JPH0714514B2 - Chemical cleaning waste liquid treatment method - Google Patents

Chemical cleaning waste liquid treatment method

Info

Publication number
JPH0714514B2
JPH0714514B2 JP62098519A JP9851987A JPH0714514B2 JP H0714514 B2 JPH0714514 B2 JP H0714514B2 JP 62098519 A JP62098519 A JP 62098519A JP 9851987 A JP9851987 A JP 9851987A JP H0714514 B2 JPH0714514 B2 JP H0714514B2
Authority
JP
Japan
Prior art keywords
waste liquid
added
calcium
cod
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62098519A
Other languages
Japanese (ja)
Other versions
JPS63264193A (en
Inventor
行男 林
武敏 古沢
伸爾 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62098519A priority Critical patent/JPH0714514B2/en
Publication of JPS63264193A publication Critical patent/JPS63264193A/en
Publication of JPH0714514B2 publication Critical patent/JPH0714514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学洗浄廃液の処理法に関し、更に詳しくは、
有機洗浄廃液及び防錆液を含む化学洗浄廃液を放流する
に際し、同廃液より有機物質(以下、CODと略記す
る)、重金属及び有害物質を除去する方法に関する。
The present invention relates to a method for treating a chemical cleaning waste liquid, and more specifically,
The present invention relates to a method for removing organic substances (hereinafter abbreviated as COD), heavy metals and harmful substances from a chemical cleaning waste liquid including an organic cleaning waste liquid and a rust preventive liquid when the chemical cleaning waste liquid is discharged.

〔従来の技術〕[Conventional technology]

火力プラント、化学プラントのボイラ、熱交換器等の金
属表面に付着した酸化物スケール(主にFe3O4)をくえ
ん酸、又はくえん酸とヒドロキシ酢酸とを混合した有機
酸に酸腐食抑制剤(以下インヒビターと略記する)を添
加した酸液で除去する酸洗浄及び酸洗後の金属表面を防
錆保護する防錆液処理を例えば火力プラントの貫流ボイ
ラに通用した場合の化学洗浄廃液の組成と性状の一例を
示せば第1表の如くである。
Acid corrosion inhibitor for citric acid or organic acid that is a mixture of citric acid and hydroxyacetic acid, which is oxide scale (mainly Fe 3 O 4 ) adhering to the metal surface of boilers of heat power plants, chemical plants, heat exchangers, etc. (Abbreviated as "inhibitor" below) Acid cleaning to remove with an acid solution added and the composition of chemical cleaning waste solution when rust preventive solution treatment to protect metal surface after rust prevention is applied to, for example, a once-through boiler of a thermal power plant Table 1 shows examples of such properties.

第1表から判るように処理前の混合廃液には有害成分で
あるCOD、溶解鉄、pH(遊離酸)及びりん酸塩などが多
量含有されており、また廃液の色も暗褐色を呈してい
る。このような化学洗浄廃液は公害上そのまま放流する
ことはできない。放流水質の基準値は第2表に例示され
るように地域自治体との公害防止協定などで決められた
規制値まで浄化処理することが必要である。
As can be seen from Table 1, the mixed waste liquid before treatment contains a large amount of harmful components such as COD, dissolved iron, pH (free acid) and phosphate, and the color of the waste liquid is dark brown. There is. Such chemical cleaning waste liquid cannot be discharged as it is because of pollution. As shown in Table 2, it is necessary to purify the discharge water quality up to the regulation value determined by the pollution prevention agreement with local governments.

従来は、このような化学洗浄廃液の処理法として、焼却
処理、湿式による化学的処理又は化学的処理と電解処理
との併用処理等があるが、湿式による化学的処理におい
ては、COD除去法として酸性域において過酸化水素水を
添加して酸化処理し、次いで苛性アルカリ及び水酸化カ
ルシウム等のアルカリを添加してpHを10.6〜13程度まで
上昇させて前記酸化処理において生成された酸化反応生
成物を難溶性化合物とすると同時に廃液中の金属イオン
も難溶性の水酸化物として沈殿生成させた後、沈降分離
する方法も知られている。
Conventionally, as a treatment method for such a chemical cleaning waste liquid, there is incineration treatment, wet chemical treatment or a combined treatment of chemical treatment and electrolytic treatment, but in the wet chemical treatment, as a COD removal method. Oxidation reaction product produced by the above-mentioned oxidation treatment by adding hydrogen peroxide water in the acidic region and then adding caustic alkali and alkali such as calcium hydroxide to raise the pH to about 10.6 to 13 There is also known a method in which is used as a sparingly soluble compound, and at the same time, metal ions in the waste liquid are precipitated and formed as sparingly soluble hydroxides, and then precipitated and separated.

〔本発明が解決しようとする問題点〕[Problems to be Solved by the Present Invention]

上述した従来のような方法では、金属イオン及びりん酸
塩はほぼ完全に除去できるが、過酸化水素水による酸化
処理においてCOD成分であるくえん酸の酸化分解が完全
でなく、一部くえん酸として残留があるため、CODの除
去に限界があり、第2表のCOD排水基準値を完全に満足
しないこと、又水酸化カルシウム及び苛性アルカリ等を
添加して廃液中の金属イオンを水酸化物として完全に沈
殿生成させる場合においてそのpHは10.6〜13程度まで上
昇させる必要があるため、沈降分離後の上澄液及び沈殿
物の脱水時の処理液の放流に際しては排水準値pH5.8〜
8.6の範囲になるよう調整する必要があるなどの欠点が
あつた。
With the conventional method described above, metal ions and phosphates can be almost completely removed, but the oxidative decomposition of citric acid, which is a COD component, is not complete during the oxidation treatment with hydrogen peroxide solution, and part of it is converted to citric acid. There is a limit to the removal of COD because it remains, and it does not completely satisfy the COD wastewater standard values shown in Table 2. Also, by adding calcium hydroxide and caustic alkali, metal ions in the waste liquid are converted to hydroxides. When the precipitate is completely formed, its pH must be raised to about 10.6 to 13.Therefore, when discharging the supernatant after sedimentation and the treatment liquid at the time of dehydration of the precipitate, the drainage standard value pH 5.8 to
There were some drawbacks, such as the need to adjust the range to 8.6.

〔発明の目的〕[Object of the Invention]

本発明は上記従来法の欠点を解決すべく廃液中のCODを
第2表の排水基準値内まで除去し、かつ排水基準値pH範
囲内で無色透明の処理水を得る化学洗浄廃液の処理方法
を提供しようとするものである。
In order to solve the drawbacks of the above conventional method, the present invention is a method for treating a chemical cleaning waste liquid in which COD in the waste liquid is removed to within the drainage standard value of Table 2 and colorless and transparent treated water is obtained within the drainage standard value pH range Is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はくえん酸又はくえん酸とヒドロキシ酢酸とを混
合した有機酸洗浄液及び防錆液を含む化学洗浄液の処理
において、同廃液に水酸化カルシウム、炭酸カルシウ
ム、硫酸カルシウム及び酸化カルシウム等のカルシウム
化合物をくえん酸に対し0.7当量以上添加し、次に硫酸
を添加してpHを3〜5.5の範囲に調整したのち、第一鉄
イオン(Fe2+)濃度として2,000ppm以上になるよう硫酸
第一鉄を添加し、さらに過酸化水素水を廃液中のCODに
対し、1当量以上好ましくは1.2当量添加して酸化分解
して蓚酸カルシウムを沈殿生成させ、次いで同廃液に水
酸化カルシウムを添加してpHを7〜8.6の範囲に調整し
て同廃液中の重金属を重金属水酸化物として沈殿生成さ
せた後、沈殿物を沈降分離しその上澄液はなんらpH調整
することなく、そのまま放流し、沈殿物はプレスフイル
ター又は遠心分離機等の脱水処理装置により脱水処理す
るようにした化学洗浄廃液の処理方法である。
In the treatment of a chemical cleaning solution containing citric acid or a mixture of citric acid and hydroxyacetic acid and an organic acid cleaning solution and a rust preventive solution, the waste solution contains calcium compounds such as calcium hydroxide, calcium carbonate, calcium sulfate and calcium oxide. After adding 0.7 equivalent or more to citric acid and then adding sulfuric acid to adjust the pH to the range of 3 to 5.5, ferrous sulfate (Fe 2+ ) concentration should be 2,000 ppm or more. Is added to the COD in the waste liquor in an amount of 1 equivalent or more, preferably 1.2 equivalents to oxidize and decompose to precipitate calcium oxalate, and then calcium hydroxide is added to the waste liquor to adjust the pH. Was adjusted to a range of 7 to 8.6 to precipitate the heavy metal in the waste liquid as heavy metal hydroxide, and then the precipitate was separated by sedimentation, and the supernatant liquid was discharged as it was without adjusting the pH, Object is a processing method of chemical cleaning waste solution to be dehydrated by the dehydration treatment apparatus such as a press filter or a centrifuge.

次に本発明の方法をさらに具体的に説明するため第1表
に示した組成及び性状の化学洗浄廃液を対象として述べ
る。
Next, in order to explain the method of the present invention more specifically, the chemical cleaning waste liquid having the composition and properties shown in Table 1 will be described.

まず廃液処理槽に酸洗浄廃液1容,酸洗浄後の水洗水廃
液2容,最後に防錆廃液1容を受け入れた混合廃液に水
酸化カルシウム,炭酸カルシウム,硫酸カルシウム及び
酸化カルシウム等のカルシウム化合物1種をくえん酸に
対し0.7当量以上添加し、次に硫酸を添加してpHを3〜
5.5の範囲に調整したのち、第一鉄イオン(Fe2+)濃度
として2,000ppm以上になるよう硫酸第一鉄を追加添加
し、さらに過酸化水素水を廃液中のCODに対し、当量以
上好ましくは1.2当量添加してCOD負荷成分である有機酸
(くえん酸,ヒドロキシ酢酸)、インヒビター及びヒド
ラジンを酸化分解し、次いで同廃液に水酸化カルシウム
を添加してpHを7〜8.6の範囲に調整する。このように
一連の薬品添加に当つてはエアレーシヨン等で廃液を強
制的に攪拌するのが液の均一化及び酸化反応速度を速め
る上で好ましい。
First, a mixed waste liquid containing 1 volume of the acid cleaning waste fluid, 2 volumes of the washing water waste fluid after acid cleaning, and 1 volume of the rust-preventing waste fluid in the waste liquid treatment tank was added to the calcium waste compound, such as calcium hydroxide, calcium carbonate, calcium sulfate and calcium oxide. Add one or more equivalents to citric acid, and then add sulfuric acid to adjust the pH to 3
After adjusting to a range of 5.5, ferrous sulfate is additionally added so that the ferrous ion (Fe 2+ ) concentration is 2,000 ppm or more, and hydrogen peroxide solution is more than equivalent to COD in the waste liquid. Is added 1.2 equivalents to oxidize and decompose COD-loaded organic acids (citric acid, hydroxyacetic acid), inhibitors and hydrazine, and then calcium hydroxide is added to the waste liquid to adjust the pH to the range of 7 to 8.6. . As described above, in the case of adding a series of chemicals, it is preferable to forcibly stir the waste liquid with an air lacing or the like in order to make the liquid uniform and accelerate the oxidation reaction rate.

次いで沈殿生成する重金属水酸化物(燐酸カルシウム)
及び蓚酸カルシウムはセツトリングを行なつて上澄液と
沈殿物(以下スラツジという)に完全分離し、上澄液と
スラツジの脱水処理液はなんらpH調整することなくその
まま放流し、スラツジは適宜な脱水処理装置により脱水
して焼却、その他の方法で処理する。
Heavy metal hydroxide (calcium phosphate) that then precipitates
And calcium oxalate is completely separated into supernatant and precipitate (hereinafter referred to as sludge) by settling, and the dehydrated solution of supernatant and sludge is discharged as it is without any pH adjustment. It is dehydrated by a dehydration treatment device, incinerated, and treated by other methods.

なお、上記廃液処理において過酸化水素の添加は廃液を
攪拌しながら均一にゆつくりと時間をかけるのが好まし
く、2〜3時間で注入するのが適当である。また添加後
の放置時間は15時間以上が好ましい。COD負荷成分であ
る有機酸(くえん酸,ヒドロキシ酢酸)インヒビター及
びヒドラジンが過酸化水素水によつて酸化分解し、COD
を除去する機構はインヒビターについては化学成分が明
らかではないので判らないが、くえん酸、ヒドロキシ酢
酸及びヒドラジンは下記の第1式乃至第3式に示す化学
反応によるためと考えられる。
In addition, in the above waste liquid treatment, it is preferable to add hydrogen peroxide while stirring the waste liquid uniformly and slowly, and it is suitable to inject it in 2 to 3 hours. The standing time after addition is preferably 15 hours or more. COD loading components such as organic acid (citric acid, hydroxyacetic acid) inhibitors and hydrazine are oxidatively decomposed by hydrogen peroxide solution, and COD
Although the mechanism of removing γ is not known because the chemical components of the inhibitor are not clear, it is considered that citric acid, hydroxyacetic acid and hydrazine are due to the chemical reactions shown in the following formulas 1 to 3.

過酸化水素は単独では酸化力は弱いが、酸性域で第一鉄
イオンとの混合溶液はフエントン試薬としてすぐれた酸
化効果のあることが知られており、第1式乃至第3式の
過酸化水素による酸化分解反応はFe2+が触媒として強く
働いていると考えられる。
Although hydrogen peroxide alone has a weak oxidizing power, it is known that a mixed solution with ferrous ion has an excellent oxidizing effect as a Fenton's reagent in the acidic region. It is considered that Fe 2+ acts strongly as a catalyst in the oxidative decomposition reaction by hydrogen.

ところが第1式のくえん酸の酸化分解においてはその酸
化率が完全でなく一部くえん酸として残留しており、CO
D除去に限界のあることを実験により確めた。すなわち
第1式の酸化率がほぼ100%であれば第1式で生成する
蓚酸(C2H2O4)は後で添加する水酸化カルシウム等によ
つて蓚酸カルシウム(CaC2O4)としてほぼ100%沈殿生
成するため、その上澄液のCODは数ppmまで低下するはず
であるが第1式の酸化率が完全でないためにCODとして4
0〜70ppm程度残留する。
However, in the oxidative decomposition of citric acid of the first formula, the oxidation rate is not perfect and part of it remains as citric acid.
It was confirmed by experiments that there is a limit to D removal. That is, if the oxidation rate of the first equation is almost 100%, the oxalic acid (C 2 H 2 O 4 ) produced by the first equation is converted to calcium oxalate (CaC 2 O 4 ) by calcium hydroxide added later. Since almost 100% of the precipitate is formed, the COD of the supernatant liquid should drop to a few ppm.
About 0 to 70 ppm remains.

そこで本発明では下記第4式の化学反応で示すように過
酸化水素水によるCOD酸化処理において、予め水酸化カ
ルシウム、酸化カルシウム、炭酸カルシウム、硫酸カル
シウム等のカルシウム化合物を添加しておくことによ
り、くえん酸の酸化分解率がほぼ100%まで達し、COD成
分を効果的に除去することを見いだした。
Therefore, in the present invention, by adding a calcium compound such as calcium hydroxide, calcium oxide, calcium carbonate, or calcium sulfate in advance in the COD oxidation treatment with hydrogen peroxide solution as shown in the chemical reaction of the following formula 4, It has been found that the oxidative decomposition rate of citric acid reaches almost 100% and effectively removes COD components.

即ち第4式の化学反応から判るようにカルシウム化合物
を添加しておくことにより、イオン化したカルシウムは
くえん酸が酸化分解して生成する蓚酸と瞬時に反応して
蓚酸カルシウム(CaC2O4)の沈殿を生成し、瞬時的には
蓚酸はなくなる状態となるため、化学平衡はくえん酸が
完全に酸化分解されるまで反応は右方向に進むためと考
えられる。COD酸化処理時における適正pH範囲は3〜5.5
が好ましく、pH3未満では蓚酸カルシウムの沈殿生成が
完全でなくなり、COD除去率は悪くなる。又pH5.5を越え
ると過酸化水素と第一鉄イオン(Fe2+)との相乗効果が
低下し、フエントン試薬としての酸化効率が悪くなる。
又COD酸化処理時における第一鉄イオン(Fe2+)の適正
濃度は2,000ppm以上好ましくは3,000ppm程度が最適であ
る。2,000ppm未満でもCODの酸化分解は進むが、CODが第
2表の排水基準値までは低下しない。なお、3,000ppmを
越えてもその効果は余り変化ない。実用に当たつての過
酸化水素の添加量は、廃液のCODを測定することにより
決めればよいが、第2表の排水基準値内に処理するため
にはCODに対し当量以上好ましくは1.2当量の添加が必要
である。本発明の処理法によれば化学洗浄廃液中のCO
D、重金属(主に鉄イオン)、SSなどの有害物質を第2
表の排水基準値内まで除去可能となり、また赤潮発生の
一要因物質といわれる燐酸塩の除去もほぼ完全にでき、
かつスラツジを沈降分離した上澄液も無臭で無色透明に
することができるので、処理水の放流に際しては何らpH
調整することなく、そのまま放流できる。
That is, as can be seen from the chemical reaction of formula 4, by adding a calcium compound, the ionized calcium reacts instantly with oxalic acid produced by the oxidative decomposition of citric acid to form calcium oxalate (CaC 2 O 4 ). It is thought that the chemical equilibrium is that the reaction proceeds to the right until the citric acid is completely oxidatively decomposed because a precipitate is formed and the oxalic acid disappears instantaneously. The proper pH range during COD oxidation is 3 to 5.5
If the pH is less than 3, the precipitation of calcium oxalate will not be complete and the COD removal rate will be poor. On the other hand, if the pH exceeds 5.5, the synergistic effect of hydrogen peroxide and ferrous ion (Fe 2+ ) will decrease, and the oxidation efficiency as a Fenton's reagent will deteriorate.
The optimum concentration of ferrous ion (Fe 2+ ) during COD oxidation is 2,000 ppm or more, preferably about 3,000 ppm. Even if it is less than 2,000 ppm, COD is oxidatively decomposed, but COD does not fall below the wastewater standard value in Table 2. Even if it exceeds 3,000 ppm, its effect does not change much. The amount of hydrogen peroxide added for practical use may be determined by measuring the COD of the waste liquid, but in order to treat it within the wastewater standard values in Table 2, it is equivalent to or more than COD, preferably 1.2 equivalents. Is required. According to the treatment method of the present invention, CO
D, heavy metals (mainly iron ions), SS and other harmful substances are second
It is possible to remove to within the drainage standard value in the table, and it is also possible to almost completely remove phosphate, which is one of the factors that cause red tide generation,
Moreover, since the supernatant liquid obtained by sedimentation and separation of sludge can be made odorless and colorless and transparent, no pH is required when discharging treated water.
It can be discharged as it is without any adjustment.

〔実施例〕〔Example〕

第3表に本発明の実施例を示す。 Table 3 shows examples of the present invention.

有機酸洗浄液及び防錆液を含む化学洗浄廃液の処理にお
いて下記のような試験を行なつた。この試験は第1表に
示した組成及び性状の化学洗浄廃液を対象として行なつ
たもので、(D−1),(D−2),(D−4)の3種
の混合廃液のそれぞれ1にカルシウム化合物をくえん
酸に対し0.7当量添加し、次に硫酸の添加量をかえてpH
を3〜5.5に調整したのち第一鉄イオン(Fe2+)濃度と
して2,000〜3,000ppmになるよう硫酸第一鉄を添加し、
攪拌しながらさらに過酸化水素水を廃液中のCOD分に対
し1〜1.2当量になるよう約1時間かけて添加し、2時
間攪拌を続けたのち、約15時間放置し、次いで攪拌しな
がら同廃液に水酸化カルシウムを添加してpHを7〜8.6
に調整して水酸化第二鉄、(燐酸カルシウム)及び蓚酸
カルシウム(酸化処理時に沈殿生成する)を完全に沈殿
生成させ、その処理水のCOD、溶解鉄、(燐酸)及びSS
(固形浮遊物)を測定し第3表の試験番号(2)〜
(7),(9)〜(15),(17)〜(23)の如き結果を
得た。又比較のため過酸化水素水による酸化処理時にカ
ルシウム化合物を添加しない場合の従来法についても行
なつた(試験番号(24〜27)。
The following tests were conducted in the treatment of the chemical cleaning waste liquid containing the organic acid cleaning liquid and the rust preventive liquid. This test was conducted for the chemical cleaning waste liquid having the composition and properties shown in Table 1, and each of the three kinds of mixed waste liquids (D-1), (D-2), and (D-4). Add 0.7 equivalents of calcium compound to citric acid, then change the amount of sulfuric acid and adjust the pH.
After adjusting to 3 to 5.5, ferrous sulfate is added so that the concentration of ferrous ion (Fe 2+ ) becomes 2,000 to 3,000 ppm,
While stirring, hydrogen peroxide solution was further added to the COD content in the waste liquid in an amount of 1 to 1.2 equivalents over about 1 hour, and stirring was continued for 2 hours, then left for about 15 hours, and then the same with stirring. Add calcium hydroxide to the waste liquid to adjust the pH to 7-8.6
To completely precipitate ferric hydroxide, (calcium phosphate) and calcium oxalate (which precipitate during the oxidation treatment), and then COD, dissolved iron, (phosphate) and SS of the treated water.
(Solid suspended matter) is measured and the test number (2) of Table 3 ~
Results such as (7), (9) to (15) and (17) to (23) were obtained. For comparison, a conventional method in which no calcium compound was added during the oxidation treatment with hydrogen peroxide solution was also conducted (test number (24 to 27)).

試験番号(1),(8)及び(16)の参考例は第1表に
示す混合廃液(D−1),(D−2)及び(D−4)で
廃液処理前の性状を示す。
The reference examples of the test numbers (1), (8) and (16) show the properties of the mixed waste liquids (D-1), (D-2) and (D-4) shown in Table 1 before the waste liquid treatment.

〔発明の効果〕 本発明により次のような効果が奏せられる。 [Effects of the Invention] The following effects are achieved by the present invention.

(1) 過酸化水素水によるCOD酸化処理時において予
め水酸化カルシウム、酸化カルシウム、炭酸カルシウ
ム、硫酸カルシウム等のカルシウム化合物を添加してお
くことによりくえん酸の酸化分解反応が顕著に促進され
COD成分を効果的に除去し得た。
(1) By adding calcium compounds such as calcium hydroxide, calcium oxide, calcium carbonate, and calcium sulfate in advance during COD oxidation treatment with hydrogen peroxide solution, the oxidative decomposition reaction of citric acid is significantly promoted.
The COD component could be removed effectively.

(2) 上記(1)の作用効果によりCOD酸化処理時の
適正pH範囲が3〜5.5と広くなつたので処理が容易にな
つた。
(2) Due to the action and effect of (1) above, the appropriate pH range during COD oxidation treatment is widened to 3 to 5.5, which facilitates the treatment.

(3) 酸化処理後のpH調整は排水基準値pH範囲内で無
色透明の処理水が得られるので放流に際しては何らpH調
整することなくそのまま放流可能となつた。
(3) Since pH adjustment after oxidation treatment gives colorless and transparent treated water within the drainage standard value pH range, it was possible to discharge the water as it was without adjusting the pH at all.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】くえん酸又はくえん酸とヒドロキシ酢酸と
を混合した有機酸洗浄液及び防錆液を含む化学洗浄廃液
の処理において、同廃液にカルシウム化合物をくえん酸
に対し0.7当量以上添加し、次に、硫酸を添加してpHを
3〜5.5の範囲に調整したのち、第一鉄イオン濃度とし
て2,000ppm以上になるよう硫酸第一鉄を添加し、さらに
過酸化水素水を廃液中のCODに対し1当量以上添加して
酸化分解して蓚酸カルシウムを沈殿生成させ次いで同廃
液に水酸化カルシウムを添加してpHを7〜8.6の範囲に
調整して同廃液中の重金属を重金属水酸化物として沈殿
生成させた後、沈殿物を沈降分離することを特徴とする
化学洗浄廃液の処理法。
1. In the treatment of a chemical cleaning waste solution containing citric acid or an organic acid cleaning solution containing citric acid and hydroxyacetic acid and a rust preventive solution, a calcium compound is added to the waste solution in an amount of 0.7 equivalent or more relative to citric acid. After adding sulfuric acid to adjust the pH to the range of 3 to 5.5, ferrous sulfate is added so that the ferrous ion concentration is 2,000 ppm or more, and hydrogen peroxide solution is added to COD in the waste liquid. On the other hand, 1 equivalent or more is added to oxidize and decompose to precipitate calcium oxalate, and then calcium hydroxide is added to the waste liquid to adjust the pH to the range of 7 to 8.6, and the heavy metal in the waste liquid is converted to heavy metal hydroxide. A method for treating a chemical cleaning waste liquid, which comprises depositing and then separating the precipitate.
JP62098519A 1987-04-23 1987-04-23 Chemical cleaning waste liquid treatment method Expired - Lifetime JPH0714514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62098519A JPH0714514B2 (en) 1987-04-23 1987-04-23 Chemical cleaning waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098519A JPH0714514B2 (en) 1987-04-23 1987-04-23 Chemical cleaning waste liquid treatment method

Publications (2)

Publication Number Publication Date
JPS63264193A JPS63264193A (en) 1988-11-01
JPH0714514B2 true JPH0714514B2 (en) 1995-02-22

Family

ID=14221900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098519A Expired - Lifetime JPH0714514B2 (en) 1987-04-23 1987-04-23 Chemical cleaning waste liquid treatment method

Country Status (1)

Country Link
JP (1) JPH0714514B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3665802B2 (en) * 1998-06-09 2005-06-29 大機エンジニアリング株式会社 Treatment method of chemical decontamination waste liquid
US6375850B1 (en) * 1999-01-21 2002-04-23 United States Enrichment Corp. Method for removing metals from a cleaning solution
JP2002119977A (en) * 2000-10-13 2002-04-23 Japan Organo Co Ltd Method and apparatus for cleaning polluted ground water
JP3656602B2 (en) * 2002-01-08 2005-06-08 九州電力株式会社 Treatment method of chemical decontamination waste liquid
JP6875168B2 (en) * 2017-03-28 2021-05-19 住友重機械エンバイロメント株式会社 Oxidation treatment equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124758A (en) * 1976-04-13 1977-10-20 Toa Gosei Chem Ind Method of treating waste water

Also Published As

Publication number Publication date
JPS63264193A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US4629570A (en) Removal of iron from chelant solutions
JPH0714514B2 (en) Chemical cleaning waste liquid treatment method
JPH0714515B2 (en) Chemical cleaning waste liquid treatment method
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
JPS62262789A (en) Method for removing phosphorus
JP2575878B2 (en) Chemical cleaning waste liquid treatment method
JPS59196796A (en) Treatment of liquid waste
JPS5940513B2 (en) Processing method for chemical cleaning waste liquid
JPS6111193A (en) Treatment of waste liquid of chemical cleaning
JPS5561997A (en) Treatment method for chemical cleaning waste water
JPH01199690A (en) Treatment of waste chemical cleaning liquid
JPS5853958B2 (en) Shuujin Suino Shiyorihouhou
JPH0361512B2 (en)
CA1186076A (en) Removal of copper from chelant solutions
JPS6111196A (en) Treatment of waste liquid of chemical cleaning
JPS5836695A (en) Treatment of waste liquid of chemical washing
JPS6055197B2 (en) Wastewater treatment method
CA1195443A (en) Removal of iron from chelant solutions
JPS59196797A (en) Treatment of liquid waste
JPS6099388A (en) Treatment of waste chemical washing liquid
JPS6154284A (en) Treatment of waste chemical washing liquid
JPS6099390A (en) Treatment of waste chemical washing liquid
JPS59120285A (en) Treatment of waste water containing fluorine component
SU979279A1 (en) Process for purifying effluents from phosphonic acids and their salts