン交換体を挟みこんだものなどを挙げることができる。本発明装置においては、アニオン交換体塔2基を設け、一方のアニオン交換体塔の再生中は切り換えにより他方のアニオン交換体塔に通気し、酸性ガスを含有する排ガスの処理を中断することなく、連続して処理することができる。   In the apparatus of the present invention, there is no particular limitation on the means for bringing the gas flowing out from the gas-liquid contact tower into contact with the anion exchanger. For example, the anion exchanger is sandwiched between a fixed bed system, specifically a net or a thin slit porous body. The thing etc. can be mentioned. In the apparatus of the present invention, two anion exchanger towers are provided, and during regeneration of one anion exchanger tower, the other anion exchanger tower is ventilated by switching, without interrupting the treatment of the exhaust gas containing acid gas. Can be processed continuously.

本発明装置に用いる好気性生物処理槽に特に制限はなく、例えば、機械撹拌式エアレーションタンク、散気式エアレーションタンクのいずれをも用いることができる。好気性生物処理方式に特に制限はなく、例えば、押出流れ型又は完全混合型の標準活性汚泥法、ステップエアレーション法、コンタクトスタビリゼーション法などを挙げることができる。   There is no restriction | limiting in particular in the aerobic biological treatment tank used for this invention apparatus, For example, any of a mechanical stirring type aeration tank and an aeration type aeration tank can be used. The aerobic biological treatment method is not particularly limited, and examples thereof include an extruded flow type or a fully mixed type standard activated sludge method, a step aeration method, and a contact stabilization method.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、硫化水素の濃度測定には、(株)ガステックの検知管を用いた。
実施例1
化学工場の高負荷嫌気処理設備から発生する嫌気性バイオガスと類似の試験用混合ガスを用いて、図1に示すアニオン交換樹脂塔と生物酸化槽とを備えた充填塔ガス吸収方式の生物脱硫プロセス試験装置を用い、硫化水素の除去試験を行った。
試験用混合ガスの組成は、炭酸ガス29.85体積%、硫化水素0.15体積%、窒素ガス70.00体積%である。充填塔の寸法は、内径30mm、高さ4,000mmであり、称呼寸法6mmの磁製ラシヒリングを高さ2,500mmまで充填した。アニオン交換樹脂塔は、内径300mm、高さ100mmであり、OH形とした強塩基性I型アニオン交換樹脂[三菱化学(株)、ダイヤイオンPA312]1.4Lを充填した。生物酸化槽の寸法は、長さ300mm、幅100mm、高さ600mm、実容量10Lであり、1モル/L炭酸ナトリウム水溶液(pH8.3)を槽に入れ、工場排水の活性汚泥を添加し、チオ硫酸ナトリウム550mg/Lを添加した工場排水を4日間供給して硫黄酸化細菌の馴養を行ったのち、試験を開始した。
充填塔の塔底に試験用混合ガス350L(標準状態)/hを供給し、生物酸化槽から生物培養液34L/hを循環して、ガスと循環液を向流で接触させた。充填塔から流出するガスを、さらにアニオン交換樹脂塔に通気して、処理ガスを得た。
処理ガス中の硫化水素濃度は、運転開始4時間後0.3ppm(体積比)、50時間後0.1ppm(体積比)、1週間後0.2ppm(体積比)、1ヵ月後0.2ppm(体積比)であった。アニオン交換樹脂を取り出し、4重量%水酸化ナトリウム水溶液2Lを用いて再生したところ、樹脂はOH形に戻り、再利用し得ることが確認された。このときの水酸化ナトリウムの使用量をガス100万m3(標準状態)当たりに換算すると約330kgとなり、アルカリ吸収塔に比較して極めて少なかった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, a gas detection tube manufactured by Gastec Co., Ltd. was used to measure the concentration of hydrogen sulfide.
Example 1
Using a mixed gas for test similar to anaerobic biogas generated from a high-load anaerobic treatment facility of a chemical factory, a biodesulfurization method using a packed column gas absorption system equipped with an anion exchange resin tower and a bio-oxidation tank shown in FIG. A hydrogen sulfide removal test was conducted using a process test apparatus.
The composition of the test gas mixture is carbon dioxide gas 29.85% by volume, hydrogen sulfide 0.15% by volume, and nitrogen gas 70.00% by volume. The dimensions of the packed tower were an inner diameter of 30 mm and a height of 4,000 mm, and a magnetic Raschig ring having a nominal dimension of 6 mm was packed to a height of 2500 mm. The anion exchange resin tower had an inner diameter of 300 mm and a height of 100 mm, and was filled with 1.4 L of strongly basic type I anion exchange resin [Mitsubishi Chemical Corporation, Diaion PA312] in OH form. The dimensions of the bio-oxidation tank are 300 mm in length, 100 mm in width, 600 mm in height, and 10 L in actual capacity. Put a 1 mol / L sodium carbonate aqueous solution (pH 8.3) into the tank, add activated sludge from factory wastewater, The factory wastewater to which 550 mg / L of sodium thiosulfate was added was supplied for 4 days to acclimate the sulfur-oxidizing bacteria, and then the test was started.
A test mixed gas 350 L (standard state) / h was supplied to the bottom of the packed tower, and the biological culture solution 34 L / h was circulated from the biological oxidation tank, so that the gas and the circulating liquid were contacted in countercurrent. The gas flowing out from the packed tower was further passed through the anion exchange resin tower to obtain a treatment gas.
The hydrogen sulfide concentration in the process gas was 0.3 ppm (volume ratio) after 4 hours of operation, 0.1 ppm (volume ratio) after 50 hours, 0.2 ppm (volume ratio) after 1 week, and 0.2 ppm after 1 month. (Volume ratio). When the anion exchange resin was taken out and regenerated using 2 L of a 4 wt% aqueous sodium hydroxide solution, it was confirmed that the resin returned to the OH form and could be reused. When the amount of sodium hydroxide used at this time was converted to 1 million m 3 (standard state) of gas, it was about 330 kg, which was very small compared to the alkali absorption tower.

比較例1
実施例1において、充填塔から流出するガス中の硫化水素の濃度を測定した。
流出ガス中の硫化水素濃度は、運転開始4時間後34ppm(体積比)、50時間後25ppm(体積比)、1週間後31ppm(体積比)、1ヵ月後30ppm(体積比)であった。
比較例2
アニオン交換樹脂塔の代わりに、酸化鉄脱硫剤[(株)鐡原、TGリファイナー]10Lを充填した内径200mm、高さ500mmのアクリルカラムからなる乾式脱硫塔を用いて、充填塔から流出するガスを通気して処理した以外は、実施例1と同じ操作を行った。
処理ガス中の硫化水素濃度は、運転開始4時間後0.2ppm(体積比)、50時間後0.1ppm(体積比)未満、1週間後0.1ppm(体積比)であった。処理ガス性状に問題はないが、ガス100万m3(標準状態)当たり300kgの廃脱硫剤が発生し、被処理ガスが可燃性ガスを含有する場合は、脱硫剤の取替時に発火や爆発の危険性がある。
比較例3
アニオン交換樹脂塔の代わりに、内径300mm、高さ4,000mm、充填材高さ2,500mmのアルカリ吸収塔を用いて、充填塔から流出するガスを通気して処理した以外は、実施例1と同じ操作を行った。アルカリ吸収塔には、0.1モル/L水酸化ナトリウム水溶液34L/hを一過式に通水した。
処理ガス中の硫化水素濃度は、運転開始4時間後10ppm(体積比)、50時間後8ppm(体積比)、1週間後12ppm(体積比)であった。168時間で水酸化ナトリウム22,850gが注入され、ガス100万m3(標準状態)当たり約390tの水酸化ナトリウムが費消される計算となった。
実施例1及び比較例1〜3の結果を、第1表に示す。
Comparative Example 1
In Example 1, the concentration of hydrogen sulfide in the gas flowing out from the packed tower was measured.
The hydrogen sulfide concentration in the effluent gas was 34 ppm (volume ratio) 4 hours after the start of operation, 25 ppm (volume ratio) after 50 hours, 31 ppm (volume ratio) after 1 week, and 30 ppm (volume ratio) after 1 month.
Comparative Example 2
Instead of the anion exchange resin tower, a gas flowing out from the packed tower using a dry desulfurization tower consisting of an acrylic column having an inner diameter of 200 mm and a height of 500 mm filled with 10 L of an iron oxide desulfurization agent [Kashihara, TG refiner] The same operation as in Example 1 was performed except that the treatment was performed by aeration.
The hydrogen sulfide concentration in the treatment gas was 0.2 ppm (volume ratio) after 4 hours from the start of operation, less than 0.1 ppm (volume ratio) after 50 hours, and 0.1 ppm (volume ratio) after 1 week. Although there is no problem with the processing gas properties, if 300 kg of waste desulfurizing agent is generated per 1 million m 3 (standard condition) and the gas to be treated contains flammable gas, ignition or explosion will occur when the desulfurizing agent is replaced. There is a danger of.
Comparative Example 3
Example 1 except that an alkali absorption tower having an inner diameter of 300 mm, a height of 4,000 mm, and a filler height of 2,500 mm was used in place of the anion exchange resin tower and the gas flowing out from the packed tower was aerated and processed. The same operation was performed. A 0.1 mol / L sodium hydroxide aqueous solution 34 L / h was passed through the alkali absorption tower in a transient manner.
The hydrogen sulfide concentration in the treatment gas was 10 ppm (volume ratio) 4 hours after the start of operation, 8 ppm (volume ratio) after 50 hours, and 12 ppm (volume ratio) after 1 week. It was calculated that 22,850 g of sodium hydroxide was injected in 168 hours, and about 390 t of sodium hydroxide was consumed per 1 million m 3 (standard state) of gas.
The results of Example 1 and Comparative Examples 1 to 3 are shown in Table 1.

Figure 2007038169
Figure 2007038169

第1表に見られるように、充填塔から流出するガスには平均30ppm(体積比)程度の硫化水素が含まれるが、充填塔からの流出ガスをさらにアニオン交換樹脂で処理した実施例1と酸化鉄脱硫剤で処理した比較例2の処理ガスは、いずれも硫化水素濃度が0.3ppm(体積比)以下となり、アルカリ吸収により処理した比較例3の処理ガスは、硫化水素濃度が約10ppm(体積比)となっている。二次吸収剤として酸化鉄脱硫剤を用いた比較例2では、多量の廃脱硫剤が発生する。二次吸収手段としてアルカリ吸収塔で水酸化ナトリウム水溶液を用いた比較例3では、多量の水酸化ナトリウムが費消され、それでも硫化水素濃度約10ppm(体積比)までしか処理できない。これに対して、二次吸収剤として強塩基性アニオン交換樹脂を用いた実施例1では、樹脂の再生に費消される水酸化ナトリウムは比較的少量であり、しかも再生廃液をガス吸収剤あるいは生物酸化槽のpH調整剤として利用することができる。   As can be seen from Table 1, the gas flowing out from the packed tower contains hydrogen sulfide having an average of about 30 ppm (volume ratio). Example 1 in which the flowing gas from the packed tower was further treated with an anion exchange resin. The treatment gas of Comparative Example 2 treated with the iron oxide desulfurizing agent has a hydrogen sulfide concentration of 0.3 ppm (volume ratio) or less, and the treatment gas of Comparative Example 3 treated by alkali absorption has a hydrogen sulfide concentration of about 10 ppm. (Volume ratio). In Comparative Example 2 using an iron oxide desulfurizing agent as a secondary absorbent, a large amount of waste desulfurizing agent is generated. In Comparative Example 3 using a sodium hydroxide aqueous solution in an alkali absorption tower as a secondary absorption means, a large amount of sodium hydroxide is consumed, and it can still be processed only up to a hydrogen sulfide concentration of about 10 ppm (volume ratio). In contrast, in Example 1 in which a strongly basic anion exchange resin was used as the secondary absorbent, a relatively small amount of sodium hydroxide was consumed for the regeneration of the resin, and the recycled waste liquid was used as a gas absorbent or biological organism. It can be used as a pH adjuster for an oxidation tank.

本発明の酸性ガスの除去方法及び除去装置によれば、硫化水素などの酸性ガスを含有する排ガスを、気液接触塔でアルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体を用いて除去することにより、処理ガス中の酸性ガスを低コストで効果的に除去し、極めて低濃度まで減少することができる。   According to the method and apparatus for removing an acidic gas of the present invention, an exhaust gas containing an acidic gas such as hydrogen sulfide is brought into contact with an alkali liquid in a gas-liquid contact tower to absorb the acidic gas, and flows out from the gas-liquid contact tower. By removing the acid gas remaining in the gas to be processed using an anion exchanger, the acid gas in the processing gas can be effectively removed at low cost and reduced to a very low concentration.

本発明方法の一態様の工程系統図である。It is a process flow diagram of one mode of the method of the present invention.

符号の説明Explanation of symbols

1 気液接触塔
2 液分散器
3 アニオン交換樹脂塔
4 送液管
5 生物酸化槽
6 散気管
7 ポンプ
8 返送液管
9 再生液配管
DESCRIPTION OF SYMBOLS 1 Gas-liquid contact tower 2 Liquid disperser 3 Anion exchange resin tower 4 Liquid feed pipe 5 Bio-oxidation tank 6 Aeration pipe 7 Pump 8 Return liquid pipe 9 Regeneration liquid piping

Claims (11)

酸性ガスを含有する排ガスを気液接触塔に導入し、アルカリ液と接触させて酸性ガスを吸収させ、気液接触塔から流出するガス中に残留する酸性ガスをアニオン交換体により除去することを特徴とする酸性ガスの除去方法。   An exhaust gas containing an acid gas is introduced into a gas-liquid contact tower, brought into contact with an alkali liquid to absorb the acid gas, and the acid gas remaining in the gas flowing out of the gas-liquid contact tower is removed by an anion exchanger. A characteristic method for removing acid gas. 酸性ガスが、硫化水素である請求項1記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 1, wherein the acidic gas is hydrogen sulfide. 排ガスが、硫化水素の10体積倍以上の炭酸ガスを含有する請求項2記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 2, wherein the exhaust gas contains carbon dioxide gas that is 10 volume times or more of hydrogen sulfide. アニオン交換体が、アニオン交換樹脂である請求項1記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 1, wherein the anion exchanger is an anion exchange resin. アニオン交換樹脂が、第四級アンモニウム基を有する強塩基性アニオン交換樹脂である請求項4記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 4, wherein the anion exchange resin is a strongly basic anion exchange resin having a quaternary ammonium group. アニオン交換体が、0.1〜10重量%の水酸化ナトリウム水溶液、炭酸ナトリウム水溶液又は炭酸水素ナトリウム水溶液を用いて再生されたものである請求項1又は請求項4記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 1 or 4, wherein the anion exchanger is regenerated using a 0.1 to 10% by weight sodium hydroxide aqueous solution, sodium carbonate aqueous solution or sodium hydrogen carbonate aqueous solution. 気液接触塔から流出する液を生物酸化槽に導き、吸収された硫化水素を好気的に酸化分解する請求項2記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 2, wherein the liquid flowing out from the gas-liquid contact tower is guided to a biological oxidation tank, and the absorbed hydrogen sulfide is aerobically oxidized and decomposed. アニオン交換体の再生液を、生物酸化槽に供給する請求項6記載の酸性ガスの除去方法。   The method for removing acid gas according to claim 6, wherein the regeneration solution of the anion exchanger is supplied to the biological oxidation tank. 生物酸化槽の生物培養液を、気液接触塔に導入するアルカリ液として循環使用する請求項7記載の酸性ガスの除去方法。   The method for removing acidic gas according to claim 7, wherein the biological culture solution in the biological oxidation tank is circulated and used as an alkaline solution introduced into the gas-liquid contact tower. 酸性ガスを含有する排ガスとアルカリ液を接触させて酸性ガスをアルカリ液に吸収させる気液接触塔及び気液接触塔から流出するガス中に残存する酸性ガスを吸収除去するアニオン交換体塔を有することを特徴とする酸性ガスの除去装置。   A gas-liquid contact tower for contacting an exhaust gas containing an acid gas with an alkali liquid to absorb the acid gas into the alkali liquid and an anion exchanger tower for absorbing and removing the acid gas remaining in the gas flowing out of the gas-liquid contact tower An acid gas removing device characterized by that. 酸性ガスを含有する排ガスとアルカリ液を接触させて酸性ガスをアルカリ液に吸収させる気液接触塔、気液接触塔から流出するガス中に残存する酸性ガスを吸収除去するアニオン交換体塔、気液接触塔から流出する液に吸収された酸性ガスを好気的に酸化分解する生物酸化槽、生物酸化槽の生物培養液を気液接触塔に循環する手段、アニオン交換体を再生する手段及びアニオン交換体の再生液を生物酸化槽に導入する手段を有することを特徴とする酸性ガスの除去装置。   A gas-liquid contact tower for contacting an exhaust gas containing an acid gas with an alkali liquid to absorb the acid gas in the alkali liquid, an anion exchanger tower for absorbing and removing the acid gas remaining in the gas flowing out from the gas-liquid contact tower, A biooxidation tank that aerobically oxidatively decomposes acid gas absorbed in the liquid flowing out from the liquid contact tower, means for circulating the biological culture solution in the biooxidation tank to the gas-liquid contact tower, means for regenerating the anion exchanger, and An acid gas removing apparatus comprising means for introducing an anion exchanger regenerant into a biological oxidation tank.
JP2005226925A 2005-08-04 2005-08-04 Method and apparatus for removing acid gas Pending JP2007038169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226925A JP2007038169A (en) 2005-08-04 2005-08-04 Method and apparatus for removing acid gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226925A JP2007038169A (en) 2005-08-04 2005-08-04 Method and apparatus for removing acid gas

Publications (1)

Publication Number Publication Date
JP2007038169A true JP2007038169A (en) 2007-02-15

Family

ID=37796642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226925A Pending JP2007038169A (en) 2005-08-04 2005-08-04 Method and apparatus for removing acid gas

Country Status (1)

Country Link
JP (1) JP2007038169A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703149A (en) * 2012-05-25 2012-10-03 赵志军 Method for natural gas desulphurization and resource utilization of desulphurization waste solution
CN104071938A (en) * 2014-07-08 2014-10-01 日照弗尔曼新材料科技有限公司 Papermaking black liquor and sodium silicate exhaust gas combined treatment method
CN107983123A (en) * 2017-12-29 2018-05-04 浙江省海洋水产养殖研究所 Air filtering dust-removing laboratory
CN110448998A (en) * 2019-09-11 2019-11-15 北京凯瑞英科技有限公司 Exhaust treatment system and method in a kind of dimethyl sulfate Lipase absobed
CN111282395A (en) * 2020-03-26 2020-06-16 河南中白环境科学技术研究院有限公司 Low-concentration hydrogen sulfide gas treatment process and treatment device
CN111450671A (en) * 2020-05-12 2020-07-28 大唐环境产业集团股份有限公司 Sludge drying tail gas treatment system and method
CN113368675A (en) * 2021-07-06 2021-09-10 深圳前海中盛环保科技有限公司 Flue gas desulfurization and denitrification method by ion exchange fiber treatment
CN113416584A (en) * 2021-07-09 2021-09-21 深圳前海中盛环保科技有限公司 H in coke oven gas2S purification method
CN113413723A (en) * 2021-07-13 2021-09-21 深圳前海中盛环保科技有限公司 Method for treating waste gas by using ion exchange resin

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703149A (en) * 2012-05-25 2012-10-03 赵志军 Method for natural gas desulphurization and resource utilization of desulphurization waste solution
CN102703149B (en) * 2012-05-25 2015-04-08 赵志军 Method for natural gas desulphurization and resource utilization of desulphurization waste solution
CN104071938A (en) * 2014-07-08 2014-10-01 日照弗尔曼新材料科技有限公司 Papermaking black liquor and sodium silicate exhaust gas combined treatment method
CN107983123A (en) * 2017-12-29 2018-05-04 浙江省海洋水产养殖研究所 Air filtering dust-removing laboratory
CN107983123B (en) * 2017-12-29 2023-06-30 浙江省海洋水产养殖研究所 Air filtration dust removal laboratory
CN110448998A (en) * 2019-09-11 2019-11-15 北京凯瑞英科技有限公司 Exhaust treatment system and method in a kind of dimethyl sulfate Lipase absobed
CN111282395A (en) * 2020-03-26 2020-06-16 河南中白环境科学技术研究院有限公司 Low-concentration hydrogen sulfide gas treatment process and treatment device
CN111450671A (en) * 2020-05-12 2020-07-28 大唐环境产业集团股份有限公司 Sludge drying tail gas treatment system and method
CN113368675A (en) * 2021-07-06 2021-09-10 深圳前海中盛环保科技有限公司 Flue gas desulfurization and denitrification method by ion exchange fiber treatment
CN113368675B (en) * 2021-07-06 2023-03-17 深圳前海中盛环保科技有限公司 Flue gas desulfurization and denitrification method by ion exchange fiber treatment
CN113416584A (en) * 2021-07-09 2021-09-21 深圳前海中盛环保科技有限公司 H in coke oven gas2S purification method
CN113413723A (en) * 2021-07-13 2021-09-21 深圳前海中盛环保科技有限公司 Method for treating waste gas by using ion exchange resin

Similar Documents

Publication Publication Date Title
JP2007038169A (en) Method and apparatus for removing acid gas
CN206027431U (en) Device of waste gas is handled to biological method of multistage
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
JPS5998717A (en) Deodorizing method and apparatus utilizing bacteria
Ou et al. Removal of hydrogen sulfide from biogas using a bubbling tank fed with aerated wastewater
JP5098121B2 (en) Method for desulfurization of hydrogen sulfide-containing gas
JP2002079034A (en) Biological desulfurization method and apparatus
JP2004135579A (en) Biodesulfurization system for biogas
JP3235131B2 (en) Digestion gas desulfurization method and apparatus
JP2007038044A (en) Bio-desulfurization method and bio-desulfurization apparatus
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
JP3880468B2 (en) Desulfurization method and apparatus
JPH09187793A (en) Purifying method of waste water and the like
US10493423B2 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP3493735B2 (en) Anaerobic reaction gas desulfurization unit
JP2002079294A (en) Biological desulfurization method and apparatus
JP2002079036A (en) Method and apparatus for desulfurizing biogas, and desulfurizing agent
JPH11333492A (en) Apparatus and method for methane fermentation
KR101780126B1 (en) Media for removing odor
KR100514765B1 (en) The system for treating odorous compounds
JPH0852491A (en) Treatment of anaerobic biological reaction gas
JPH06246294A (en) Waste water treatment device
JP4222607B2 (en) Deodorizing method and deodorizing liquid
JP3868535B2 (en) Dry desulfurization wastewater treatment method
Chen The Influence of Aeration on Atmospheric Environment during Sewage Treatment