JPH06171953A - Production of ferric chloride solution - Google Patents

Production of ferric chloride solution

Info

Publication number
JPH06171953A
JPH06171953A JP43A JP33279992A JPH06171953A JP H06171953 A JPH06171953 A JP H06171953A JP 43 A JP43 A JP 43A JP 33279992 A JP33279992 A JP 33279992A JP H06171953 A JPH06171953 A JP H06171953A
Authority
JP
Japan
Prior art keywords
iron
chloride solution
ferric chloride
iron powder
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshimoto
寛 吉本
Kanefusa Hara
金房 原
Hiroshi Takatomi
廣志 高富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP43A priority Critical patent/JPH06171953A/en
Publication of JPH06171953A publication Critical patent/JPH06171953A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/10Halides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a ferric chloride soln. suitable for use as an auxiliary water treating and flocculating agent by purifying an iron chloride soln. contg. impurity metals such as Ni. CONSTITUTION:Iron powder is added to an iron chloride soln. prepd. by dissolving iron as starting material in hydrochloric acid and/or a ferric chloride soln. and they are brought into a reaction to remove impurity metals in the iron chloride soln. The iron powder is then regenerated by removing the deposited impurity metals by washing with hydrochloric acid and the resulting purified soln. is oxidized to produce the objective ferric chloride soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水処理の凝集助剤とし
て用いられる塩化第二鉄溶液の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferric chloride solution used as a coagulation aid for water treatment.

【0002】[0002]

【従来の技術】従来の塩化第二鉄溶液の製造方法として
は、鉄粉や鉄屑等の鉄原料を塩酸あるいは塩化第二鉄溶
液に溶解して、まず塩化第一鉄溶液を生成させ、次いで
この塩化第一鉄溶液に塩素ガス等の酸化剤を加えて塩化
第二鉄溶液を生成する方法が知られている。
2. Description of the Related Art As a conventional method for producing a ferric chloride solution, an iron raw material such as iron powder or iron scraps is dissolved in hydrochloric acid or a ferric chloride solution to first produce a ferrous chloride solution, Then, a method is known in which an oxidizing agent such as chlorine gas is added to the ferrous chloride solution to produce a ferric chloride solution.

【0003】塩化第二鉄溶液を水処理の凝集助剤として
使用する場合、環境問題のためにクロムやニッケルをは
じめとする重金属や、その他の不純物濃度の少ないもの
が求められる。塩化第二鉄溶液中の不純物濃度は表1に
示す値以下と言われている。
When a ferric chloride solution is used as a coagulation aid for water treatment, heavy metals such as chromium and nickel and other substances having a low impurity concentration are required due to environmental problems. It is said that the concentration of impurities in the ferric chloride solution is below the value shown in Table 1.

【0004】[0004]

【表1】 [Table 1]

【0005】鉄原料中の不純物濃度が高い場合は、その
鉄原料を溶解して生成した塩化鉄溶液中の不純物濃度が
高くなる。しかし鉄原料として高純度のものを使用する
ことは原料コストが高くなり実用的でない。そこで生成
した塩化鉄溶液を精製して不純物濃度を低減する必要が
ある。
When the impurity concentration in the iron raw material is high, the impurity concentration in the iron chloride solution produced by dissolving the iron raw material becomes high. However, it is not practical to use a high-purity iron raw material because the raw material cost becomes high. Therefore, it is necessary to purify the iron chloride solution generated to reduce the impurity concentration.

【0006】例えば塩化第二鉄を使用する鉄−ニッケル
合金のエッチング廃液中のニッケルを除去する方法とし
ては、塩化第二鉄を塩化第一鉄に還元後、その溶液中に
鉄粉を添加して反応させ析出するニッケルを除去する方
法(特開昭62−191428号)が知られている。し
かしながら、その反応が進行するにつれて析出した鉄粉
の表面に強固なニッケル被膜を形成し反応を阻害する。
この様な場合、ニッケルで被覆された鉄粉を粉砕処理し
て鉄表面を更新させ鉄の反応を更に進行させる方法が提
案されている(特開平1−167235号)。この方法
は脱ニッケル工程以外に粉砕処理工程及びその設備を要
し操作が複雑になるという問題点がある。
[0006] For example, as a method for removing nickel in an etching waste liquid of an iron-nickel alloy using ferric chloride, ferric chloride is reduced to ferrous chloride, and then iron powder is added to the solution. A method (Japanese Patent Laid-Open No. 62-191428) for removing nickel deposited by a reaction is known. However, as the reaction progresses, a strong nickel coating is formed on the surface of the iron powder deposited, and the reaction is hindered.
In such a case, a method has been proposed in which iron powder coated with nickel is pulverized to renew the surface of the iron to further promote the reaction of iron (JP-A-1-167235). This method has a problem that the crushing process and its equipment are required in addition to the nickel removal process and the operation becomes complicated.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は特に複
雑な工程を要することなく、ニッケル等の金属で被覆さ
れる鉄粉の表面を更新してこれを活性化することにより
不純物濃度の低い塩化第二鉄溶液を製造する方法を提供
することにある。
The object of the present invention is to reduce the concentration of impurities by renewing and activating the surface of iron powder coated with a metal such as nickel without requiring a complicated process. It is to provide a method for producing a ferric chloride solution.

【0008】本発明はすなわち、鉄原料を塩酸及び/又
は塩化第二鉄溶液に溶解して生成する塩化鉄溶液に、鉄
粉を加えて反応させることにより塩化鉄溶液中の不純金
属を析出させ除去した後、精製液を酸化して塩化第二鉄
溶液を製造するにあたり、上記鉄粉の表面を間けつ的に
塩酸にて洗浄することを特徴とする塩化第二鉄溶液の製
法である。以下このプロセスを図1のフローシートによ
り順に説明する。
In the present invention, iron powder is added to an iron chloride solution produced by dissolving an iron raw material in hydrochloric acid and / or a ferric chloride solution to cause a reaction, thereby precipitating an impure metal in the iron chloride solution. After the removal, the purified solution is oxidized to produce a ferric chloride solution, and the surface of the iron powder is intermittently washed with hydrochloric acid, which is a method for producing a ferric chloride solution. Hereinafter, this process will be described in order with reference to the flow sheet of FIG.

【0009】(a)鉄粉や鉄屑等の鉄原料を塩酸や塩化
第二鉄溶液に溶解し塩化鉄溶液を生成する。塩酸のみを
使用した場合は鉄原料中に純鉄含量が多いと(1)式の
反応により水素ガスが発生して爆発等の危険がある。ま
た、鉄原料を塩化第二鉄と塩酸との混合溶液に溶解する
と、鉄原料中の純鉄は(2)式の反応により、また鉄原
料中の酸化鉄は(3)式の反応によりそれぞれ溶解して
塩化第一鉄を生成する。 Fe+2HCl→FeCl2 +H2 (1) Fe+2FeCl3 →3FeCl2 (2) FeO+2HCl→FeCl2 +H2 O (3) この場合、塩酸は酸化鉄を溶解するのに必要な量より少
し過剰に添加した方が溶解速度が早くなる。しかし塩酸
を大過剰に添加すると水素ガスの発生量が多くなる。よ
って塩酸の添加量は、必要量の1.05〜1.10倍が
適当である。また塩化第二鉄は、純鉄を溶解するのに必
要な量より過剰に添加した方が、水素ガスの発生が少な
く、しかも溶解速度が速くなる。またこの場合の溶解温
度は、40〜100℃、好ましくは60〜90℃であ
る。
(A) An iron raw material such as iron powder or iron scrap is dissolved in hydrochloric acid or ferric chloride solution to form an iron chloride solution. When only hydrochloric acid is used, if the pure iron content in the iron raw material is high, hydrogen gas is generated by the reaction of formula (1) and there is a risk of explosion or the like. Further, when the iron raw material is dissolved in a mixed solution of ferric chloride and hydrochloric acid, pure iron in the iron raw material is reacted by the equation (2), and iron oxide in the iron raw material is reacted by the equation (3). Dissolves to produce ferrous chloride. Fe + 2HCl → FeCl 2 + H 2 (1) Fe + 2FeCl 3 → 3FeCl 2 (2) FeO + 2HCl → FeCl 2 + H 2 O (3) In this case, it is better to add hydrochloric acid in a slightly excess amount than that necessary to dissolve iron oxide. Dissolution rate becomes faster. However, when hydrochloric acid is added in a large excess, the amount of hydrogen gas generated increases. Therefore, 1.05 to 1.10 times the required amount of hydrochloric acid is suitable. Further, when ferric chloride is added in excess of the amount required to dissolve pure iron, the generation of hydrogen gas is less and the dissolution rate is faster. The melting temperature in this case is 40 to 100 ° C, preferably 60 to 90 ° C.

【0010】(b)上記鉄原料の溶解工程で生成した塩
化鉄溶液は塩化第二鉄を含んだ塩化第一鉄溶液である。
なおこの溶液中の塩化第二鉄の量は、鉄原料中のFe(I
II)の量及び鉄原料を溶解する際に過剰に添加した塩化
第二鉄の量によって決まる。
(B) The iron chloride solution produced in the step of dissolving the iron raw material is a ferrous chloride solution containing ferric chloride.
The amount of ferric chloride in this solution was determined by the amount of Fe (I
It depends on the amount of II) and the amount of ferric chloride added in excess when dissolving the iron raw material.

【0011】この塩化鉄溶液を加熱し、鉄粉と反応させ
る。加熱温度は60℃以上、好ましくは80℃以上であ
る。鉄粉の粒径は0.3〜2mm程度が好ましい。この
場合、上記(1)及び(2)式の反応によりFe(III)
及び遊離酸と反応して鉄粉が消費され、塩化鉄溶液中の
塩化第二鉄も塩化第一鉄に還元される。この場合、鉄粉
と反応させる前の塩化第二鉄の濃度が高いと鉄粉の消費
量が多くなり、さらに鉄粉との反応熱が多量に発生し温
度制御が困難になるため塩化第二鉄濃度は少ない方が好
ましい。一方塩化鉄溶液中に含まれるニッケル等は酸化
還元電位が高いので通常の状態では鉄の溶解の際に還元
されて次式のように鉄粉の表面に析出する。 NiCl2 +Fe→FeCl2 +Ni (4)
This iron chloride solution is heated to react with iron powder. The heating temperature is 60 ° C or higher, preferably 80 ° C or higher. The particle size of the iron powder is preferably about 0.3 to 2 mm. In this case, Fe (III) is obtained by the reaction of the above equations (1) and (2).
And the iron powder is consumed by reacting with the free acid, and ferric chloride in the iron chloride solution is also reduced to ferrous chloride. In this case, if the concentration of ferric chloride before reacting with the iron powder is high, the consumption of the iron powder will increase, and more reaction heat with the iron powder will be generated, making it difficult to control the temperature. It is preferable that the iron concentration is low. On the other hand, nickel or the like contained in the iron chloride solution has a high oxidation-reduction potential, so under normal conditions, it is reduced when iron is dissolved and deposited on the surface of iron powder as shown in the following formula. NiCl 2 + Fe → FeCl 2 + Ni (4)

【0012】本工程の鉄粉の添加量は(a)工程で生成
する塩化鉄溶液中の第二鉄濃度,遊離酸濃度,ニッケル
等の不純金属濃度,液温度,反応時間によって異なる
が、通常、溶液1m3 に対し40〜1000kgが適当
である。鉄粉の表面に析出したニッケルは強固なニッケ
ル被膜を形成し反応を阻害する。
The amount of iron powder added in this step varies depending on the concentration of ferric iron in the iron chloride solution produced in step (a), the concentration of free acid, the concentration of impure metals such as nickel, the liquid temperature, and the reaction time. 40 to 1000 kg is suitable for 1 m 3 of the solution. Nickel deposited on the surface of the iron powder forms a strong nickel film and inhibits the reaction.

【0013】(c)本発明法においては鉄粉の活性が低
下する度に、塩酸にて鉄粉の表面を洗浄することによ
り、鉄粉表面の析出物を溶解し、表面を更新して活性を
上げることが大きな特徴である。すなわち本発明は、鉄
粉による精製→鉄粉表面の洗浄→活性化された鉄粉によ
る精製、という工程を繰り返す。また、鉄粉表面溶解の
後、鉄粉表面に析出していた不純物は、その塩酸洗浄液
より回収できる。
(C) In the method of the present invention, every time the activity of the iron powder decreases, the surface of the iron powder is washed with hydrochloric acid to dissolve the precipitates on the surface of the iron powder and renew the surface to activate the iron powder. It is a big feature to raise. That is, the present invention repeats the steps of purification with iron powder → washing of iron powder surface → purification with activated iron powder. Further, after the iron powder surface is dissolved, the impurities deposited on the iron powder surface can be recovered from the hydrochloric acid cleaning solution.

【0014】塩化鉄溶液中のクロム等の不純物は、酸化
還元電位が鉄より低いので鉄の溶解の際に還元されない
が、鉄粉による精製時に遊離酸が消費されてpHが上昇
し、pHが1以上になると水酸化物となって沈澱する。
この水酸化物は精製後の塩化鉄溶液を鉄粉より濾別する
ことによって除かれる。金属不純物のうち亜鉛やマンガ
ンは酸化還元電位が鉄より低くさらに、水酸化物の溶解
度が比較的大きいのでpH1以上でも除去し難い。その
ため、精製用鉄粉には、亜鉛やマンガンの含量が低い物
を使用することが望ましい。
Impurities such as chromium in the iron chloride solution are not reduced when the iron is dissolved because they have a lower oxidation-reduction potential than iron, but the free acid is consumed during the purification with iron powder, and the pH rises. When it is 1 or more, it becomes hydroxide and precipitates.
This hydroxide is removed by filtering the purified iron chloride solution from the iron powder. Among the metallic impurities, zinc and manganese have lower redox potential than iron and further have a relatively high solubility of hydroxide, so that they are difficult to remove even at pH 1 or higher. Therefore, it is desirable to use iron powder for refining that has a low content of zinc and manganese.

【0015】(d)以上の工程で精製された塩化第一鉄
を主体とする塩化鉄溶液は、塩素ガス等の酸化剤と接触
させて塩化第一鉄を塩化第二鉄に酸化した後、少量の塩
酸及び水を加えてpH調整及び濃度調整を行い、塩化第
二鉄溶液の製品とする。その一部を循環させて前記
(a)工程の鉄原料の溶解用として使用することも可能
である。
(D) The iron chloride solution containing mainly ferrous chloride purified in the above steps is contacted with an oxidizing agent such as chlorine gas to oxidize ferrous chloride to ferric chloride, Add a small amount of hydrochloric acid and water to adjust the pH and the concentration to obtain a ferric chloride solution product. It is also possible to circulate a part thereof and use it for melting the iron raw material in the step (a).

【0016】本発明法は塩化鉄溶液中に含まれるニッケ
ル,クロム等の不純金属濃度を数十ppmより数ppm
まで低減するのに特に有効であり、生成される塩化第二
鉄溶液は水処理の凝集助剤として好適である。
According to the method of the present invention, the concentration of impure metals such as nickel and chromium contained in the iron chloride solution is from several tens of ppm to several ppm.
Is particularly effective in reducing the water content to a low level, and the resulting ferric chloride solution is suitable as a coagulation aid for water treatment.

【0017】[0017]

【実施例】以下、実施例,比較例により本発明を具体的
に説明する。なお例中%は重量基準である。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. In the examples,% is based on weight.

【0018】(実験例…Ni,Crの除去試験)鉄原料
を塩酸と塩化第二鉄との混合溶液に溶解させて生成した
塩化鉄溶液(塩化第一鉄26.1%,塩化第二鉄13.
1%,遊離塩酸濃度0.3%)70gに鉄粉(平均粒径
1mm,純鉄含量88%)15gを加え、反応させた後
のCr,Ni濃度を図2,3に示す。反応温度は40,
60,80℃、反応時間は0.5〜6時間であった。反
応温度の上昇につれてNi,Crの除去速度が速くなり
80℃で急激に速度が早くなっているのが判る。
(Experimental example: Ni and Cr removal test) An iron chloride solution (ferric chloride 26.1%, ferric chloride) produced by dissolving an iron raw material in a mixed solution of hydrochloric acid and ferric chloride. 13.
2 and 3 show the Cr and Ni concentrations after reacting with 70 g of 1%, free hydrochloric acid concentration of 0.3%) and 15 g of iron powder (average particle size 1 mm, pure iron content of 88%). The reaction temperature is 40,
The reaction time was 60 to 80 ° C. and 0.5 to 6 hours. It can be seen that as the reaction temperature rises, the removal rate of Ni and Cr increases, and the rate rapidly increases at 80 ° C.

【0019】実施例 鉄粉や鉄屑等の鉄原料を塩酸と塩化第二鉄との混合溶液
に溶解させて生成した塩化鉄溶液(塩化第一鉄26%,
塩化第二鉄13%,遊離塩酸濃度0.3%)70gに鉄
粉(平均粒径1mm,鉄含量88%)30gを加え、8
0℃で1時間反応させた。pH2になった塩化第一鉄溶
液を濾過して第1回目精製液とした後、残った鉄粉を1
0%塩酸25mlと30℃,15分間反応させた。塩酸
を濾過した後、さらに残った鉄粉と塩化鉄溶液(上記と
同組成)70gとを、80℃,1時間反応させた。再び
pH2になった塩化第一鉄溶液を濾過して第2回目精製
液とした。表2に第1回目と第2回目との精製液のC
r,Ni濃度を示す。塩酸による洗浄により、第2回目
においても第1回目と同様にCr,Ni濃度が低下して
いた。
EXAMPLE An iron chloride solution (ferrous chloride 26%, produced by dissolving an iron raw material such as iron powder and iron scraps in a mixed solution of hydrochloric acid and ferric chloride)
Add 30 g of iron powder (average particle size 1 mm, iron content 88%) to 70 g of ferric chloride (13%, free hydrochloric acid concentration 0.3%), and add 8
The reaction was carried out at 0 ° C for 1 hour. After the ferrous chloride solution having a pH of 2 was filtered to make the first purified solution, the remaining iron powder was
The mixture was reacted with 25 ml of 0% hydrochloric acid at 30 ° C for 15 minutes. After the hydrochloric acid was filtered, the remaining iron powder was reacted with 70 g of an iron chloride solution (having the same composition as above) at 80 ° C. for 1 hour. The ferrous chloride solution having a pH of 2 again was filtered to obtain a second purified solution. Table 2 shows C of the first and second purified liquids.
The r and Ni concentrations are shown. By the washing with hydrochloric acid, the Cr and Ni concentrations were lowered in the second time as well as in the first time.

【0020】[0020]

【表2】 [Table 2]

【0021】第1回目と第2回目の精製液を併せ153
grに塩素8.1gを反応させた後、少量の塩酸及び水
を加えて塩化第二鉄溶液94.5g(FeCl3 39
%,HCl0.2%)を得た。
The first and second purified liquids are combined 153
After reacting 8.1 g of chlorine with gr, a small amount of hydrochloric acid and water were added to 94.5 g of a ferric chloride solution (FeCl 3 39
%, HCl 0.2%).

【0022】比較例Comparative example

【表3】 実施例と同様の塩化鉄溶液,鉄粉を使用し、第1回目精
製後に鉄粉の塩酸による洗浄を行わなかった以外は全く
実施例と同様の条件で塩化鉄溶液の精製を行った結果を
表3に示す。第2回目は第1回目と比べNi,Crの除
去量が約60%減少した。
[Table 3] The results of purifying the iron chloride solution under exactly the same conditions as in the example except that the same iron chloride solution and iron powder as those in the example were used and the iron powder was not washed with hydrochloric acid after the first purification were obtained. It shows in Table 3. In the second time, the amount of Ni and Cr removed was reduced by about 60% compared to the first time.

【0023】[0023]

【発明の効果】本発明法によれば、塩化鉄溶液中に含ま
れるニッケル等の不純金属を鉄粉により析出,除去する
に際し、鉄粉表面に析出したニッケルを塩酸で洗浄除去
せしめて鉄粉表面の活性を保持し、これを繰り返し行う
ことにより効率よく塩化鉄溶液の精製を行うことができ
る。さらに酸化工程を経ることにより水処理の凝集助剤
として好適な塩化第二鉄溶液が得られる。
According to the method of the present invention, when the impure metal such as nickel contained in the iron chloride solution is deposited and removed by the iron powder, the nickel deposited on the surface of the iron powder is washed away with hydrochloric acid to remove the iron powder. By keeping the activity of the surface and repeating this, the iron chloride solution can be efficiently purified. Further, through the oxidation step, a ferric chloride solution suitable as a coagulation aid for water treatment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の実施例を示すフローシート。FIG. 1 is a flow sheet showing an example of the method of the present invention.

【図2】実験例の塩化鉄溶液中に含まれるクロムの鉄粉
による除去効果を示すグラフ。
FIG. 2 is a graph showing an effect of removing chromium contained in an iron chloride solution of an experimental example by iron powder.

【図3】実験例の塩化鉄溶液中に含まれるニッケルの鉄
粉による除去効果を示すグラフ。
FIG. 3 is a graph showing an effect of removing iron contained in a ferric chloride solution of nickel by an iron powder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄原料を塩化第二鉄溶液及び/又は塩酸
に溶解して生成する塩化鉄溶液に、鉄粉を加えて反応さ
せることにより塩化鉄溶液中の不純金属を析出させ除去
した後、精製液を酸化して塩化第二鉄溶液を製造するに
あたり、上記鉄粉の表面を間けつ的に塩酸にて洗浄する
ことを特徴とする塩化第二鉄溶液の製法。
1. After the impure metal in the iron chloride solution is precipitated and removed by adding iron powder to an iron chloride solution produced by dissolving an iron raw material in a ferric chloride solution and / or hydrochloric acid to cause a reaction. A method for producing a ferric chloride solution, characterized in that the surface of the iron powder is intermittently washed with hydrochloric acid when the purified solution is oxidized to produce a ferric chloride solution.
【請求項2】 鉄粉表面に析出する不純金属がニッケル
である請求項1に記載の製法。
2. The production method according to claim 1, wherein the impure metal deposited on the surface of the iron powder is nickel.
JP43A 1992-12-14 1992-12-14 Production of ferric chloride solution Pending JPH06171953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06171953A (en) 1992-12-14 1992-12-14 Production of ferric chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06171953A (en) 1992-12-14 1992-12-14 Production of ferric chloride solution

Publications (1)

Publication Number Publication Date
JPH06171953A true JPH06171953A (en) 1994-06-21

Family

ID=18258938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06171953A (en) 1992-12-14 1992-12-14 Production of ferric chloride solution

Country Status (1)

Country Link
JP (1) JPH06171953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6923947B2 (en) 2003-06-13 2005-08-02 Pvs Technologies, Inc. Method of making ferric chloride with reduced amounts of hydrochloric acid for water treatment
JP2008285366A (en) * 2007-05-18 2008-11-27 Jfe Chemical Corp Iron chloride solution, and method for producing iron oxide
US7476324B2 (en) 2000-07-14 2009-01-13 Ferrate Treatment Technologies, Llc Methods of synthesizing a ferrate oxidant and its use in ballast water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476324B2 (en) 2000-07-14 2009-01-13 Ferrate Treatment Technologies, Llc Methods of synthesizing a ferrate oxidant and its use in ballast water
US7820025B2 (en) 2000-07-14 2010-10-26 Ferrate Treatment Technologies, Llc Methods of synthesizing an oxidant and applications thereof
US6923947B2 (en) 2003-06-13 2005-08-02 Pvs Technologies, Inc. Method of making ferric chloride with reduced amounts of hydrochloric acid for water treatment
US7820119B2 (en) 2003-06-13 2010-10-26 Pvs Technologies, Inc. System and method of making ferric chloride with reduced amounts of hydrochloric acid for water treatment
JP2008285366A (en) * 2007-05-18 2008-11-27 Jfe Chemical Corp Iron chloride solution, and method for producing iron oxide

Similar Documents

Publication Publication Date Title
JP5495418B2 (en) Method for recovering manganese
WO1999014403A1 (en) Process for making manganese
US4278463A (en) Process for recovering cobalt
JPH05255713A (en) Preparation of copper powder
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
JPH06171953A (en) Production of ferric chloride solution
US4263109A (en) Precipitation of chloride from zinc sulphate solution
EP0935005B1 (en) Process for treating metallic dust, mostly oxididised waste, in particular galvanising dust and/or steelworks smoke
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
JP3343964B2 (en) Continuous production of ferric chloride solution
JP4240982B2 (en) Method for producing cobalt solution with low manganese concentration
KR100227519B1 (en) Hydrometallurgical treatment for the purification of waelz oxides through lixiviation with sodium carbonate
JPH03223429A (en) Method for recovering silver from silver-containing nitric acid solution
JP3597907B2 (en) Regeneration method of ferric chloride solution
CN1348020A (en) Method of eliminating nickel and heavy metal ion from waste ferric chloride liquid after etching or pickling
JPH08176692A (en) Recovery of platinum group from spent catalyst
JP3666337B2 (en) How to recover palladium
US5951954A (en) Method for manufacturing clear brine fluids from impure zinc feedstock
JP2937184B1 (en) How to remove platinum and palladium
JPS62192588A (en) Removing method for chromium and nickel contained in iron chloride aqueous solution
JP2023124643A (en) Method for purifying aqueous solution of sodium tungstate
JP2764887B2 (en) Method for recovering valuable materials from copper-containing ion solution
JPS63183138A (en) Refining method for metallic gallium
JP2000345357A (en) Method for treating aged electroless nickel plating solution
JPH05125562A (en) Treatment of waste etchant of ferric chloride solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Effective date: 20080423

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120516

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130516

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250