JPH05125562A - Treatment of waste etchant of ferric chloride solution - Google Patents

Treatment of waste etchant of ferric chloride solution

Info

Publication number
JPH05125562A
JPH05125562A JP3285030A JP28503091A JPH05125562A JP H05125562 A JPH05125562 A JP H05125562A JP 3285030 A JP3285030 A JP 3285030A JP 28503091 A JP28503091 A JP 28503091A JP H05125562 A JPH05125562 A JP H05125562A
Authority
JP
Japan
Prior art keywords
iron
ferric chloride
liquid
waste liquid
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3285030A
Other languages
Japanese (ja)
Inventor
Norihisa Yamamoto
範壽 山本
Koichi Yabuta
晃一 薮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3285030A priority Critical patent/JPH05125562A/en
Publication of JPH05125562A publication Critical patent/JPH05125562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PURPOSE:To separate and recover heavy metals as much as possible and to regenerate a ferric chloride soln. by treating the mixture of the waste etchant from the production of electronic parts and the waste etchant of a shadow mask that is the waste ferric chloride soln. contg. the valuable heavy metals such as copper, chromium and nickel as the object. CONSTITUTION:A waste ferric chloride soln. is added with a specified amt. of iron material and controlled to pH<1.5 to deposit and remove copper in the first stage. The soln, is mixed with a specified amt. of iron material and controlled to pH 1 to 3 to deposit and remove chromium in the second stage. The soln. is mixed with a specified amt. of the iron powder produced from Hoeganes ore and controlled to pH<3.5 to deposit and remove nickel in the third stage. The soln. treated in the third stage is chlorinated to regenerate ferric chloride in the fourth stage. Consequently, the valuable heavy metals are separated and removed, and the ferric chloride soln. is regenerated at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エッチング処理に使用
した塩化第2鉄液の廃液中から、この廃液に含まれる重
金属、特に銅,クロム及びニッケルを除去し回収する方
法、並びにこれに加えてエッチング廃液を塩化第2鉄液
として再生する処理法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing and recovering heavy metals, particularly copper, chromium and nickel contained in a ferric chloride solution used for etching treatment from the waste solution, and to The present invention relates to a treatment method for regenerating an etching waste liquid as a ferric chloride liquid.

【0002】[0002]

【発明の背景と従来の技術】近年、プリント配線板のエ
ッチング処理やカラーテレビにおけるシャドウマスクの
エッチング処理、あるいはICのリードフレーム等のエ
ッチング処理に使用される塩化第2鉄液(以下単にこれ
らのエッチング処理液を「塩鉄液」と略記する)は、電
子工業等の発展に伴ってその使用量が年々急速に増大し
ており、これに伴って大量に生ずるエッチング廃液を処
理する技術、あるいはより積極的に処理後の液を再生利
用する技術の開発が重要となってきている。
BACKGROUND OF THE INVENTION In recent years, ferric chloride liquid (hereinafter simply referred to as "ferric chloride solution") used for etching treatments of printed wiring boards, shadow masks of color televisions, or IC lead frames. The etching treatment liquid is abbreviated as “salt iron liquid”), the amount of use of which is rapidly increasing year by year with the development of the electronic industry, etc., and a technology for treating a large amount of etching waste liquid generated with this, or It has become important to develop a technology for more actively recycling the treated liquid.

【0003】ところで塩化第2鉄液をエッチング処理に
使用することによって生ずる廃液の処理(以下「塩鉄廃
液」と略記する)や再生処理に伴って、次のような問題
がある。その一つはエッチング処理という操作の性質
上、被エッチング材料から溶出してその廃液に含まれる
物質(重金属)がエッチング対象材料の種類により異な
っていて、しかもある種の重金属の処理方法を他の種類
の重金属の処理方法に同様に適用できることは稀である
ことと、廃液に含まれる重金属が一種類でなく複数種
類、例えば二種類(例えば銅とニッケルの両方)が含ま
れる場合や更に多種類の重金属が含まれる場合に、単一
種類の重金属(例えば銅やクロム,ニッケル)の除去,
回収に有効な方法を用いても適当な除去ができないこと
が多い。
By the way, there are the following problems with the treatment of waste liquid generated by using ferric chloride liquid for etching treatment (hereinafter abbreviated as "salt iron waste liquid") and regeneration treatment. One is that due to the nature of the etching process, the substances (heavy metals) eluted from the material to be etched and contained in the waste liquid differ depending on the type of material to be etched. It is rare that it can be applied to the same type of heavy metal treatment method, and that the waste liquid contains multiple types of heavy metals instead of one type, for example, two types (for example, both copper and nickel) or more types. Removal of a single type of heavy metal (eg copper, chromium, nickel), if
Even if a method effective for recovery is used, appropriate removal is often impossible.

【0004】更にまた、エッチング処理後の塩鉄廃液の
処理におけるもう一つの重要な問題は、含まれる重金属
を除去する際において、鉄が併せて析出することを抑制
しないと、スラッジの増量とか、再生する塩化第2鉄液
が少なくなって工業的な意味での有効な処理を実現でき
ないという点もある。
Furthermore, another important problem in the treatment of the salt iron waste liquid after the etching treatment is the increase of sludge if the precipitation of iron is not suppressed when the heavy metals contained therein are removed. There is also a point that the amount of ferric chloride solution to be regenerated decreases and effective treatment in an industrial sense cannot be realized.

【0005】このような種々の問題をもつために塩鉄廃
液の処理には従来から様々な提案がされている。廃液中
の重金属除去の方法として知られる従来技術としては、
古くは、エッチング廃液中の重金属をアルカリ中和法に
よって、除去しようとする重金属を水酸化物として沈殿
させ濾過して除去する方法が知られていて、これは、処
理が簡単で、廃液中の重金属の殆どを除去できる点で優
れている。しかし反面、沈澱中の重金属が複数種類あっ
てもこれらを分離,回収できないために有価金属の回収
ができないこととや、アルカリの消費量が多くスラッジ
量も多いという難点がある。
Due to these various problems, various proposals have hitherto been made for treating salt iron waste liquid. As a conventional technique known as a method for removing heavy metals in waste liquid,
There is a long-known method of precipitating heavy metals in an etching waste liquid as hydroxides by an alkali neutralization method and then filtering and removing the heavy metals. It is excellent in that most of the heavy metals can be removed. On the other hand, however, even if there are multiple types of heavy metals in the precipitate, they cannot be separated and recovered, so valuable metals cannot be recovered, and the amount of alkali consumed is large and the amount of sludge is large.

【0006】また電子工業分野に関連して、フォトレジ
ストで表面を覆った基板に回路パターンを露光しエッチ
ング処理する際に生ずる銅を含む廃液を、金属鉄や鉄製
フィルターで析出除去するイオン交換法と言われる処理
技術(特開昭47−29236号や特開昭48−671
37号など)が知られているが、この方法は、銅のエッ
チング廃液以外には適用できない。
Further, in the field of electronics industry, an ion exchange method is used for depositing and removing with a metallic iron or iron filter a waste liquid containing copper generated when a circuit pattern is exposed and etched on a substrate whose surface is covered with a photoresist. Processing technology called "(JP-A-47-29236 and JP-A-48-671)"
No. 37) is known, but this method can be applied only to copper etching waste liquid.

【0007】更に、電解により陰極側でエッチング廃液
中の重金属を析出させる方法も提案(例えば特開昭51
−508368号)されている。これは、上記アルカリ
中和法のようなアルカリの多量添加が必要ないことや、
廃液中の有価金属を回収出来る点で優れているが、反
面、陽極で有毒なCl2 ガスが発生するという問題と、
対象廃液が鉄イオンを多量に含んだ塩鉄廃液であるた
め、イオン化傾向の関係から鉄よりも卑な金属(例えば
クロム)は除去できないという欠点がある。この問題改
善のため、陽極側に苛性ソーダなどのアルカリを添加し
てCl2 を中和し、陰極側で重金属を析出させる隔膜電
解法(特開昭51−23447号、あるいは特開昭53
−34639号)も提案されているが、この方法でも鉄
元素よりも卑な金属元素の除去ができないだけでなく、
エッチング廃液の再生効率が低くくなるという別の問題
があり、工業的には実施されていない。更にまた、この
隔膜電解法を改良した技術として隔膜に陰イオン交換膜
を使用する方法も提案(例えば特開昭61−10409
2号)されているが、実施技術としては設備費等の面で
難がある。
Further, a method of depositing heavy metals in the etching waste liquid on the cathode side by electrolysis is also proposed (for example, JP-A-51).
No. 508368). This is because it is not necessary to add a large amount of alkali as in the alkali neutralization method,
It is excellent in that it can collect valuable metals in the waste liquid, but on the other hand, the problem that toxic Cl 2 gas is generated at the anode,
Since the target waste liquid is a salt iron waste liquid containing a large amount of iron ions, there is a disadvantage in that a metal that is less base than iron (for example, chromium) cannot be removed due to the ionization tendency. In order to solve this problem, an alkali such as caustic soda is added to the anode side to neutralize Cl 2 and a heavy metal is deposited on the cathode side by a diaphragm electrolysis method (JP-A-51-23447 or JP-A-5353).
No. 34639) has also been proposed, but this method not only cannot remove metal elements that are less base than iron elements,
Another problem is that the regeneration efficiency of the etching waste liquid becomes low, and it has not been industrially implemented. Furthermore, as an improved technique of this diaphragm electrolysis method, a method of using an anion exchange membrane for the diaphragm is also proposed (for example, JP-A-61-140909).
No. 2) has been implemented, but there is a problem in terms of equipment costs, etc. as an implementation technology.

【0008】また更に、塩鉄廃液中から鉄イオンを選択
的に抽出する溶媒抽出法に分類される方法(特開昭53
−90423号、特開昭59−196723号、特開昭
59−219471号など)も提案されている、この方
法はZn,Cr,Ni等の重金属の除去効率に優れてい
るが、抽出に相当量の水を必要として再生液の濃度が薄
くなるため塩鉄液の再生法としては適さず、また排水処
理設備が必要になるため工業的な実施には不向きである
し、重金属回収のためには更に回収設備が必要になると
いう欠点がある。
Furthermore, a method classified into a solvent extraction method for selectively extracting iron ions from a salt iron waste liquid (Japanese Patent Laid-open No. Sho 53-53)
No. 90423, JP-A-59-196723, JP-A-59-219471, etc.), this method is excellent in the removal efficiency of heavy metals such as Zn, Cr and Ni, but is equivalent to extraction. It requires a large amount of water and the concentration of the regenerating solution becomes thin, so it is not suitable as a method for regenerating salt iron solution, and it is not suitable for industrial implementation because it requires wastewater treatment equipment. Has the drawback that it requires additional recovery equipment.

【0009】以上のように塩鉄液の再生を主目的として
従来提案されている種々のエッチング廃液の処理技術
は、夫々、技術上の欠点や未だ不十分な点が数多く指摘
され、工業的な実施には適していない。
As described above, each of the various etching waste liquid treatment techniques that have been proposed so far mainly for the purpose of regenerating the salt iron liquid has been pointed out to have many technical drawbacks and insufficient points. Not suitable for implementation.

【0010】上記のような従来技術とは別に、塩鉄液の
エッチング廃液の再生と、これに含まれる有価な重金属
を析出,沈殿,吸着等により回収する方法(なお上記し
た種々の従来技術と区別するために、以下の説明では
「金属鉄還元法」という)が提案され、除去効率に優れ
ている特質と併わせて注目されている。
In addition to the above-mentioned conventional techniques, a method of regenerating an etching waste liquid of a salt iron solution and recovering valuable heavy metals contained therein by precipitation, precipitation, adsorption, etc. In order to make a distinction, in the following description, a “metal iron reduction method” has been proposed, and has been attracting attention together with its characteristic of excellent removal efficiency.

【0011】金属鉄還元法の操作原理は、塩化第2鉄の
エッチング廃液に対し鉄源を添加することにより還元作
用を与える工程と、この還元で鉄と他の重金属を沈殿析
出させる工程とを組み合わせたものである。しかし実際
の反応としては、析出,沈殿,共沈,吸着等々が複雑に
絡み合っているために、その反応機構は必ずしも明らか
となっておらず、またこの技術が適用されるエッチング
廃液は、塩化第2鉄とこれが還元された塩化第1鉄は勿
論の他、被エッチング材料(例えばIC基板やシャドウ
マスク等)成分に由来した重金属塩化物を含み、鉄と共
存する特定重金属のイオン化傾向や化学的性質に違いが
あり、全ての重金属について共通した処理が適用できな
い。このため「金属鉄還元法」に関しては、塩鉄液のエ
ッチング廃液が一種類の重金属を含む場合や、複数種類
の重金属を含む場合の夫々につき、従来から様々な提案
がされている。
The operation principle of the metallic iron reduction method is that a step of giving a reducing action by adding an iron source to an etching waste liquid of ferric chloride and a step of precipitating and precipitating iron and other heavy metals by this reduction are carried out. It is a combination. However, in the actual reaction, the reaction mechanism has not been clarified because precipitation, precipitation, coprecipitation, adsorption, etc. are complicatedly intertwined, and the etching waste liquid to which this technique is applied is not a chloride solution. Not only diiron and ferrous chloride reduced by it, but also heavy metal chlorides derived from the components of the material to be etched (for example, IC substrate and shadow mask) are included, and the ionization tendency and chemical nature of the specific heavy metal coexisting with iron. Due to differences in properties, common treatment cannot be applied to all heavy metals. Therefore, regarding the “metal iron reduction method”, various proposals have heretofore been made regarding the case where the etching waste liquid of the salt iron solution contains one kind of heavy metal or the case where it contains a plurality of kinds of heavy metals.

【0012】従来提案されている金属還元法のうちで、
鉄以外に他の一種の重金属を含有する塩鉄廃液を対象と
したものでは、他の重金属がクロムであるもの(特公昭
60−8979号、特公昭60−8980号)、他の重
金属が銅であるもの(特公昭60−34501号)、他
の重金属がニッケルであるもの(特開昭62−1914
28号)の提案があり、また鉄以外に二種以上の重金属
が含有される塩鉄廃液を対象としたものとしては、特公
昭57−37533号、特公昭56−36127号、特
公昭61−44814号、特公昭63−66908号が
ある。また特に二種類の重金属を特定したものとして
は、クロムとニッケルに関する特開昭62−19255
8号、銅とニッケルに関する特開平1−167235号
の提案がある。
Of the conventionally proposed metal reduction methods,
In the waste iron salt solution containing one kind of heavy metal other than iron, the other heavy metal is chromium (Japanese Patent Publication No. 60-8979, Japanese Patent Publication No. 60-8980), and the other heavy metal is copper. (Japanese Patent Publication No. 60-34501) and another heavy metal is nickel (Japanese Patent Laid-Open No. 62-1914).
No. 28), and as a target for a salt iron waste liquid containing two or more kinds of heavy metals other than iron, JP-B-57-37533, JP-B-56-36127, and JP-B-61- 44814 and Japanese Patent Publication No. 63-66908. In addition, as a specification of two kinds of heavy metals, Japanese Patent Application Laid-Open No. 62-19255 relates to chromium and nickel.
No. 8 and JP-A-1-167235 concerning copper and nickel are proposed.

【0013】[0013]

【発明が解決しようとする課題】ところで、例えば上記
のような回路パターンのエッチングを行なう電子部品製
造分野における廃液として生じ、またカラーテレビにお
けるシャドウマスクのエッチング処理によって生ずる塩
鉄廃液について、これらの各分野で生ずる廃液毎に個別
に処理して塩鉄液を再生する設備を各々設けることは経
済的に有利でないから、種々の分野における塩鉄廃液を
一括処理する技術が実現できれば工業的にはきわめて有
益である。
By the way, salt iron waste liquids which are generated as waste liquids in the field of electronic component manufacturing for etching circuit patterns as described above and which are generated by the etching treatment of shadow masks in color televisions, are described below. Since it is not economically advantageous to provide equipment for individually regenerating salt iron liquid by treating each waste liquid generated in each field, it would be extremely industrially difficult if a technology for collectively treating salt iron waste liquid in various fields could be realized. Be beneficial.

【0014】しかし銅基板エッチングにより溶出した塩
鉄廃液と、ステンレス,ニッケル合金(42アロイ,ア
ンバー)等の金属材料のエッチングにより溶出した塩鉄
廃液を一括し、例えば銅,クロム及びニッケルの三種の
有価な重金属を数百乃至数万ppmのレベルで含有する
塩鉄廃液からこれらを分離回収し、しかも塩鉄液を再生
する方法の提案は従来されていない。
However, the salt iron waste liquid eluted by the etching of the copper substrate and the salt iron waste liquid eluted by the etching of the metal material such as stainless steel and nickel alloy (42 alloy, amber) are collectively contained, for example, three kinds of copper, chromium and nickel. No proposal has been made so far for a method of separating and recovering a valuable salt metal from a salt iron waste liquid containing several hundred to tens of thousands ppm and further regenerating the salt iron liquid.

【0015】これは、塩鉄廃液に含まれる銅,クロム及
びニッケルという有価金属は、一種類の重金属を含む塩
鉄廃液から金属還元法でこれを除去する上述の従来法を
単純に組合わせても、回収される個々の重金属の分離が
困難で、塩鉄液の再生処理を工業的な規模で効果的に実
現できないからである。
This is because the valuable metals such as copper, chromium and nickel contained in the salt iron waste liquid are removed from the salt iron waste liquid containing one kind of heavy metal by the metal reduction method in a simple combination. This is also because it is difficult to separate the individual heavy metals to be recovered, and the regenerating treatment of the salt iron solution cannot be effectively realized on an industrial scale.

【0016】例えばクロムを選択的に除去する上記特公
昭60−8979号の方法では、第2鉄イオンの添加
と、pH<1の廃液を苛性ソーダ添加によりpH1.7
〜4.5に調整するという煩雑な操作を必要とするだけ
でなく、廃液が銅を同時に含むような場合に同法を適用
すると銅とクロムの分離回収が困難で、銅とクロムを含
む塩鉄廃液からこれらを分離して回収することが出来な
い。また塩鉄廃液に鉄材を存在させると共にpH1.5
〜3.5になるまで酸素を吹き込むことで酸化鉄を生成
させる特公昭60−8980号の方法でも同様の問題が
ある。
For example, in the method of Japanese Patent Publication No. 60-8979, in which chromium is selectively removed, the ferric ion is added and the waste liquid having a pH of <1 is added with caustic soda to give a pH of 1.7.
It is difficult to separate and recover copper and chromium by applying the same method when the waste liquid contains copper at the same time as well as the complicated operation of adjusting to 4.5. These cannot be separated and recovered from the iron waste liquid. In addition, when iron material is present in the salt iron waste liquid, the pH is 1.5.
The method of Japanese Examined Patent Publication No. Sho 60-8980, in which iron oxide is generated by blowing oxygen until it reaches ~ 3.5, has the same problem.

【0017】pH2〜4の条件で銅を析出除去する特公
昭60−34501号の方法やニッケルを除去対象とす
る特開昭62−191428号の方法も、同時に他の重
金属が含まれる場合を考慮していない。
In the method of Japanese Patent Publication No. 60-34501 for depositing and removing copper under the conditions of pH 2 to 4, and the method of Japanese Patent Laid-Open No. 62-191428 for removing nickel, the case where other heavy metals are contained at the same time is taken into consideration. I haven't.

【0018】このように、従来の塩鉄廃液から一種類の
特定重金属を除去する方法は、鉄材の投入と、pH調整
の操作により鉄以外の不純物を除去する点において共通
しているが、複数の重金属を別々に分離して廃液中から
除去回収する方法には適用できないし、これらの個々の
方法を組み合わせても、目的とする複数重金属の個別回
収はできない。
As described above, the conventional methods for removing one kind of specific heavy metal from the salt iron waste liquid are common in that the impurities other than iron are removed by introducing the iron material and adjusting the pH. This method cannot be applied to the method of separately separating heavy metals from the waste liquid and recovering them from the waste liquid, and even if these individual methods are combined, the target multiple heavy metals cannot be individually recovered.

【0019】また、複数種類の重金属の個別回収という
観点から例えばクロムとニッケルを含有する塩鉄廃液の
再生処理法として提案されている特開昭62−1925
58号の方法では、pH1程度でクロムを除去した後に
ニッケルを除去する二段工程を行なうが、更に銅が含ま
れている場合が考慮されておらず、同方法をクロム,ニ
ッケル及び銅を含む塩鉄廃液の処理に適用すると、特に
銅とクロムの分離回収が出来ない。一方銅とニッケルを
含有する塩鉄廃液の分離回収法として提案されている特
開平1−167235号では、pH0〜1で銅を先に析
出除去した後、鉄材を粉砕する操作を行ないながらニッ
ケル除去を行なう方法が提案されているが、工業的な設
備で強度な撹拌を行なうことは適当でないし、クロムを
併せて含有する場合についても考慮されていない。
Further, from the standpoint of individually recovering a plurality of types of heavy metals, a method for regenerating a salt iron waste liquid containing chromium and nickel, for example, has been proposed.
In the method of No. 58, a two-step process of removing nickel after removing chromium at a pH of about 1 is performed, but the case where copper is further included is not taken into consideration, and the method includes chromium, nickel and copper. When applied to the treatment of salt iron waste liquid, it is not possible to separate and recover copper and chromium. On the other hand, in JP-A-1-167235 proposed as a method for separating and recovering a salt iron waste liquid containing copper and nickel, nickel is first removed by depositing and removing copper at pH 0-1 and then crushing the iron material. However, it is not appropriate to perform strong stirring with an industrial facility, and no consideration is given to the case of containing chromium together.

【0020】多数種類の重金属を含有する塩鉄廃液を再
生する場合に、重金属を別々に分離回収しながら塩鉄液
を再生することの難しさは、多数種類の重金属を含む塩
鉄廃液を処理する目的の提案、例えば特公昭61−44
814号、特公昭57−37533号、特公昭56−3
6127号、特公昭63−66908号等の方法の提案
において、「金属鉄還元法」を用いながらこれらの重金
属を濾滓として一括除去する方式が採用されていること
からも理解される。
When regenerating a salt iron waste liquid containing a large number of heavy metals, it is difficult to regenerate the salt iron liquid while separating and recovering the heavy metals separately. Proposal for the purpose of, for example, Japanese Patent Publication No. 61-44
No. 814, Japanese Patent Publication No. 57-37533, Japanese Patent Publication No. 56-3
It can be understood from the proposals of the methods such as No. 6127 and Japanese Examined Patent Publication No. 63-66908 that a method of collectively removing these heavy metals as a filter while using the "metal iron reduction method" is adopted.

【0021】本発明者は、以上のような従来技術の現状
に鑑み、代表的には、電子工業分野から生ずる塩鉄廃液
とシャドーマスクのエッチング処理から生ずる塩鉄廃液
を混合して一括処理する場合に考えられる銅,クロム及
びニッケルを含有する塩鉄廃液を対象として、有価重金
属をできるだけ別々に分離して回収しながら、塩鉄液を
効率よく再生することを課題として鋭意検討を重ねた。
In view of the current state of the art as described above, the present inventor typically mixes a salt iron waste liquid generated from the electronic industry field and a salt iron waste liquid generated from the etching process of a shadow mask and collectively processes them. For the salt iron waste liquor containing copper, chromium and nickel, which is considered to be the case, we have conducted intensive studies with the objective of efficiently regenerating the salt iron liquor while separating and recovering valuable heavy metals as separately as possible.

【0022】かかる観点から提供される本発明の目的
は、銅,クロム及びニッケルを含有する塩化第2鉄のエ
ッチング廃液から、高純度でこれらの重金属を出来るだ
け分離しながら、かつ高収率で塩化第2鉄液を再生でき
る方法を提供することにある。また本発明の別の目的
は、上記エッチング廃液から有価な金属の再利用を可能
とするように銅,クロム及びニッケルを分離して回収す
ることに加えて、塩鉄廃液を塩鉄液に再生する費用を安
価にできる方法を提供することにある。
The object of the present invention, which is provided from such a viewpoint, is to separate these heavy metals in high purity from an etching waste liquid of ferric chloride containing copper, chromium and nickel with high purity and with high yield. An object of the present invention is to provide a method capable of regenerating ferric chloride solution. Another object of the present invention is to separate and recover copper, chromium and nickel from the above-mentioned etching waste liquid so that a valuable metal can be reused, and to recycle the salt iron waste liquid into a salt iron liquid. It is to provide a method that can reduce the cost of doing.

【0023】[0023]

【課題を解決する手段】上記目的を達成するために本発
明者は、特許請求の範囲の各請求項に記載したエッチン
グ廃液の処理法を内容とする本発明を完成した。
In order to achieve the above object, the inventor of the present invention has completed the present invention including a method for treating an etching waste liquid described in each of the claims.

【0024】本発明の方法は、その第1段階として塩鉄
廃液中に存在する塩化第2鉄を還元して塩化第1鉄にす
ると共に液中の銅イオンを還元して金属銅として析出さ
せるために、反応に必要十分な量の鉄材を該エッチング
廃液に投入して加熱撹拌する操作を行ない、クロムを沈
殿させることなく金属銅を析出して固液分離する第一の
工程と、第一の工程を経た液に鉄材を投入して、液中の
クロムを沈澱させて固液分離する第二の工程と、第二工
程を経た液に鉄材を投入しニッケルを沈澱させ、これを
固液分離する第三の工程と、第三の工程を経た液を塩素
化して塩化第2鉄液として再生する工程とからなる。
In the method of the present invention, as the first step, ferric chloride present in the salt iron waste liquid is reduced to ferrous chloride, and copper ions in the liquid are reduced to precipitate as metallic copper. In order to do so, a sufficient amount of iron material necessary for the reaction is put into the etching waste liquid and heated and stirred, and a first step of precipitating metallic copper without solidifying chromium to perform solid-liquid separation, The iron material is added to the liquid that has undergone the process of (2) to precipitate the chromium in the liquid and the solid-liquid separation is performed, and the iron material is added to the liquid that has passed the second step to precipitate the nickel, and this is solid-liquid separated. It comprises a third step of separating and a step of chlorinating the liquid which has passed through the third step and regenerating it as ferric chloride liquid.

【0025】上記方法における第三の工程は、液に投入
する鉄材を一度に全量を加え実施することも可能である
が、全反応時間の始めと約中間の時点に2分割してある
いはそれ以上に分割して投入することが好ましい。2分
割する割り合いは、限定されるものではないが、使用す
る鉄材を概ね均等に分割して用いることができる。添加
時点を二つに分ける場合の鉄材の添加の時期は、上述の
ように第三の工程の全処理期間における初期と中間(例
えば全処理期間の40〜60%程度の時間経過時点)が
好ましく選択される。
The third step in the above method can be carried out by adding the total amount of iron material to be added to the liquid at one time, but it is divided into two parts at the beginning of the total reaction time and about an intermediate time point or more. It is preferable to divide the mixture into two and add them. The ratio of dividing into two is not limited, but the iron material to be used can be used after being divided substantially evenly. When the addition time is divided into two, the addition timing of the iron material is preferably at the beginning and the middle of the entire treatment period of the third step as described above (for example, when 40 to 60% of the total treatment period has elapsed). To be selected.

【0026】第三の工程において添加される鉄材は、液
に投入する前に塩化第2鉄液に接触させてから投入する
ことが好ましい。これによって投入する鉄材の表面が活
性化されて反応の進行が迅速,円滑となるからである。
The iron material added in the third step is preferably added after being brought into contact with the ferric chloride solution before being added to the solution. This activates the surface of the iron material to be charged, and the reaction progresses quickly and smoothly.

【0027】本発明の方法において、添加した鉄材と塩
化第2鉄を反応させて塩化第1鉄に変える第一の工程で
使用する鉄材は、金属鉄であれば特に限定されるもので
はなく、一般的には表面積の大きな鉄片が経済的であ
る。但し過度な反応を抑制するためには鉄粉は表面積が
大き過ぎて好ましくない。したがってこの第一の工程で
は好ましくは鉄片が使用され、これをエッチング廃液に
含まれている塩化第2鉄を塩化第1鉄に還元するのに必
要な量、及び該エッチング廃液に含まれている銅イオン
を金属銅に還元するのに必要な量の合計に対し当モルが
用いられる。この鉄片を添加した液は、50〜90℃、
好ましくは70〜90℃の温度で撹拌しながら、pH<
1.5、好ましくはpH0.5〜1.2に保って反応を
1〜15時間、好ましくは1〜5時間程度行なわせ、ニ
ッケル,クロムの沈澱を抑制し、液中銅イオンの99%
以上を下記式に従って析出(脱Cu反応),回収するこ
とができる。
In the method of the present invention, the iron material used in the first step of reacting the added iron material with ferric chloride to convert it to ferrous chloride is not particularly limited as long as it is metallic iron. Iron pieces with a large surface area are generally economical. However, in order to suppress the excessive reaction, the iron powder has an excessively large surface area, which is not preferable. Therefore, iron pieces are preferably used in the first step, and the iron pieces are contained in the etching waste liquid in an amount necessary for reducing ferric chloride contained in the etching waste liquid to ferrous chloride. An equimolar amount is used relative to the total amount required to reduce copper ions to metallic copper. The liquid to which this iron piece is added is 50 to 90 ° C,
While stirring at a temperature of preferably 70 to 90 ° C., pH <
The reaction is carried out for 1 to 15 hours, preferably 1 to 5 hours while maintaining the pH at 1.5, preferably 0.5 to 1.2, to suppress the precipitation of nickel and chromium, and 99% of the copper ion in the liquid.
The above can be deposited (de-Cu reaction) and recovered according to the following formula.

【0028】 還元:2FeCl3 +Fe → 3FeCl2 析出:Fe+Cu2+ → Fe2++Cu↓ 上記反応においてpHが1.5を越えると、クロムの沈
殿を生ずる傾向となるので好ましくない。この第一の工
程においては、銅は、添加した鉄片の表面を覆うように
生ずるために反応継続が阻害される傾向があるので、鉄
片表面に析出した銅に剥離作用を与えて鉄表面を露出さ
せる程度の撹拌を行なうことが望ましい。上記の反応は
空気雰囲気あるいは窒素ガス雰囲気下で行なうことがで
きる。
Reduction: 2FeCl 3 + Fe → 3FeCl 2 Precipitation: Fe + Cu 2+ → Fe 2+ + Cu ↓ If the pH exceeds 1.5 in the above reaction, precipitation of chromium tends to occur, which is not preferable. In this first step, copper tends to interfere with the continuation of the reaction because it occurs so as to cover the surface of the added iron piece, so the copper precipitated on the iron piece surface is exposed to expose the iron surface. It is desirable to stir to such an extent that The above reaction can be carried out in an air atmosphere or a nitrogen gas atmosphere.

【0029】第一の工程で濾別回収された銅含有スラッ
ジは銅の含有量が高く有価物として工業的に再利用でき
る。
The copper-containing sludge collected by filtration in the first step has a high copper content and can be industrially reused as a valuable resource.

【0030】本発明方法の第二の工程は、新たな鉄材を
液に添加し、pHを1〜3に保って行なわれる。この第
二の工程で使用される鉄材は金属鉄であれば特に限定さ
れるものではなく、表面積の大きな鉄片が経済的である
が、上記第一工程の場合と同様の理由で鉄粉でなく鉄片
を用いることが好ましい。使用する鉄材の量はエッチン
グ廃液中に含有されている銅とクロムの量にもよるが、
通常第一の工程で使用される鉄材の量に比べて半分程度
ないしそれより若干少ない程度で足りる。鉄片を添加し
た液は、pHを1〜3に保ち、50〜90℃、好ましく
は70〜90℃の温度で、撹拌しながら反応を1〜15
時間、好ましくは1〜5時間程度行なわせニッケル以外
のクロムの沈澱(脱Cr反応)を行なわせることがで
き、濾別により、液中クロムの95%以上をスラッジと
して除去することができる。液のpHが1未満ではクロ
ムの除去率が低下する傾向となるとともに、pHが3を
越えると塩鉄液のロスが増す傾向となり好ましくない。
The second step of the method of the present invention is carried out by adding new iron material to the liquid and keeping the pH at 1 to 3. The iron material used in the second step is not particularly limited as long as it is metallic iron, and iron pieces having a large surface area are economical, but are not iron powder for the same reason as in the case of the first step. It is preferable to use iron pieces. The amount of iron material used depends on the amount of copper and chromium contained in the etching waste liquid,
Usually, about half or a little less than the amount of iron material used in the first step is sufficient. The liquid to which the iron pieces are added keeps the pH at 1 to 3, and the reaction is performed at a temperature of 50 to 90 ° C., preferably 70 to 90 ° C. with stirring for 1 to 15
The precipitation of chromium other than nickel (removing Cr reaction) can be performed for about 1 to 5 hours, and 95% or more of chromium in the liquid can be removed as sludge by filtration. If the pH of the solution is less than 1, the chromium removal rate tends to decrease, and if the pH exceeds 3, loss of the salt iron solution tends to increase, which is not preferable.

【0031】この反応は空気雰囲気あるいは窒素ガス雰
囲気下で行なうことができる。
This reaction can be carried out in an air atmosphere or a nitrogen gas atmosphere.

【0032】本発明方法の第三の工程においては、新た
な鉄材を液に添加することに加えて、また塩化第2鉄液
を添加する。鉄材としては、多大な量を必要とすること
や粉砕処理を行なうことの無駄をなくすために鉄粉を使
用することが好ましく、特に多孔質,針状結晶で表面積
が大である鉄粉が適している。本発明者の検討によれば
ヘガネス鉱より製造された多孔質,針状結晶の鉄粉(M
−100)が最適である。電解鉄粉はこれと同等の効果
をもたらすが非常に高価であるためコストがかさみ工業
的には有利でない。
In the third step of the method of the present invention, in addition to adding new iron material to the solution, ferric chloride solution is also added. As the iron material, it is preferable to use iron powder in order to avoid a large amount of waste and waste of performing crushing treatment. Especially, iron powder having porous, needle-like crystals and a large surface area is suitable. ing. According to the study of the present inventor, porous and needle-shaped iron powder (M
-100) is the most suitable. Electrolytic iron powder brings about the same effect as this, but it is very expensive and therefore costly and not industrially advantageous.

【0033】本発明の第三の工程は鉄材を予め塩化第2
鉄溶液で処理した後添加する次のような態様でも実施で
きる。すなわち反応促進剤として使用される所定量の塩
化第2鉄液(又は塩酸)と、この(塩化第2鉄液を第1
鉄に変えるに必要な鉄材)+(ニッケルに対して1倍モ
ルの鉄材)とを、予め別容器に混合反応しておいた物を
銅,クロムを除去した濾液に仕込み、液をpH<3.5
に保ち、液温度70℃となるように例えば14時間加熱
撹拌し、その後、同量,同操作を行なって更に例えば1
0時間反応させた液を濾過することによりニッケルを液
中から除去できる。得られたニッケルスラッジはニッケ
ル純度が高く有価にて売却できる。撹拌は鉄材同士の衝
突で鉄材表面に析出したニッケルを除去し、新たな鉄材
表面を出させる上で重要である。また反応雰囲気は、溶
解防止のために酸素を遮断することが必要である。また
このニッケル除去工程では反応促進剤(塩化第2鉄液又
は塩酸)を使用することが重要である。これは塩化第1
鉄のみの液では反応が不十分で、反応促進剤を使用しな
い場合はニッケル除去率は低く、また鉄材表面のよりよ
い活性化が達成できないためである。
In the third step of the present invention, the iron material is preliminarily subjected to the second chloride treatment.
It can also be carried out in the following manner, in which it is added after being treated with an iron solution. That is, a predetermined amount of ferric chloride solution (or hydrochloric acid) used as a reaction accelerator and this (ferric chloride solution
(The iron material necessary for converting to iron) + (1 time mole of iron material relative to nickel) is mixed and reacted in a separate container in advance, and the reaction mixture is charged into a filtrate from which copper and chromium have been removed. .5
And the mixture is heated and stirred for 14 hours, for example, so that the liquid temperature becomes 70 ° C.
Nickel can be removed from the solution by filtering the solution reacted for 0 hours. The nickel sludge obtained has high nickel purity and can be sold at a valuable value. Agitation is important for removing nickel deposited on the surface of iron materials by collision between iron materials and exposing a new surface of iron material. In addition, the reaction atmosphere needs to block oxygen to prevent dissolution. It is important to use a reaction accelerator (ferric chloride solution or hydrochloric acid) in this nickel removal step. This is the first chloride
This is because the reaction is insufficient with a solution containing only iron, the nickel removal rate is low when a reaction accelerator is not used, and better activation of the surface of the iron material cannot be achieved.

【0034】また仕込方法は予め反応促進剤と鉄材を別
容器で混合しておいたスラリーを反応器に仕込む方法が
好ましく採用される。
As a charging method, a method of charging a slurry in which a reaction accelerator and an iron material are mixed in a separate container in advance to a reactor is preferably adopted.

【0035】塩化第2鉄液単独では除去されたニッケル
が再溶解する。特に鉄材の添加を少なくとも2回に分け
て行なう場合には、後段の後仕込みの際にはこの仕込み
方法が必要とされる。この二分割仕込方法は、一括仕込
みよりもニッケル除去率が向上するため特に好ましい。
With the ferric chloride solution alone, the removed nickel is redissolved. In particular, when the addition of the iron material is performed at least twice, this charging method is required in the subsequent post-charging. This two-division charging method is particularly preferable because the nickel removal rate is improved as compared with batch charging.

【0036】以上の工程を経て得た濾液は、塩素化を行
なうことで塩化第2鉄液となり、再使用できる。
The filtrate obtained through the above steps becomes a ferric chloride liquid by chlorination and can be reused.

【0037】[0037]

【実施例】以下本発明を実施例により更に詳細に説明す
る。
EXAMPLES The present invention will now be described in more detail with reference to examples.

【0038】実施例1 (1)第一の工程 塩化第2鉄液(20.3%)、塩化第1鉄液(17.5
%)、銅(10850ppm)、クロム(606pp
m)、ニッケル(15317ppm)を含むpH≦0の
塩鉄廃液1500gに、鉄片67gを仕込み、70℃で
3時間加熱撹拌した後、定量濾紙5Bで濾過した。
Example 1 (1) First step Ferric chloride solution (20.3%), ferrous chloride solution (17.5)
%), Copper (10850 ppm), chromium (606 pp)
m) and 1500 g of a salt iron waste liquor containing nickel (15317 ppm) and having a pH ≦ 0, 67 g of iron pieces were charged, and the mixture was heated and stirred at 70 ° C. for 3 hours, and then filtered with a quantitative filter paper 5B.

【0039】濾液中の銅,クロム,ニッケルの含有量は
それぞれ(4ppm),(582ppm),(1495
2ppm)であり、pH=1.4であった。
The contents of copper, chromium and nickel in the filtrate were (4 ppm), (582 ppm) and (1495), respectively.
2 ppm) and pH = 1.4.

【0040】この工程で、クロムの沈殿を抑制しつつ銅
の99%以上を回収することができた。
In this step, 99% or more of copper could be recovered while suppressing the precipitation of chromium.

【0041】(2)第二の工程 次にこの濾液1522gに、塩化第2鉄液10gと、新
たな鉄片22gを仕込み、70℃で3時間加熱撹拌後、
定量濾紙5Bで濾過した。濾液中の銅,クロム,ニッケ
ルの含有量はそれぞれ(略0),(34ppm),(1
4380ppm)で、pH=2.7であった。
(2) Second Step Next, 1522 g of this filtrate was charged with 10 g of ferric chloride solution and 22 g of new iron pieces, and after heating and stirring at 70 ° C. for 3 hours,
It was filtered with quantitative filter paper 5B. The contents of copper, chromium, and nickel in the filtrate are (approximately 0), (34 ppm), (1
4380 ppm) and pH = 2.7.

【0042】この工程で、廃液中のクロムの殆どを回収
できた。
In this step, most of the chromium in the waste liquid could be recovered.

【0043】(3)第三の工程 次にこの濾液727gに、予め別容器にて塩化第2鉄液
35gと、M−100鉄粉(ヘガネス鉱より製造された
多孔質、針状結晶の鉄粉,150メッシュ;ヘガネス・
ガデリウス社製)13gを混合しておいた物を仕込み、
窒素雰囲気にて、70℃で14時間加熱撹拌し、14時
間経過後、再び予め別容器にて塩化第2鉄液35gと上
記M−100鉄粉13gを混合しておいたものを仕込
み、更に10時間反応して終了とし、5B定量濾紙で濾
過した。濾液中の銅,クロム,ニッケルの含有量はそれ
ぞれ(0ppm),(略0ppm),(48ppm)
で、pH=3.4であった。
(3) Third Step Next, to 727 g of this filtrate, 35 g of ferric chloride solution and M-100 iron powder (porous, needle-like crystal iron produced from Hegane's ore) in a separate container were added in advance. Powder, 150 mesh;
Charged with 13 g of Gadelius Co., Ltd.
In a nitrogen atmosphere, the mixture was heated and stirred at 70 ° C. for 14 hours, and after 14 hours, a mixture of 35 g of ferric chloride solution and 13 g of M-100 iron powder was charged again in another container. After reacting for 10 hours, the reaction was terminated, and the mixture was filtered through 5B quantitative filter paper. The contents of copper, chromium and nickel in the filtrate are (0ppm), (approximately 0ppm) and (48ppm), respectively.
And pH = 3.4.

【0044】この工程で、廃液中のニッケルの殆どを回
収できた。
In this step, most of the nickel in the waste liquid could be recovered.

【0045】(4)第四の工程 第三の工程を経た液を既知の方法で塩素化し、エッチン
グ処理用の塩化第2鉄液を再生した。
(4) Fourth Step The solution obtained in the third step was chlorinated by a known method to regenerate the ferric chloride solution for etching treatment.

【0046】この液の組成は、下記表1の通りであっ
た。
The composition of this liquid is shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】なお第三の工程において、塩化第2鉄液を
使用しないで同様の操作を行なったところ、得られた濾
液中のニッケル含有量は7478ppmであった。
When the same operation was carried out in the third step without using the ferric chloride solution, the nickel content in the obtained filtrate was 7478 ppm.

【0049】実施例2 実施例1の第三の工程において使用する鉄粉をKIP2
25M(100>メッシュ:川崎製鉄社製)に変更した
以外は実施例1に準じて操作を行なった。再生塩化第2
鉄液の組成は下記表2の通りであった。
Example 2 The iron powder used in the third step of Example 1 was KIP2.
The operation was carried out in the same manner as in Example 1 except that 25M (100> mesh: manufactured by Kawasaki Steel Co., Ltd.) was used. Regenerated chloride second
The composition of the iron solution is shown in Table 2 below.

【0050】[0050]

【表2】 [Table 2]

【0051】なお第三の工程において塩化第2鉄液を使
用しない場合に得られた濾液中のニッケルは9778p
pmであった。
In the third step, nickel in the filtrate obtained when the ferric chloride solution was not used was 9778 p.
It was pm.

【0052】実施例3 塩化第2鉄(19.9%)、塩化第1鉄(18.1
%)、銅(12050ppm)、クロム(1930pp
m)、ニッケル(13400ppm)を含む塩鉄廃液7
00gに、鉄片31gを仕込み70℃で3時間反応後、
濾過して銅を除去した濾液を得、次に鉄片10gを仕込
み70℃で3時間反応後、濾過して更にクロムを除去し
た濾液を得た。
Example 3 Ferric chloride (19.9%), ferrous chloride (18.1%)
%), Copper (12050 ppm), chromium (1930 pp)
m), salt iron waste liquid containing nickel (13400 ppm) 7
Into 00g, 31g of iron pieces were charged, and after reacting at 70 ° C for 3 hours,
A filtrate from which copper was removed by filtration was obtained, and then 10 g of iron pieces were charged and reacted at 70 ° C. for 3 hours and then filtered to obtain a filtrate from which chromium was further removed.

【0053】この濾液(銅;0ppm,クロム;21p
pm,ニッケル;13520ppmを含む)650g
に、35%塩酸10gと鉄粉(M−100)11gを仕
込み70℃で加熱撹拌した。24時間経過後、予め別容
器にて上記35%塩酸10gと鉄粉(M−100)11
gを混合処理しておいた物を更に仕込み、24時間反応
を継続した。
This filtrate (copper: 0 ppm, chromium: 21 p
pm, nickel; including 13520 ppm) 650 g
Then, 10 g of 35% hydrochloric acid and 11 g of iron powder (M-100) were charged, and the mixture was heated and stirred at 70 ° C. After 24 hours, 10 g of the above 35% hydrochloric acid and iron powder (M-100) 11 in a separate container in advance.
The mixture obtained by mixing g was further charged and the reaction was continued for 24 hours.

【0054】反応終了後、定量濾紙5Bで濾過して得た
濾液中のニッケルは64ppmであった。
After completion of the reaction, nickel in the filtrate obtained by filtering with quantitative filter paper 5B was 64 ppm.

【0055】実施例4 実施例1と同一条件で第一の工程及び第二の工程の反応
を行ない、銅及びクロムを除去した濾液を得た。
Example 4 The first step and the second step were carried out under the same conditions as in Example 1 to obtain a filtrate from which copper and chromium were removed.

【0056】この濾液(銅;0ppm,クロム;24p
pm,ニッケル;14550ppmを含む)650g
に、44%塩化第2鉄液70gと鉄粉(M−100)2
4gを仕込み70℃で24時間加熱撹拌した。
This filtrate (copper: 0 ppm, chromium: 24 p
pm, nickel; including 14550ppm) 650g
70g of 44% ferric chloride solution and iron powder (M-100) 2
4 g was charged and the mixture was heated with stirring at 70 ° C. for 24 hours.

【0057】反応終了後、定量濾紙5Bにて濾過を行な
い、得られた濾液中のニッケルは1164ppmであっ
た。
After completion of the reaction, filtration was carried out with a quantitative filter paper 5B, and the amount of nickel in the obtained filtrate was 1164 ppm.

【0058】[0058]

【発明の効果】本発明方法によれば、銅,クロム及びニ
ッケルを含有する塩化第2鉄のエッチング廃液から、こ
れらの有価な重金属を再利用できるように分離して回収
でき、また塩化第2鉄液を低コストに再生できるという
効果がある。
According to the method of the present invention, these valuable heavy metals can be separated and recovered from the etching waste liquid of ferric chloride containing copper, chromium and nickel so as to be reused. There is an effect that the iron liquid can be regenerated at low cost.

【0059】また本発明方法によれば、種々の分野にお
いて使用されたエッチング廃液を一括して処理できるの
で、塩鉄廃液の処理の効率化、設備の共通化が実現でき
て、個々のエッチング廃液を処理するための設備を設け
る場合に比べて、工業的な実施を実現する上で極めて有
益である。
Further, according to the method of the present invention, since the etching waste liquids used in various fields can be collectively processed, the processing efficiency of the salt iron waste liquid can be improved and the equipment can be shared, and the individual etching waste liquids can be realized. It is extremely useful in realizing industrial implementation as compared with the case of providing equipment for treating

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅,ニッケル,クロムを含有する塩化第
2鉄のエッチング廃液に、液中の塩化第2鉄を塩化第1
鉄に還元しかつ銅イオンを金属銅に還元するのに必要十
分な量の鉄材を加え、加熱撹拌して銅を析出させ、析出
した銅を固液分離する第一の工程と、 第一の工程を経た液に鉄材を加え、加熱撹拌して液中の
クロムを沈殿させ、この沈澱物を固液分離する第二の工
程と、 第二の工程を経た液に鉄材を加えると共に塩化第2鉄液
又は塩酸を加え、加熱撹拌して液中のニッケルを沈殿さ
せ、この沈澱物を固液分離する第三の工程と、 第三の工程を経た液を塩素化して塩化第2鉄液を再生す
る第四の工程と、 を備えたことを特徴とする塩化第2鉄液のエッチング廃
液の処理法。
1. A ferric chloride solution containing ferric chloride in an etching waste liquid containing ferric chloride containing copper, nickel and chromium.
A first step of adding a sufficient amount of iron material necessary for reducing to iron and reducing copper ions to metallic copper, heating and stirring to precipitate copper, and solid-liquid separating the precipitated copper, The iron material is added to the liquid that has passed through the steps, and the mixture is heated and stirred to precipitate chromium in the liquid, and the second step of solid-liquid separating the precipitate, and the iron material is added to the liquid that has passed the second step, and the second chloride Iron solution or hydrochloric acid is added, and the mixture is heated and stirred to precipitate nickel in the solution, and the third step of solid-liquid separation of the precipitate, and the solution obtained after the third step is chlorinated to form ferric chloride solution. A method for treating an etching waste liquid of ferric chloride liquid, comprising: a fourth step of regenerating.
【請求項2】 請求項1において、第一の工程で液に加
える鉄材の量が、エッチング廃液に含まれる塩化第2鉄
を塩化第1鉄に還元するのに必要な鉄量、及びエッチン
グ廃液に含まれる銅イオンを金属銅に還元するのに必要
な鉄量の合計に対して概ね等モルであることを特徴とす
る塩化第2鉄液のエッチング廃液の処理法。
2. The method according to claim 1, wherein the amount of the iron material added to the liquid in the first step is the amount of iron necessary for reducing ferric chloride contained in the etching waste liquid to ferrous chloride, and the etching waste liquid. A method for treating an etching waste liquid of a ferric chloride solution, which is approximately equimolar to the total amount of iron required to reduce the copper ions contained in to copper metal.
【請求項3】 請求項1の第三の工程に代え、第二の工
程を経た液に塩化第2鉄液又は塩酸で予め表面処理した
鉄材を加え、加熱撹拌して液中のニッケルを沈殿させ、
この沈澱物を固液分離する第三の工程を行なうことを特
徴とする塩化第2鉄液のエッチング廃液の処理法。
3. An iron material preliminarily surface-treated with ferric chloride solution or hydrochloric acid is added to the solution obtained in the second step instead of the third step, and the mixture is heated and stirred to precipitate nickel in the solution. Let
A method for treating an etching waste liquid of ferric chloride liquid, which comprises performing a third step of solid-liquid separating the precipitate.
【請求項4】 請求項1乃至3のいずれかの第三の工程
において、液中に加える鉄材は、該第三の工程の全処理
期間の初期と中間時期の2回に分けて加えることを特徴
とする塩化第2鉄液のエッチング廃液の処理法。
4. The iron material to be added to the liquid in the third step according to any one of claims 1 to 3, wherein the iron material is added in two steps, an initial stage and an intermediate stage of the entire treatment period of the third step. A method for treating an etching waste liquid of ferric chloride liquid characterized.
【請求項5】 請求項1ないし4のいずれかの第三の工
程を、N2 ガス雰囲気下で行なうことを特徴とする塩化
第2鉄液のエッチング廃液の処理法。
5. A method for treating an etching waste liquid of ferric chloride solution, which comprises performing the third step of any one of claims 1 to 4 under an N 2 gas atmosphere.
JP3285030A 1991-10-30 1991-10-30 Treatment of waste etchant of ferric chloride solution Pending JPH05125562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285030A JPH05125562A (en) 1991-10-30 1991-10-30 Treatment of waste etchant of ferric chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285030A JPH05125562A (en) 1991-10-30 1991-10-30 Treatment of waste etchant of ferric chloride solution

Publications (1)

Publication Number Publication Date
JPH05125562A true JPH05125562A (en) 1993-05-21

Family

ID=17686250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285030A Pending JPH05125562A (en) 1991-10-30 1991-10-30 Treatment of waste etchant of ferric chloride solution

Country Status (1)

Country Link
JP (1) JPH05125562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051782A1 (en) 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
JP2007229669A (en) * 2006-03-02 2007-09-13 Dowa Holdings Co Ltd Method for treating water containing halogenated organic compound and decomposing agent to be used therein, and manufacturing method
JP2010513715A (en) * 2006-12-20 2010-04-30 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing stainless steel melting raw material using iron nickel (FeNi) -containing sludge
CN110859025A (en) * 2018-08-24 2020-03-03 绵阳市奇帆科技有限公司 Manufacturing method of novel environment-friendly circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051782A1 (en) 2004-11-09 2006-05-18 Shimane Prefectural Government Metal base carbon fiber composite material and method for production thereof
JP2007229669A (en) * 2006-03-02 2007-09-13 Dowa Holdings Co Ltd Method for treating water containing halogenated organic compound and decomposing agent to be used therein, and manufacturing method
JP2010513715A (en) * 2006-12-20 2010-04-30 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー Method for producing stainless steel melting raw material using iron nickel (FeNi) -containing sludge
CN110859025A (en) * 2018-08-24 2020-03-03 绵阳市奇帆科技有限公司 Manufacturing method of novel environment-friendly circuit board

Similar Documents

Publication Publication Date Title
JP5652503B2 (en) Scandium recovery method
RU2149195C1 (en) Method of hydrometallurgical recovery of nickel from nickel matte of two types
JP2004509232A (en) Recovery of valuable nickel and cobalt from sulfide flotation concentrate by chloride-assisted oxidative pressure leaching in sulfuric acid
EP2212253B1 (en) Producing nickel hydroxide suitable for pelletization with iron-containing ore and for stainless steel manufacture
US4233063A (en) Process for producing cobalt powder
US4278463A (en) Process for recovering cobalt
Sinha et al. Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction
EP0028638B1 (en) Method for producing cobalt metal powder
US2584700A (en) Treatment of iron ore containing impurities, including nickel and chromium
JPH06228666A (en) Method for separating and recovering metal from spent hydrogenation catalyst
JP2016065283A (en) Method for recovering scandium
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
JPH05125562A (en) Treatment of waste etchant of ferric chloride solution
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
US2392385A (en) Purification of manganese electrolytes
JP2002212650A (en) Method for recovering platinum group metals from metallic electrode
JP3722254B2 (en) Manufacturing method of high purity nickel aqueous solution
JPH05125563A (en) Treatment of waste etchant of ferric chloride solution
US4151257A (en) Processing nonferrous metal hydroxide sludge wastes
KR940007372B1 (en) Method of purification cobalt
JP3597907B2 (en) Regeneration method of ferric chloride solution
JPH05116948A (en) Treatment of waste etching solution of ferric chloride
JP2835772B2 (en) Heavy metal removal method for iron chloride waste liquid
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JP2614197B2 (en) How to reuse green-blue coloring solution