JPS6218230B2 - - Google Patents

Info

Publication number
JPS6218230B2
JPS6218230B2 JP54119634A JP11963479A JPS6218230B2 JP S6218230 B2 JPS6218230 B2 JP S6218230B2 JP 54119634 A JP54119634 A JP 54119634A JP 11963479 A JP11963479 A JP 11963479A JP S6218230 B2 JPS6218230 B2 JP S6218230B2
Authority
JP
Japan
Prior art keywords
hydrazine
copper
waste liquid
water
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54119634A
Other languages
Japanese (ja)
Other versions
JPS5644098A (en
Inventor
Iwao Seto
Takayuki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP11963479A priority Critical patent/JPS5644098A/en
Publication of JPS5644098A publication Critical patent/JPS5644098A/en
Publication of JPS6218230B2 publication Critical patent/JPS6218230B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は、ヒドラジンを含有する廃液の処理方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating waste liquid containing hydrazine.

発電所等においては、プラントの試験あるいは
検査等でプラントを停止した場合、ボイラ等を満
水保缶することがある。この満水保缶に使用する
水には、水中の溶存酸素を除去するため、比較的
高濃度のヒドラジンが含まれている。しかし、こ
のヒドラジン含有廃液はCOD値が高いため、こ
のままでは河川等への放流はできず、分解除去が
必要である。
At power plants, etc., when the plant is shut down for plant tests or inspections, boilers and the like may be filled with water. The water used for this water storage tank contains a relatively high concentration of hydrazine in order to remove dissolved oxygen from the water. However, since this hydrazine-containing waste liquid has a high COD value, it cannot be discharged into rivers or the like as it is, and must be decomposed and removed.

従来、この廃液の処理方法としては、塩素ある
いは次亜塩素酸ナトリウム等による酸化処理、ま
たは硫酸銅等の溶解性の銅化合物を触媒として加
え、曝気することにより酸化処理を行ないヒドラ
ジンを分解除去していた。しかし塩素あるいは次
亜塩素酸ナトリウムを用いる方法では、薬品の貯
蔵、管理および取扱いが煩雑で処理方法に高度の
技術が必要であつた。また銅化合物を触媒とする
方法においては、通常銅化合物は水溶液としてヒ
ドラジン含有廃液に添加されるため、処理水中に
銅イオンあるいは酸化銅等の微細な粒子が多量に
残存する。従つてこれらの銅イオンあるいは酸化
銅等の粒子を除去するために再処理が必要であつ
た。従来の技術、例えば凝集沈殿によつてこれら
の銅イオンあるいは酸化銅等の粒子を除去する場
合では、多量の凝集剤を必要とし、特に銅イオン
を除去するためには、大過剰の凝集剤が必要であ
り、多量のスラツジが発生すること、凝集せずに
処理水中に残留する凝集剤が問題となるなど、ま
すます処理が複雑となりきわめて不経済であつ
た。
Conventionally, methods for treating this waste liquid include oxidation treatment using chlorine or sodium hypochlorite, or oxidation treatment by adding soluble copper compounds such as copper sulfate as a catalyst and aeration to decompose and remove hydrazine. was. However, methods using chlorine or sodium hypochlorite require complicated storage, management, and handling of chemicals, and require advanced techniques for treatment. Furthermore, in the method using a copper compound as a catalyst, the copper compound is usually added to the hydrazine-containing waste liquid as an aqueous solution, so that a large amount of copper ions or fine particles such as copper oxide remain in the treated water. Therefore, reprocessing was necessary to remove these copper ions or copper oxide particles. Conventional techniques, such as coagulation and precipitation, to remove these copper ions or copper oxide particles require a large amount of flocculant, and in particular, in order to remove copper ions, it is necessary to use a large excess of flocculant. However, the treatment became increasingly complex and extremely uneconomical, with problems such as the generation of a large amount of sludge and the problem of flocculants remaining in the treated water without flocculating.

本発明は、ヒドラジン含有廃液に銅化合物を触
媒として添加し、曝気することによりヒドラジン
を酸化分解する方法において、従来の欠点を適確
に除去しようとするもので、酸化分解処理した処
理水中に残存する銅イオンあるいは酸化銅等の粒
子をも、極めて簡単な操作で安全に除去する、有
用な処理方法を提供することを目的とするもので
ある。
The present invention aims to accurately eliminate the drawbacks of the conventional method of oxidatively decomposing hydrazine by adding a copper compound to hydrazine-containing waste liquid as a catalyst and aerating it. The object of the present invention is to provide a useful treatment method that safely removes particles such as copper ions or copper oxides that are present in the environment with extremely simple operations.

本発明は基本的には3つの工程から成立してお
り、第1の工程ではヒドラジンを酸化分解するこ
とであり、第2の工程では、酸化銅等の微細な粒
子の大部分を砂過塔で除去し、第3の工程では
微細な粒子の一部と銅イオンを陽イオン交換樹脂
塔、またはキレート樹脂塔で除去するというもの
である。
The present invention basically consists of three steps, the first step is to oxidize and decompose hydrazine, and the second step is to remove most of the fine particles such as copper oxide through a sand filter. In the third step, some of the fine particles and copper ions are removed using a cation exchange resin tower or a chelate resin tower.

即ち本発明は、ヒドラジン含有廃液に銅化合物
を加え、PH2以上の条件下で空気その他の酸素含
有ガスで曝気し、ヒドラジンを酸化分解したの
ち、砂および陽イオン交換樹脂を充填した過塔
に通水するか、砂およびキレート樹脂を充填した
過塔に通水することを特徴とし、処理水の性
状、例えば酸化分解処理した処理水中の酸化銅等
の粒子が、きわめて微細である場合には、PHを
6.5〜7.5に調整し硫酸アルミニウムまたはポリ塩
化アルミニウムまたは/および陰イオン性高分子
凝集剤を、砂過塔入口の直前で注入するいわゆ
る凝集過(薬注過とも言う。)を行ない、そ
の過水を陽イオン交換樹脂またはキレート樹脂
に通水する処理方法である。
That is, in the present invention, a copper compound is added to a hydrazine-containing waste liquid, and the hydrazine is aerated with air or other oxygen-containing gas under conditions of pH 2 or higher to oxidize and decompose the hydrazine. It is characterized by passing water through a tower filled with sand and chelate resin, and if the properties of the treated water are extremely fine, for example, if the particles of copper oxide in the treated water are extremely fine, PH
6.5 to 7.5 and inject aluminum sulfate or polyaluminum chloride or/and an anionic polymer flocculant just before the inlet of the sand filter tower (also called chemical injection). This is a treatment method in which water is passed through a cation exchange resin or chelate resin.

ここで過塔の構成は、1塔1種類の充填剤で
構成するいわゆる単床式の他、1塔に2種類の充
填剤で構成する複層床式、例えば過塔上部に砂
層、下部に陽イオン交換樹脂層またはキレート樹
脂層から成る過塔でも良く、砂層から樹脂層へ
シリーズに通水することが重要なのである。これ
は酸化銅等の粒子が過剰に樹脂層で捕捉された場
合には、樹脂粒子表面が汚染されて樹脂の交換容
量が低下することもあり、酸化銅等の微細な粒子
は砂層で除去することが望ましいからである。
Here, the structure of the filter tower is the so-called single-bed type, in which one type of filler is used per tower, or the multi-bed type, in which each tower is constructed with two types of filler, for example, a sand layer in the upper part of the tower, and a sand layer in the lower part. A filter column consisting of a cation exchange resin layer or a chelate resin layer may be used, and it is important to pass water in series from the sand layer to the resin layer. This is because if too many particles such as copper oxide are captured in the resin layer, the surface of the resin particles may be contaminated and the exchange capacity of the resin may be reduced, so fine particles such as copper oxide should be removed using the sand layer. This is because it is desirable.

触媒として用いる銅化合物は、硫酸(第2)
銅、塩化(第2)銅など2価の銅から成る水溶性
の化合物ばかりでなく、酸化(第1)銅、酸化
(第2)銅、硫酸(第1)銅、塩化(第1)銅、
あるいは金属銅など水に難溶解性のものでも良
い。銅をイオンあるいは固体粒子としてヒドラジ
ン含有廃液へ添加し、曝気することにより酸化分
解処理したのち、処理水に残存する銅イオンある
いは酸化銅等の粒子は、砂層およびイオン交換樹
脂層で完全に除去できる。場合によつてはこれら
の銅化合物を回収し、再利用することも可能であ
り、例えば砂過塔の逆洗水の全量または一部か
ら、酸化銅等の粒子を回収し、更には陽イオン交
換樹脂またはキレート樹脂を鉱酸で再生し、その
再生廃液より例えば硫酸(第2)銅または塩化
(第2)銅の水溶液としてその全量または一部を
回収し、再度触媒として利用することもできるの
である。
The copper compound used as a catalyst is sulfuric acid (secondary)
Not only water-soluble compounds consisting of divalent copper such as copper and (ferric) chloride, but also copper (ferrous) oxide, copper (ferric) oxide, copper (ferrous) sulfate, and copper (ferric) chloride. ,
Alternatively, it may be a material that is hardly soluble in water, such as metallic copper. After copper is added as ions or solid particles to hydrazine-containing wastewater and subjected to oxidative decomposition treatment by aeration, copper ions or copper oxide particles remaining in the treated water can be completely removed in the sand layer and ion exchange resin layer. . In some cases, it is possible to recover and reuse these copper compounds. For example, it is possible to recover particles such as copper oxide from all or part of the backwash water of a sand filter tower, and furthermore to recover cations. It is also possible to regenerate the exchange resin or chelate resin with a mineral acid, recover all or part of it from the regenerated waste liquid as an aqueous solution of (ferric) sulfate or (ferric) chloride, and use it again as a catalyst. It is.

銅の触媒作用は、銅の形態によつても異なり触
媒作用が最も大きいものは、酸化第1銅であると
考えられる。酸化第1銅は、PH2以下では生成し
がたく、十分安定した触媒効果を得るためにはPH
を2以上にしなければならない。
The catalytic action of copper differs depending on the form of copper, and it is thought that cuprous oxide has the highest catalytic action. Cuprous oxide is difficult to produce at pH below 2, and in order to obtain a sufficiently stable catalytic effect, the pH must be
must be 2 or more.

本発明によれば、ヒドラジン含有廃液に銅化合
物を加え、PH2以上の条件下で空気その他の酸素
含有ガスで曝気し、ヒドラジンを酸化分解したの
ち、砂および陽イオン交換樹脂を充填した過塔
に通水するか、砂およびキレート樹脂を充填した
過塔に通水し、更には硫酸アルミニウムまたは
ポリ塩化アルミニウムまたは/および陰イオン性
高分子凝集剤と併用して凝集過を行なうことに
より、簡単な操作でヒドラジン含有廃液を処理
し、全く無害な水に転換することができるもので
ある。
According to the present invention, a copper compound is added to a hydrazine-containing waste liquid, and the hydrazine is oxidized and decomposed by aeration with air or other oxygen-containing gas under conditions of PH2 or higher, and then passed through a filter tower filled with sand and a cation exchange resin. A simple process can be carried out by passing water through a filter tower filled with sand and chelate resin, and further coagulating with aluminum sulfate or polyaluminum chloride or/and an anionic polymer flocculant. In operation, hydrazine-containing waste liquid can be treated and converted into completely harmless water.

次に実施例を示す。 Next, examples will be shown.

実施例 1 20のガラス製水槽に、被処理液としてヒドラ
ジン200mg/を含有する水溶液を15入れ、PH
を約10.5に調整したのち、硫酸銅を銅として2.5
mg/添加し、通気量毎分約2で曝気した。曝
気後1時間でヒドラジン濃度は10mg/、曝気後
2時間ではヒドラジンは検出できなかつた。しか
し添加した銅は、曝気後2時間で2.2mg/残存
した。このうち酸化銅等の微細な粒子は1.8mg/
あり、81.8%含まれていることが分つた。この
酸化分解した処理水を内径20mmのアクリル製小型
カラムに通水した。カラムには有効径0.55mm、均
等係数1.32の砂を層高300mmカラム上部に充填さ
れ、更にカラム下部には弱酸性陽イオン交換樹脂
(商品名Lewafit CNP―80)がナトリウム形で層
高400mm充填し、通水速度は弱酸性陽イオン交換
樹脂に対し空間速度(SV)20とした。弱酸性陽
イオン交換樹脂の出口水中の銅を測定したが、樹
脂に対する通水倍量1000倍では、銅は検出されな
かつた。
Example 1 15 aqueous solutions containing 200 mg of hydrazine were placed in 20 glass water tanks, and the PH
After adjusting to about 10.5, copper sulfate is adjusted to 2.5 as copper.
mg/min was added and aerated at an air flow rate of about 2 per minute. The hydrazine concentration was 10 mg/1 hour after aeration, and no hydrazine could be detected 2 hours after aeration. However, the added copper remained at 2.2 mg/2 hours after aeration. Of this, fine particles such as copper oxide are 1.8mg/
It was found that the content was 81.8%. This oxidized and decomposed treated water was passed through a small acrylic column with an inner diameter of 20 mm. The column is packed with sand with an effective diameter of 0.55 mm and a uniformity coefficient of 1.32 at the top of the column with a bed height of 300 mm, and a weakly acidic cation exchange resin (trade name: Lewafit CNP-80) in sodium form is packed at the bottom of the column with a bed height of 400 mm. The water flow rate was set to a space velocity (SV) of 20 for a weakly acidic cation exchange resin. Copper in the outlet water of a weakly acidic cation exchange resin was measured, but no copper was detected at a water flow rate of 1000 times the resin.

Claims (1)

【特許請求の範囲】 1 ヒドラジンを含有する廃液に、銅化合物を加
え、PH2以上の条件下で空気その他の酸素含有ガ
スで曝気し、ヒドラジンを酸化分解したのち、砂
過し、さらに陽イオン交換樹脂またはキレート
樹脂に通水することを特徴とするヒドラジン含有
廃液の処理方法。 2 前記ヒドラジン含有廃液を酸化分解処理した
のち、PH6.5〜7.5に調整し硫酸アルミニウム、ポ
リ塩化アルミニウムまたは/および陰イオン性高
分子凝集剤を用いて凝集過を行ない、その過
水を陽イオン交換樹脂またはキレート樹脂に通水
する特許請求の範囲第1項記載のヒドラジン含有
廃液の処理方法。 3 前記酸素含有ガスは、組成比で酸素が21v/
v%以上である特許請求の範囲第1項または第2
項記載のヒドラジン含有廃液の処理方法。
[Claims] 1. A copper compound is added to the waste liquid containing hydrazine, and the hydrazine is aerated with air or other oxygen-containing gas under conditions of PH2 or higher to oxidize and decompose the hydrazine, followed by sand filtration and further cation exchange. A method for treating hydrazine-containing waste liquid, which comprises passing water through a resin or chelate resin. 2 After oxidizing and decomposing the hydrazine-containing waste liquid, adjust the pH to 6.5 to 7.5, perform coagulation using aluminum sulfate, polyaluminum chloride, or/and anionic polymer flocculant, and convert the superhydrate into cations. A method for treating a hydrazine-containing waste liquid according to claim 1, wherein water is passed through an exchange resin or a chelate resin. 3 The oxygen-containing gas has a composition ratio of oxygen of 21v/
Claim 1 or 2 that is greater than or equal to v%
A method for treating hydrazine-containing waste liquid as described in Section 1.
JP11963479A 1979-09-18 1979-09-18 Treating method of hydrazine content waste water Granted JPS5644098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11963479A JPS5644098A (en) 1979-09-18 1979-09-18 Treating method of hydrazine content waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11963479A JPS5644098A (en) 1979-09-18 1979-09-18 Treating method of hydrazine content waste water

Publications (2)

Publication Number Publication Date
JPS5644098A JPS5644098A (en) 1981-04-23
JPS6218230B2 true JPS6218230B2 (en) 1987-04-22

Family

ID=14766296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11963479A Granted JPS5644098A (en) 1979-09-18 1979-09-18 Treating method of hydrazine content waste water

Country Status (1)

Country Link
JP (1) JPS5644098A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114945B2 (en) * 1985-10-08 1995-12-13 旭化成工業株式会社 Method for manufacturing separation functional material
US4774132A (en) * 1986-05-01 1988-09-27 Pall Corporation Polyvinylidene difluoride structure
US5264093A (en) * 1992-04-30 1993-11-23 E. I. Du Pont De Nemours And Company Irradiation of cation exchange membranes to increse current efficiency and reduce power consumption
US5330626A (en) * 1993-02-16 1994-07-19 E. I. Du Pont De Nemours And Company Irradiation of polymeric ion exchange membranes to increase water absorption
CN100344547C (en) * 2005-02-05 2007-10-24 南京大学 Method for catalytic degradating paranitrobenzene substance with nonometer-grade cuprous oxide by mechanism
CN100417602C (en) * 2005-04-05 2008-09-10 南京大学 Light illumination and mechanically catalytic method for degradation of p-nitrobenzenes by using nano copper-protoxide

Also Published As

Publication number Publication date
JPS5644098A (en) 1981-04-23

Similar Documents

Publication Publication Date Title
Lalezary‐Craig et al. Optimizing the removal of geosmin and 2‐methylisoborneol by powdered activated carbon
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
RU2480423C1 (en) Combined method of treating waste water containing organic contaminants
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JPS6218230B2 (en)
JPH10277568A (en) Treatment of organic matter-containing waste water
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
Weng et al. Ozonation: an economic choice for water treatment
JP2010089051A (en) Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid
CN108128925A (en) Method for simultaneously removing COD (chemical oxygen demand) and total phosphorus
EP0737650A2 (en) Method and plant for treating water for drinking or for industrial use
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JP3526143B2 (en) Advanced wastewater treatment method
KR20050013794A (en) Method for eliminating nitrogen, phosphorus and organic compounds of sewage using the oxidation-reduction reaction
JPS5834080A (en) Treatment of acid-digested waste liquid
US20020113019A1 (en) Method for removing toxic substances in water
JP2749256B2 (en) Advanced water treatment method
CN215712339U (en) Advanced oxidation treatment system for mine acidic wastewater deep bed ions
CA1160370A (en) Waste water treatment system for elemental phosphorus removal
KR100770177B1 (en) A algal bloom treatment method in water treatment plant
US20210363037A1 (en) Method of treating water containing arsenic and manganese
US20220315463A1 (en) Method of treating water containing arsenic and manganese
JP3195514B2 (en) Coagulation settling equipment
JPS61230785A (en) Removal of mercury in waste water