JPS61230785A - Removal of mercury in waste water - Google Patents

Removal of mercury in waste water

Info

Publication number
JPS61230785A
JPS61230785A JP60071485A JP7148585A JPS61230785A JP S61230785 A JPS61230785 A JP S61230785A JP 60071485 A JP60071485 A JP 60071485A JP 7148585 A JP7148585 A JP 7148585A JP S61230785 A JPS61230785 A JP S61230785A
Authority
JP
Japan
Prior art keywords
mercury
water
chelate resin
tower
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60071485A
Other languages
Japanese (ja)
Inventor
Tetsuo Sawazaki
沢崎 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60071485A priority Critical patent/JPS61230785A/en
Publication of JPS61230785A publication Critical patent/JPS61230785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to remove mercury up to a low level, by combining a flocculative sedimentation process, a sand filtering process and an adsorbing process by a chelate resin tower and preliminarily changing colloidal mercury to soluble mercury prior to guiding water to be treated to a chelate resin. CONSTITUTION:Waste water 1 containing mercury is guided to a flocculation treatment tank 2 to perform flocculative sedimentation treatment and sludge is separated in a sedimentation tank 3. Thereafter, flooded water is filtered through the sand bed in a first sand filter tower 4 to remove the suspended substance in water and a part of the filtered water is electrolyzed in an electrolytic cell 5 to generate chlorine and the electrolyzed water is met and mixed with non-electrolyzed water in an oxidizing tank 6 to decompose the org. substance and colloidal mercury by oxidation to convert metal mercury to soluble mercury. Next, the treated water is newly guided to a second sand filter tower 7 where the suspended substance generated as a by-product at the time of reaction is removed and the filtered water is passed through a chelate resin tower 8 at last to adsorb and remove a mercury ion by a chelate resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水銀含有廃水中の水銀除去方法に関し、特に
該廃水中の水銀を環境レベルにまで除去する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for removing mercury from mercury-containing wastewater, and particularly to a method for removing mercury from the wastewater to environmental levels.

〔従来の技術〕[Conventional technology]

従来、廃水中の重金属は、一般には、凝集沈殿法により
処理されているが、水銀については水俣病等で知られる
ようにその有害性が注目され、環境基準では0.5pp
b以下という厳しい電率が設けられておシ、凝集沈殿法
のみではその処理は達成できない。そこで0.5ppb
位の低濃度に処理するには、凝集沈殿処理後にキレート
樹脂塔に通水する方法が一般に行なわれている。
Conventionally, heavy metals in wastewater are generally treated by the coagulation-sedimentation method, but mercury has attracted attention due to its toxicity, as is known from Minamata disease, etc., and the environmental standard is 0.5pp.
Due to the strict electrical conductivity of less than b, the treatment cannot be achieved by coagulation-sedimentation alone. So 0.5 ppb
In order to reduce the concentration to such a low level, a method is generally used in which water is passed through a chelate resin column after coagulation and precipitation treatment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、単に凝集沈殿処理水をキレート樹脂処理するだ
けでは、原水中のコロイダル水銀(水中で懸濁している
水銀。金属Hg等)が漏出してしまい0.5ppb以下
の低濃度に処理することができない。
However, simply treating coagulation-sedimentation treated water with a chelate resin causes colloidal mercury (mercury suspended in water, metal Hg, etc.) in the raw water to leak out, making it impossible to treat the water to a low concentration of 0.5 ppb or less. Can not.

本発明は、このような欠点のない廃水中の微量水銀の除
去方法を提供するものである。
The present invention provides a method for removing trace amounts of mercury from wastewater without such drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的達成のため1本発明は2水銀含有廃水を凝集沈
殿処理した後、第1次砂濾過処理を行ない、該砂濾過処
理による濾過水の少なくとも一部を電解槽で電気分解し
て、塩素を生成し、−後、キレート樹脂塔へ通水するこ
とを特徴とする廃水中の水銀除去方法を提案する。
In order to achieve the above objects, 1) the present invention carries out a coagulation-sedimentation treatment on mercury-containing wastewater, then performs a primary sand filtration treatment, electrolyzes at least a portion of the filtrated water from the sand filtration treatment in an electrolytic cell, and chlorinates We propose a method for removing mercury from wastewater, which is characterized by producing mercury and then passing the water through a chelate resin column.

〔作用〕[Effect]

本発明方法は、凝集沈殿処理を行なった後。 In the method of the present invention, after coagulation and precipitation treatment is performed.

第1次砂濾過処理を行ない、砂濾過水の少なくとも一部
を電気分解して塩素を発生させ、この塩素の作用によシ
コロイダル水銀を錯アニオンに分解してから、第2次砂
濾過処理を行なった後、キレート樹脂塔へ通すことを特
徴とする。
The first sand filtration treatment is performed, at least a portion of the sand filtration water is electrolyzed to generate chlorine, and the action of this chlorine decomposes cicoloidal mercury into complex anions, and then the second sand filtration treatment is performed. After the treatment, the resin is passed through a chelate resin tower.

即ち、まず凝集沈殿工程では、 Cd、 pb、等の重
金属をpH調整して次の反応式によシ水酸化物を生成さ
せて、凝集剤と共に沈殿除去する。
That is, first, in the coagulation-sedimentation step, the pH of heavy metals such as Cd and PB is adjusted to generate hydroxide according to the following reaction formula, which is precipitated and removed together with a flocculant.

Cd ”+2Na oH−+ Cd (oH)2↓・・
−・−(1)次の第1次砂濾過工程では、前記凝集沈殿
工程で除去出来なかった懸濁粒子を除去する。懸濁粒子
が除かれないと、後工程での塩素消費量の増加等の弊害
が発生する。
Cd ”+2Na oH-+ Cd (oH)2↓・・
-.- (1) In the next primary sand filtration step, suspended particles that could not be removed in the coagulation-sedimentation step are removed. If suspended particles are not removed, adverse effects such as increased chlorine consumption in subsequent steps will occur.

さらに次の電解工程では、砂濾過水の一部を電気分解し
て次の反応式によシ塩素を発生させる。
Furthermore, in the next electrolysis step, a portion of the sand-filtered water is electrolyzed to generate chlorine according to the following reaction formula.

(陰極)  H”+e→I H,↑ ・・・・・・・・
・(3)この生成した塩素とコロイダルな金属Hg を
次の反応式により反応させ、金属Hgを酸化して溶解性
の水銀(水に溶解している水銀)とするO Hg+C12→H−)+C4−2・・・・・・・・・(
4)次に第2次砂濾過工程に導き、前記反応で副次的に
発生する懸濁物質を除去して次工程であるキレート塔の
目詰シを防止する。
(Cathode) H"+e→I H, ↑ ・・・・・・・・・
・(3) The generated chlorine and colloidal metal Hg are reacted according to the following reaction formula, and the metal Hg is oxidized to become soluble mercury (mercury dissolved in water) (O Hg + C12 → H-) + C4 -2・・・・・・・・・(
4) Next, the mixture is led to a second sand filtration step to remove suspended solids generated as a by-product in the reaction to prevent clogging of the chelate tower in the next step.

次のキレート樹脂処理工程では、キレート樹脂が水銀イ
オンとキレート反応して水銀イオンを選択的に吸着除去
する。
In the next chelate resin treatment step, the chelate resin undergoes a chelate reaction with mercury ions to selectively adsorb and remove mercury ions.

なお9本発明において、電気分解処理の後で。9 In the present invention, after electrolysis treatment.

塩素とコロイダル水銀との反応を促進するため。To accelerate the reaction between chlorine and colloidal mercury.

被処理水の混合工程又はかく拌工程等を設けてもよい。A mixing step or stirring step for the water to be treated may be provided.

〔実施例〕〔Example〕

次に本発明方法の一実施例を図面を参照して説明する。 Next, an embodiment of the method of the present invention will be described with reference to the drawings.

第1図に示すように、水銀含有廃水1を凝集処理槽2に
導き、  FeCl2を150ppm添加した後。
As shown in FIG. 1, mercury-containing wastewater 1 is introduced into a coagulation treatment tank 2, and 150 ppm of FeCl2 is added thereto.

Cd、 Ni、 Zn  等の重金属をCd (0H)
2 、 N i (0H)2Zn(oH)2  の水酸
化物にするため、 NaoHにてpHを10〜11に調
整し、有機高分子凝集剤を2 ppm添加して沈殿槽3
にて汚泥を分離する。
Heavy metals such as Cd, Ni, and Zn are converted into Cd (0H)
2. To make Ni(0H)2Zn(oH)2 hydroxide, adjust the pH to 10-11 with NaoH, add 2 ppm of organic polymer flocculant, and add to the precipitation tank 3.
Separate the sludge.

その後溢流水を第1砂濾過塔4にて砂濾過して液中の懸
濁物質を除去した後、砂濾過水の一部(全流量の釣上)
を電解槽5で電気分解して塩素を約5QQppm発生さ
せ、その後未電解液と酸化槽6で合流させて混合して、
液中の有機物。
After that, the overflow water is filtered with sand in the first sand filter tower 4 to remove suspended matter in the liquid, and then a portion of the sand filtered water (fishing of the entire flow rate)
is electrolyzed in the electrolytic tank 5 to generate about 5QQppm of chlorine, and then combined with the unelectrolyzed solution in the oxidation tank 6 and mixed.
Organic matter in liquid.

コロイド水銀を酸化分解する。次に新たに第2砂濾過塔
7を通した後、キレート樹脂塔8に通水して水銀を除去
する。
Oxidatively decomposes colloidal mercury. Next, after passing through the second sand filter tower 7, the water is passed through the chelate resin tower 8 to remove mercury.

次に上記装置を用いた実験結果を第1表に示す。Next, Table 1 shows the results of experiments using the above apparatus.

皇丘 (1)原水: COD25ppm、 CdCd1−7p
p pbloppm。
Huangqiu (1) Raw water: COD25ppm, CdCd1-7p
p pbloppm.

Zn90ppm、 Hg0.lppmを含む都市ごみ焼
却場無機系廃水 (乃各工程 ■凝集沈殿槽2で使用する有機高分子凝集剤[ダイヤフ
ロックAP825j (商品名。ダイヤフロック株式会社製)■第1次および
第2次砂濾過塔4および7砂量:2t(76mφX 4
40mmH)使用砂:珪砂1〜3+I!!1φ SV (空間速度) : 2.5 1/hrLV (線
速度):1−1m/hr の電解槽5 電解面積:12J(3x4創) 陰極:チタン板 陽極@  Pi、メッキチタン板 通水量: 0.5 t/h 通電量:0.5A ■酸化槽6 1 容素:2t ■キレート樹脂塔8 樹脂量:1t(54mmφX440w+H)SV (空
間速度) : 51/hr LV (線速度) * 2.2rn/h r使用するキ
レート樹脂:「スミキレートQ−10J(商品名。住友
化学株式会社実験例に示すように、第2砂濾過塔7の通
水後はコロイダル水銀を完全に除去して、溶解性水銀の
みになり、その結果、キレート樹脂塔通水後の処理水の
水銀は0.1ppb以下となった。
Zn90ppm, Hg0. Municipal waste incineration plant inorganic wastewater containing lppm (no each process ■ Organic polymer flocculant used in coagulation sedimentation tank 2 [Diafloc AP825j (product name. Manufactured by Diafloc Co., Ltd.) ■ Primary and secondary sand Filter tower 4 and 7 sand amount: 2t (76mφX 4
40mmH) Sand used: Silica sand 1-3+I! ! 1φ SV (space velocity): 2.5 1/hr LV (linear velocity): 1-1 m/hr Electrolytic cell 5 Electrolytic area: 12 J (3x4 wounds) Cathode: Titanium plate anode @ Pi, plated titanium plate Water flow rate: 0 .5 t/h Current flow: 0.5A ■Oxidation tank 6 1 Capacity: 2t ■Chelate resin tower 8 Resin amount: 1t (54mmφX440w+H) SV (space velocity): 51/hr LV (linear velocity) * 2.2rn /hr Chelate resin used: Sumikylate Q-10J (trade name. Sumitomo Chemical Co., Ltd. As shown in the experimental example, after water is passed through the second sand filtration tower 7, colloidal mercury is completely removed and soluble As a result, the mercury in the treated water after passing through the chelate resin tower was 0.1 ppb or less.

電解槽5での反応は、前記(2)、 (3)式のとおり
となって塩素が発生するため、酸化剤の集注の必要がな
い。また、第2砂濾過塔7を設ける事によシ、高価なキ
レート塔の目詰りを防止出来る。
The reaction in the electrolytic cell 5 occurs as shown in equations (2) and (3) above, and chlorine is generated, so there is no need to collect the oxidizing agent. Further, by providing the second sand filter tower 7, clogging of the expensive chelate tower can be prevented.

本方法によれば、コロイダル水銀を分解してキレート樹
脂塔の性能が充分発揮出来、結果的にはキレート樹脂塔
の有効期間を長く出来る。
According to this method, colloidal mercury is decomposed to fully demonstrate the performance of the chelate resin tower, and as a result, the effective period of the chelate resin tower can be extended.

〔発明の効果〕〔Effect of the invention〕

以上のように1本発明方法によれば、凝集沈殿工程、砂
テ過工程、キレート樹脂塔による吸着工程を組み合わせ
、被処理水をキレート樹脂に導く前に予じめコロイダル
水銀を溶解性水銀に変えておくことによシ、被処理水中
の水銀を極めて低レベルまで除去でき、環境レベルに合
致した被処理水とすることができる。
As described above, according to the method of the present invention, a coagulation-precipitation process, a sand filtering process, and an adsorption process using a chelate resin tower are combined, and colloidal mercury is converted into soluble mercury before the water to be treated is introduced into the chelate resin. By changing the mercury in the water to be treated, it is possible to remove mercury to an extremely low level, and the water to be treated can meet environmental standards.

なお2本発明方法は、都市ごみ焼却場廃水。Note that the method of the present invention uses municipal waste incinerator wastewater.

その他産業廃棄物、下水汚泥等の廃棄物処理場廃水、各
種製造工場廃水等水銀含有廃水の処理に広く適用できる
It can be widely applied to the treatment of mercury-containing wastewater such as industrial waste, wastewater from waste treatment plants such as sewage sludge, and wastewater from various manufacturing plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す工程図である。 1・・・水銀含有廃水、2・・・凝集処理槽、3・・・
沈殿槽、4・・・第1砂ろ過塔、5・・・電解槽、6・
・・酸化槽、7・・・第2砂ろ過塔、8・・・キレート
塔。
FIG. 1 is a process diagram showing an embodiment of the method of the present invention. 1...Mercury-containing wastewater, 2...Coagulation treatment tank, 3...
Sedimentation tank, 4... First sand filter tower, 5... Electrolytic tank, 6...
... Oxidation tank, 7... Second sand filter tower, 8... Chelate tower.

Claims (1)

【特許請求の範囲】[Claims] 水銀含有廃水を凝集沈殿処理した後、第1次砂濾過処理
を行ない、該砂濾過処理による濾過水の少なくとも一部
を電解槽で電気分解して塩素を生成し、生成した塩素に
よりコロイダル水銀を溶解性水銀に変え、次に第2次砂
濾過処理を行ない、その後キレート樹脂塔へ通水するこ
とを特徴とする廃水中の水銀除去方法。
After coagulation and precipitation treatment of mercury-containing wastewater, a primary sand filtration treatment is performed, and at least a portion of the filtrated water from the sand filtration treatment is electrolyzed in an electrolytic cell to generate chlorine, and the generated chlorine is used to remove colloidal mercury. A method for removing mercury from wastewater, which comprises converting the mercury into soluble mercury, then performing a secondary sand filtration treatment, and then passing the water through a chelate resin tower.
JP60071485A 1985-04-04 1985-04-04 Removal of mercury in waste water Pending JPS61230785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071485A JPS61230785A (en) 1985-04-04 1985-04-04 Removal of mercury in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071485A JPS61230785A (en) 1985-04-04 1985-04-04 Removal of mercury in waste water

Publications (1)

Publication Number Publication Date
JPS61230785A true JPS61230785A (en) 1986-10-15

Family

ID=13461996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071485A Pending JPS61230785A (en) 1985-04-04 1985-04-04 Removal of mercury in waste water

Country Status (1)

Country Link
JP (1) JPS61230785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500269A (en) * 1994-02-21 1995-10-02 Shell Int Research Electrochemical removal of metals from an aqueous waste stream.
JP2010527287A (en) * 2007-05-16 2010-08-12 エクソンモービル リサーチ アンド エンジニアリング カンパニー Wastewater mercury removal method
CN105600975A (en) * 2015-10-30 2016-05-25 江南大学 Method for immobilizing cadmium ions in water through using rice proteins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9500269A (en) * 1994-02-21 1995-10-02 Shell Int Research Electrochemical removal of metals from an aqueous waste stream.
JP2010527287A (en) * 2007-05-16 2010-08-12 エクソンモービル リサーチ アンド エンジニアリング カンパニー Wastewater mercury removal method
CN105600975A (en) * 2015-10-30 2016-05-25 江南大学 Method for immobilizing cadmium ions in water through using rice proteins

Similar Documents

Publication Publication Date Title
US9499420B2 (en) Formulations and methods for removing heavy metals from waste solutions containing chelating agents
US5698107A (en) Treatment for acid mine drainage
CN102101733B (en) Method for treating electroplating comprehensive wastewater by scrap iron electrolysis and electrochemical technology
CN104909497A (en) Method for treating acid waste water of nonferrous metal mine
JP2007125521A (en) Apparatus and method for treating waste water
CN104944636A (en) Non-ferrous metal mine acid wastewater treatment method
CN107176726A (en) Desulphurization for Coal-fired Power Plant waste water integrates defluorination method
CN105565553A (en) Zero-emission purifying and recycling system of cyanide-containing heavy metal wastewater
CN110776184A (en) Advanced treatment method of thallium-containing wastewater
CN110117108A (en) A kind of processing method of high concentration cadmium wastewater
TWI637917B (en) Fluoride removal method of flue-gas desulfurization wastewater and fluoride removal system thereof
CN109019999A (en) A kind of processing method of the low concentration containing strong complexing nickel waste water
CN105540946A (en) Process for removing thallium through microelectrolysis treatment of thallium-containing heavy metal wastewater
CN108545803B (en) Method for degrading copper complex and synchronously removing copper by combining photo-induced complex breaking composite medicament and UV (ultraviolet)
JPS61230785A (en) Removal of mercury in waste water
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
JP3642516B2 (en) Method and apparatus for removing COD components in water
CN111320302B (en) Process for standard emission and efficient sedimentation of low-concentration copper-containing wastewater in semiconductor industry
JPS6218230B2 (en)
CN113307350B (en) Advanced oxidation process for rapidly precipitating heavy metals and efficiently removing COD (chemical oxygen demand) in electroplating wastewater
CN115259487B (en) Industrial wastewater treatment method
CN104609611B (en) The emergent quick method for treating water of one kind
JPH0966284A (en) Method and apparatus for treating heavy metal-containing solution
Bryson, AW, Dardis Treatment of dilute metal effluents electrolytic precipitator
JPH0128629B2 (en)