JP2008285366A - Iron chloride solution, and method for producing iron oxide - Google Patents

Iron chloride solution, and method for producing iron oxide Download PDF

Info

Publication number
JP2008285366A
JP2008285366A JP2007132608A JP2007132608A JP2008285366A JP 2008285366 A JP2008285366 A JP 2008285366A JP 2007132608 A JP2007132608 A JP 2007132608A JP 2007132608 A JP2007132608 A JP 2007132608A JP 2008285366 A JP2008285366 A JP 2008285366A
Authority
JP
Japan
Prior art keywords
iron oxide
chloride solution
iron
solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007132608A
Other languages
Japanese (ja)
Inventor
Takahiro Kikuchi
孝宏 菊地
Hiroyuki Minemura
広幸 峰村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2007132608A priority Critical patent/JP2008285366A/en
Publication of JP2008285366A publication Critical patent/JP2008285366A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron chloride solution obtaining iron oxide for vivid red pigment even by a spray roasting process, and to provide a method for producing the iron oxide. <P>SOLUTION: Regarding the method for producing a ferrous chloride solution, a ferrous chloride solution, in which the content of Fe in a solute is ≥99.0 mass% expressed in terms of iron oxide (Fe<SB>2</SB>O<SB>3</SB>), is oxidized at a pH of ≤6 so as to produce water-containing iron oxide (FeOOH) or magnetite (Fe<SB>3</SB>O<SB>4</SB>), and the water-containing iron oxide or magnetite is cleaned and dehydrated, and is thereafter dissolved into hydrochloric acid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、塩化鉄溶液および酸化鉄の製造方法に関し、特に、色鮮やかな赤色顔料用酸化鉄を得ることができる塩化鉄溶液とその溶液から酸化鉄を製造する方法に関するものである。   The present invention relates to an iron chloride solution and a method for producing iron oxide, and more particularly to an iron chloride solution capable of obtaining a colorful red pigment iron oxide and a method for producing iron oxide from the solution.

酸化鉄は、人体に対する安全性が高く、また、耐候性や耐薬品性にも優れていることから、古くから無機顔料に用いられており、現在でも、コンクリートやアスファルト、ゴム、プラスチック、陶磁器等の様々な分野で着色剤として用いられている。   Iron oxide has long been used for inorganic pigments because of its high safety to the human body and excellent weather resistance and chemical resistance. Even today, concrete, asphalt, rubber, plastic, ceramics, etc. It is used as a colorant in various fields.

ところで、顔料の分野では、酸化鉄中にMnが多く含まれると、色調が黒ずんだものとなることが知られている。そのため、色鮮やかな赤色の顔料用酸化鉄を製造するには、Mn含有量の少ない原料溶液を用いる必要がある。   By the way, in the field of pigments, it is known that when Mn is contained in iron oxide, the color tone becomes dark. Therefore, it is necessary to use a raw material solution with a low Mn content in order to produce bright red iron oxide for pigment.

酸化鉄の製造方法としては、硫酸第一鉄溶液を原料とし、これを湿式合成して製造する方法、塩化第一鉄溶液を原料とし、これを噴霧焙焼して製造する方法等が一般に知られているが、顔料に用いられる酸化鉄の多くは、前者の湿式合成法で製造されたものであり、後者の噴霧焙焼法で製造されるものは少ない。   As a method for producing iron oxide, a method of producing a ferrous sulfate solution as a raw material by wet synthesis, a method of producing a ferrous chloride solution as a raw material by spray roasting, etc. are generally known. However, most of the iron oxides used for pigments are produced by the former wet synthesis method, and few are produced by the latter spray roasting method.

上記塩化第一鉄溶液を噴霧焙焼して酸化鉄を製造する方法は、鉄鋼の製造過程で発生する安価な酸洗廃液(塩化第一鉄溶液)を原料とすることができ、また、同時に生成する塩酸を酸洗工程で再使用できるという利点を有している。しかし、原料の塩化第一鉄溶液中には、鋼材を起源とするMnが不可避的に含まれており、それが噴霧焙焼によっても除去されずにそのまま酸化鉄中に取り込まれることになる。   The method of producing iron oxide by spray roasting the ferrous chloride solution can use an inexpensive pickling waste solution (ferrous chloride solution) generated in the steel production process as a raw material. It has the advantage that the hydrochloric acid produced can be reused in the pickling process. However, the ferrous chloride solution as a raw material inevitably contains Mn originating from steel, and it is directly taken into iron oxide without being removed by spray roasting.

そこで、塩化第一鉄溶液中の不純物を除去、精製する方法について、種々の提案がなされている。例えば、特許文献1には、Si,Al,Cr,Cu,Pを低減する方法が、また、特許文献2には、SiO,Cr,Al,Ti等の不純物を低減する方法が、特許文献3には、Si,Al,P等の不純物を低減する方法が、特許文献4には、Si,Al,P,Na,Ca,B等の不純物を低減する方法が、さらに、特許文献5には、SiO,P,Clを低減する方法が提案されている。しかし、Mnは、塩化第一鉄溶液中では安定に存在するため、上記特許文献1〜5に記載のいずれの技術を用いても、Mnを低減することはできない。 Thus, various proposals have been made on methods for removing and purifying impurities in the ferrous chloride solution. For example, Patent Document 1 discloses a method for reducing Si, Al, Cr, Cu, and P, and Patent Document 2 discloses a method for reducing impurities such as SiO 2 , Cr, Al, and Ti. 3 is a method for reducing impurities such as Si, Al, P, and the like, and Patent Document 4 is a method for reducing impurities such as Si, Al, P, Na, Ca, B. A method for reducing SiO 2 , P, and Cl has been proposed. However, since Mn exists stably in the ferrous chloride solution, Mn cannot be reduced by using any of the techniques described in Patent Documents 1 to 5.

一方、特許文献6には、塩化第一鉄溶液に塩酸を添加して析出する塩化第一鉄の結晶を分離除去することにより、塩化第一鉄溶液を精製する方法が提案されている。この方法によれば、結晶化を介して塩化第一鉄溶液中のMnをある程度まで低減することは可能である。
特開昭63−315519号公報 特開平01−153532号公報 特開平03−005324号公報 特開平07−165427号公報 特開2004−284833号公報 特開昭55−023005号公報
On the other hand, Patent Document 6 proposes a method for purifying a ferrous chloride solution by adding and removing hydrochloric acid to the ferrous chloride solution to separate and remove the precipitated ferrous chloride crystals. According to this method, it is possible to reduce Mn in the ferrous chloride solution to some extent through crystallization.
Japanese Patent Laid-Open No. Sho 63-315519 Japanese Patent Laid-Open No. 01-153532 Japanese Patent Laid-Open No. 03-005324 Japanese Patent Laid-Open No. 07-165427 JP 2004-284833 A Japanese Patent Laid-Open No. 55-023005

しかしながら、特許文献6の方法では、生成する塩化第一鉄の結晶中にもMnが移行するため、一回の操作でMnを低減することは難しいという問題がある。また、結晶化を複数回繰り返すことにより、Mnをある程度まで低減することができるが、コスト面からみて実用的ではない。   However, the method of Patent Document 6 has a problem that it is difficult to reduce Mn by a single operation because Mn migrates into the crystals of ferrous chloride to be produced. Further, Mn can be reduced to some extent by repeating crystallization a plurality of times, but it is not practical from the viewpoint of cost.

そこで、本発明の目的は、噴霧焙焼法でも色鮮やかな赤色顔料用の酸化鉄を得ることができる塩化鉄溶液とその酸化鉄の製造方法を提案することにある。   Therefore, an object of the present invention is to propose an iron chloride solution and a method for producing the iron oxide, which can obtain a colorful iron oxide for a red pigment even by spray roasting.

発明者らは、上記課題を解決するべく、鋭意検討を重ねた。
その結果、原料溶液となる塩化第一鉄溶液をpH6以下で酸化して生成させた含水酸化鉄(FeOOH)またはマグネタイト(Fe)を塩酸に溶解させた塩化鉄は、Mn含有量が少なく、したがって、これを噴霧焙焼することにより色鮮やかな色調を呈する赤色顔料用の酸化鉄を得ることができることを見出し、本願発明を完成させた。
Inventors repeated earnest examination in order to solve the said subject.
As a result, iron chloride obtained by dissolving hydrous iron oxide (FeOOH) or magnetite (Fe 3 O 4 ) produced by oxidizing a ferrous chloride solution as a raw material solution at pH 6 or less has a Mn content. Therefore, it was found that iron oxide for a red pigment exhibiting a colorful color tone can be obtained by spray roasting, and the present invention has been completed.

すなわち、本発明は、溶質中のFe含有量が酸化鉄(Fe)に換算して99.0mass%以上である塩化第一鉄溶液を、pH6以下で酸化して含水酸化鉄(FeOOH)またはマグネタイト(Fe)を生成させ、その含水酸化鉄またはマグネタイトを洗浄・脱水したのち塩酸に溶解することを特徴とする塩化鉄溶液の製造方法である。 That is, in the present invention, a ferrous chloride solution in which the Fe content in the solute is 99.0 mass% or more in terms of iron oxide (Fe 2 O 3 ) is oxidized at a pH of 6 or less to contain iron hydroxide (FeOOH). ) Or magnetite (Fe 3 O 4 ), and the hydrous iron oxide or magnetite is washed and dehydrated, and then dissolved in hydrochloric acid.

本発明の塩化鉄溶液の製造方法は、上記塩化第一鉄溶液に、アルカリ溶液を添加することを特徴とする。   The method for producing an iron chloride solution of the present invention is characterized in that an alkaline solution is added to the ferrous chloride solution.

また、本発明の塩化鉄溶液の製造方法は、上記塩酸に溶解した塩化鉄溶液中のFe含有量とMn含有量の和に対するMn含有量を720massppm以下とすることを特徴とする。   Moreover, the manufacturing method of the iron chloride solution of this invention is characterized by making Mn content with respect to the sum of Fe content and Mn content in the iron chloride solution melt | dissolved in the said hydrochloric acid into 720 massppm or less.

また、本発明は、上記の方法で得られる塩化鉄溶液を噴霧焙焼して酸化鉄とすることを特徴とする酸化鉄の製造方法である。   Moreover, this invention is a manufacturing method of iron oxide characterized by spray-baking the iron chloride solution obtained by said method, and making it an iron oxide.

本発明の酸化鉄の製造方法は、酸化鉄中のMn含有量を500massppm以下とすることを特徴とする。   The method for producing iron oxide of the present invention is characterized in that the Mn content in iron oxide is 500 massppm or less.

本発明によれば、酸化鉄の原料となる塩化鉄溶液中のMn含有量を容易に低減できるので、その溶液を噴霧焙焼することで、色鮮やかな赤色顔料用の酸化鉄を容易かつ安価に製造することが可能となる。   According to the present invention, the Mn content in the iron chloride solution used as the raw material for iron oxide can be easily reduced. By spray-roasting the solution, iron oxide for colorful red pigments can be easily and inexpensively obtained. Can be manufactured.

本発明に係るMn含有量の少ない赤色顔料用酸化鉄を製造する原料となる塩化鉄溶液の製造方法について説明する。
本発明では、塩化鉄溶液の原料として、酸洗廃液等の塩化第一鉄溶液をpH6以下で酸化することにより生成する含水酸化鉄(FeOOH)またはマグネタイト(Fe)を用いることを特徴とする。その理由は、pH6以下の条件では、塩化第一鉄溶液中のMnは、含水酸化鉄やマグネタイト中にはほとんど取り込まれずに溶液中にMn2+イオンの形で安定に存在するため、この条件下で塩化第一鉄溶液中に生成する含水酸化鉄やマグネタイトなどの鉄酸化物中には、Mn含有量が少なくなるためである。
The manufacturing method of the iron chloride solution used as the raw material which manufactures the iron oxide for red pigments with little Mn content which concerns on this invention is demonstrated.
In the present invention, as a raw material of the iron chloride solution, hydrous iron oxide (FeOOH) or magnetite (Fe 3 O 4 ) generated by oxidizing a ferrous chloride solution such as pickling waste liquid at pH 6 or less is used. And The reason for this is that Mn in the ferrous chloride solution is stably incorporated in the solution in the form of Mn 2+ ions in the solution of ferrous chloride and hardly contained in the hydrous iron oxide or magnetite under the condition of pH 6 or lower. This is because the Mn content is reduced in iron oxides such as hydrous iron oxide and magnetite produced in the ferrous chloride solution.

塩化第一鉄を酸化する方法としては、塩化第一鉄溶液中に空気などの酸素含有ガスや、オゾン含有ガスを吹き込む方法、過酸化水素水や硝酸ナトリウムなどの酸化剤を添加する方法などの公知の方法を用いることができる。酸化を行う際の溶液のpHは6以下とすることが必要である。pHが6を超えると、生成する含水酸化鉄やマグネタイトの中にもMnが多く取り込まれるようになり、最終的に得られる酸化鉄が、色調のくすんだものとなってしまうからである。逆に、pHが低過ぎると、空気酸化を行う場合には、含水酸化鉄やマグネタイトの生産性が低下するという別の問題が発生する。したがって、低Mnの含水酸化鉄やマグネタイトを効率的に得ることができるpHは、より好ましくは2〜5.5、さらに好ましくは3〜5の範囲である。   As a method of oxidizing ferrous chloride, oxygen-containing gas such as air, ozone-containing gas is blown into ferrous chloride solution, and an oxidizing agent such as hydrogen peroxide or sodium nitrate is added. A known method can be used. The pH of the solution at the time of oxidation needs to be 6 or less. If the pH exceeds 6, much Mn will be taken into the hydrous iron oxide and magnetite to be produced, and the finally obtained iron oxide will be dull in color. On the other hand, if the pH is too low, another problem arises that the productivity of hydrous iron oxide and magnetite is reduced when air oxidation is performed. Therefore, the pH at which low Mn hydrous iron oxide and magnetite can be obtained efficiently is more preferably in the range of 2 to 5.5, and even more preferably in the range of 3 to 5.

pH6以下の塩化第一鉄溶液中で生成し得るMn含有量の少ない含水酸化鉄には、空気などの酸素含有ガスやオゾン吹き込みにより生成するα−FeOOH、β−FeOOH、γ−FeOOHや、過酸化水素水で酸化した場合に生成するδ−FeOOHなどがあり、いずれも本発明の酸化鉄の製造に用いることができる。もちろん、これらの含水酸化鉄やマグネタイトは、複数種が混ざっているものであっても構わない。   Examples of the hydrous iron oxide having a low Mn content that can be produced in a ferrous chloride solution having a pH of 6 or less include oxygen-containing gases such as air, α-FeOOH, β-FeOOH, γ-FeOOH produced by ozone blowing, There are δ-FeOOH produced when oxidized with hydrogen oxide water, and any of them can be used for producing the iron oxide of the present invention. Of course, these hydrous iron oxides and magnetites may be a mixture of plural types.

次に、上記含水酸化鉄やマグネタイトを生成させる原料の塩化鉄第一鉄溶液について説明する。
塩化第一鉄溶液としては、溶液中に含まれる不純物を低減し、酸化鉄(Fe)に換算した溶質中のFeの純度が99.0mass%以上である溶液を用いるのが好ましい。鉄鋼の製造過程で発生する酸洗廃液には、Mnの他に、SiOやP,Al,Cr,Niなどの不純物を多量に含んでいる。そこで、酸洗廃液を一度精製して、溶質中のFe純度を、酸化鉄に換算して99.0%以上の塩化第一鉄溶液とし、これを本発明の原料溶液として用い、pH6以下で酸化することにより、Mnだけでなく、SiOやP,Al,Cr,Niなどの不純物含有量の少ない含水酸化鉄やマグネタイトを生成することができ、ひいては、色鮮やかな酸化鉄を得ることができる。
Next, the ferrous chloride solution as a raw material for producing the hydrous iron oxide and magnetite will be described.
As the ferrous chloride solution, it is preferable to use a solution in which impurities contained in the solution are reduced and the purity of Fe in the solute converted to iron oxide (Fe 2 O 3 ) is 99.0 mass% or more. The pickling waste liquid generated in the manufacturing process of steel contains a large amount of impurities such as SiO 2 , P, Al, Cr, and Ni in addition to Mn. Therefore, the pickling waste liquor is purified once, and the Fe purity in the solute is converted to iron oxide to a ferrous chloride solution of 99.0% or more, which is used as the raw material solution of the present invention at a pH of 6 or less. Oxidation can produce not only Mn but also hydrous iron oxide and magnetite with low impurity content such as SiO 2 , P, Al, Cr, Ni, etc. As a result, colorful iron oxide can be obtained. it can.

しかし、酸化鉄(Fe)に換算した溶質中のFeの純度が99.0mass%未満の不純物を多く含む塩化第一鉄溶液を原料溶液に用いると、pH6以下で酸化した際に、優先的にSiOやP,Al,Cr,Niなどの不純物が含水酸化鉄やマグネタイトと共に析出するため、不純物の多い含水酸化鉄やマグネタイトが得られる。その結果、最終的に得られる酸化鉄は、不純物が多く、色のくすんだものしか得られず、好ましくない。なお、原料溶液である塩化第一鉄溶液の溶質中のFe純度は、酸化鉄に換算した純度が99.3mass%以上であることが好ましく、さらに好ましくは99.5mass%以上である。 However, when a ferrous chloride solution containing a large amount of impurities with a purity of Fe of less than 99.0 mass% is used as a raw material solution in terms of iron oxide (Fe 2 O 3 ), when oxidized at a pH of 6 or less, Since impurities such as SiO 2 , P, Al, Cr, and Ni are preferentially precipitated together with hydrous iron oxide and magnetite, hydrous iron oxide and magnetite with a large amount of impurities can be obtained. As a result, the finally obtained iron oxide is not preferable because it has many impurities and only a dull color can be obtained. The Fe purity in the solute of the ferrous chloride solution that is the raw material solution is preferably 99.3 mass% or more, more preferably 99.5 mass% or more, in terms of iron oxide.

次いで、上記のようにして得られた低Mnの含水酸化鉄またはマグネタイトを、洗浄・脱水する。上記洗浄工程は、Mnを含む溶液を除去するために必須の工程である。というのは、洗浄が不十分であると、含水酸化鉄またはマグネタイトに付着しているMn溶液の量が多くなるため、低Mnの塩化鉄溶液を得るのが困難となるからである。   Next, the low Mn hydrous iron oxide or magnetite obtained as described above is washed and dehydrated. The cleaning step is an essential step for removing the solution containing Mn. This is because, if the cleaning is insufficient, the amount of the Mn solution adhering to the hydrous iron oxide or magnetite increases, and it becomes difficult to obtain a low Mn iron chloride solution.

次いで、洗浄・脱水して得た含水酸化鉄またはマグネタイトを塩酸に溶解させて、色鮮やかな赤色顔料の製造に用いる塩化鉄溶液とする。なお、上記塩化鉄溶液としては、含水酸化鉄を塩酸に溶解した場合には、塩化第二鉄溶液が得られ、また、マグネタイトが含まれる含水酸化鉄を塩酸に溶解した場合には、塩化第一鉄と塩化第二鉄の混合溶液が得られる。   Next, hydrous iron oxide or magnetite obtained by washing and dehydration is dissolved in hydrochloric acid to obtain an iron chloride solution used for producing a colorful red pigment. As the iron chloride solution, a ferric chloride solution is obtained when hydrous iron oxide is dissolved in hydrochloric acid, and a ferric chloride solution is obtained when hydrous iron oxide containing magnetite is dissolved in hydrochloric acid. A mixed solution of ferrous and ferric chloride is obtained.

上記塩化鉄溶液中に含まれるMn含有量は、色鮮やかな色調の酸化鉄を得るためには、前記塩酸に溶解した後の塩化鉄中のFe量とMn量の和に対するMn含有量((Mn量/Mn量+Fe量)×10)を720massppm以下とすることが好ましく、より好ましくは290massppm以下である。 The Mn content contained in the iron chloride solution is Mn content with respect to the sum of Fe amount and Mn amount in iron chloride after being dissolved in hydrochloric acid (( Mn amount / Mn amount + Fe amount) × 10 6 ) is preferably 720 massppm or less, more preferably 290 massppm or less.

なお、本発明の塩化鉄溶液を製造する方法においては、原料となる塩化第一鉄溶液に、アルカリ溶液を添加してpHを調整してから酸化を行ってもよい。添加するアルカリ溶液としては、水酸化物や炭酸塩のアルカリ溶液、アンモニア溶液など公知のものを用いることができる。アルカリ溶液を添加することで、溶液のpHを高めることで反応を早めて、含水酸化鉄やマグネタイトの生成量を増やすことができる。アルカリ溶液の添加は、特に空気酸化を行う場合に有効である。   In the method for producing an iron chloride solution of the present invention, oxidation may be performed after adjusting the pH by adding an alkaline solution to the ferrous chloride solution as a raw material. As the alkaline solution to be added, a known solution such as an alkali solution of hydroxide or carbonate, an ammonia solution, or the like can be used. By adding an alkaline solution, the reaction can be accelerated by increasing the pH of the solution, and the amount of hydrous iron oxide and magnetite produced can be increased. The addition of the alkaline solution is particularly effective when air oxidation is performed.

次に、上記のようにして得られた塩化鉄溶液を噴霧焙焼することで、Mn含有量が低くて赤色顔料に用いて好適な、色鮮やかな色調の酸化鉄を得ることができる。上記噴霧焙焼の方法は、一般的に行われている方法でよく、特に制限はない。また、得られた酸化鉄は、一般的に行われているように、水洗し、粉砕して、赤色顔料用酸化鉄(製品)とするのが好ましい。   Next, the iron chloride solution obtained as described above is spray roasted to obtain iron oxide with a colorful color tone that has a low Mn content and is suitable for use as a red pigment. The spray roasting method may be a generally performed method and is not particularly limited. The obtained iron oxide is preferably washed with water and pulverized to obtain iron oxide (product) for red pigment, as is generally done.

上記酸化鉄中に含まれるMn含有量は、色鮮やかな色調の酸化鉄を得るためには、500massppm以下とすることが好ましく、より好ましくは200massppm以下である。   The Mn content contained in the iron oxide is preferably 500 massppm or less, and more preferably 200 massppm or less in order to obtain iron oxide having a colorful color tone.

(発明例1)
下記原料溶液(塩化第一鉄溶液)1リットルに、オゾン8vol%と残部が酸素からなる混合ガスを1L/minで4時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、その水酸化鉄を純水で沈降分離して洗浄し、ろ過して回収した。なお、上記オゾンは、酸素ガスをオゾン発生装置に通すことで発生させた。次いで、洗浄後の水酸化鉄は、濃塩酸100mlに溶解して塩化鉄溶液とし、FeとMnの濃度をICP発光分析装置で測定した。そして、この測定結果から、溶液中に含まれるFeが全て酸化鉄(Fe)であるとした場合におけるMn濃度を求め、Mnの低減効果を調べた。
<原料とした塩化第一鉄溶液>
・Fe濃度:180g/L
・Fe純度:99.5mass%
・Mn濃度:3000massppm
・pH:0.8
ただし、上記Fe濃度およびMn濃度は、溶質中に含まれるFeを全てヘマタイト(Fe)に換算したときの値である(以降、同様とする)。
(Invention Example 1)
To 1 liter of the following raw material solution (ferrous chloride solution), a mixed gas consisting of 8 vol% ozone and the balance oxygen was aerated at 1 L / min for 4 hours to generate iron hydroxide, and then the solution was filtered. Iron hydroxide was obtained, and then the iron hydroxide was precipitated and separated with pure water, washed, and recovered by filtration. The ozone was generated by passing oxygen gas through an ozone generator. Subsequently, the washed iron hydroxide was dissolved in 100 ml of concentrated hydrochloric acid to obtain an iron chloride solution, and the concentrations of Fe and Mn were measured with an ICP emission spectrometer. Then, from this measurement result, the Mn concentration in the case where all Fe contained in the solution is iron oxide (Fe 2 O 3 ) was obtained, and the effect of reducing Mn was investigated.
<Ferrous chloride solution as raw material>
・ Fe concentration: 180 g / L
-Fe purity: 99.5 mass%
・ Mn concentration: 3000 massppm
・ PH: 0.8
However, the Fe concentration and the Mn concentration are values when all Fe contained in the solute is converted to hematite (Fe 2 O 3 ) (hereinafter the same).

(発明例2)
遊離酸量を変えてpH1.5に調整したこと以外は発明例1と同じとした原料溶液(塩化第一鉄溶液)1リットルに、30mass%過酸化水素水200mlを添加して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Invention Example 2)
Except that the amount of free acid was changed and adjusted to pH 1.5, 200 ml of 30 mass% hydrogen peroxide solution was added to 1 liter of a raw material solution (ferrous chloride solution) which was the same as that of Invention Example 1, and iron hydroxide was added. After the formation, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

(発明例3)
遊離酸量を変えてpH3.0に調整したこと以外は発明例1と同じとした原料溶液(塩化第一鉄溶液)1リットルに、空気を1L/minで8時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Invention Example 3)
Except that the amount of free acid was changed and adjusted to pH 3.0, 1 liter of a raw material solution (ferrous chloride solution) that was the same as that of Invention Example 1 was aerated with air at 1 L / min for 8 hours to give iron hydroxide. After the formation, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

(発明例4)
発明例3と同じ原料溶液(塩化第一鉄溶液)1リットルに、2mol/Lの炭酸ナトリウム溶液を添加してpH4.2に調整しながら、空気を1L/minで3時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Invention Example 4)
While adding 2 mol / L sodium carbonate solution to 1 liter of the same raw material solution (ferrous chloride solution) as in Invention Example 3 to adjust the pH to 4.2, air was ventilated at 1 L / min for 3 hours for hydroxylation. After producing iron, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

(発明例5)
発明例3と同じ原料溶液(塩化第一鉄溶液)1リットルに、2mol/Lの水酸化カリウム溶液を添加してpH5.0に調整し、30%過酸化水素水200mlを添加して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Invention Example 5)
To 1 liter of the same raw material solution (ferrous chloride solution) as in Invention Example 3, a 2 mol / L potassium hydroxide solution was added to adjust the pH to 5.0, and 200 ml of 30% hydrogen peroxide water was added for hydroxylation. After producing iron, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

(発明例6)
発明例3と同じ原料溶液(塩化第一鉄溶液)1リットルに、28mass%アンモニア水を添加してpH5.8に調整しながら、上記溶液を70℃に昇温して空気を1L/minで1時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Invention Example 6)
While adding 28 mass% ammonia water to 1 liter of the same raw material solution (Ferrous Chloride Solution) as in Invention Example 3 and adjusting the pH to 5.8, the temperature of the solution was raised to 70 ° C. and air was supplied at 1 L / min. After aeration for 1 hour to produce iron hydroxide, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

(比較例1)
発明例3と同じ原料溶液(塩化第一鉄溶液)1リットルに、8mol/Lの水酸化ナトリウム溶液を添加してpH6.6に調整しながら、空気を1L/minで1時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Comparative Example 1)
While adding 8 mol / L sodium hydroxide solution to 1 liter of the same raw material solution (ferrous chloride solution) as in Invention Example 3 to adjust the pH to 6.6, air was aerated at 1 L / min for 1 hour to form water. After producing iron oxide, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

(比較例2)
発明例3と同じ原料溶液(塩化第一鉄溶液)1リットルに、28mass%アンモニア水を添加してpH7.5に調整しながら、上記溶液に空気を1L/minで1時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、発明例1と同様の処理を施して、Mnの低減効果を調べた。
(Comparative Example 2)
While adding 28 mass% ammonia water to 1 liter of the same raw material solution (ferrous chloride solution) as in Invention Example 3 to adjust the pH to 7.5, air was bubbled through the solution at 1 L / min for 1 hour for hydroxylation. After producing iron, the solution was filtered to obtain iron hydroxide, and then the same treatment as in Invention Example 1 was performed to examine the effect of reducing Mn.

上記発明例1〜6、比較例1および2の試験条件および結果を纏めて表1に示した。表1から、pH6以下の条件下で酸化を行えば、Mn含有量が500massppm未満の高純度の塩化鉄溶液が得られることがわかる。   The test conditions and results of Invention Examples 1 to 6 and Comparative Examples 1 and 2 are summarized in Table 1. From Table 1, it can be seen that a high-purity iron chloride solution having a Mn content of less than 500 massppm can be obtained by oxidation under conditions of pH 6 or less.

Figure 2008285366
Figure 2008285366

(発明例7,8、比較例3)
下記のFe純度が異なる3種類の原料溶液(塩化第一鉄溶液)1リットルに、8mol/Lの水酸化ナトリウム溶液を添加してpH5.0に調整しながら、空気を1L/minで1時間通気して水酸化鉄を生成させたのち、その溶液をろ過して水酸化鉄を得、その後、その水酸化鉄を純水で沈降分離を行って洗浄し、ろ過して回収した。なお、上記オゾンは、酸素ガスをオゾン発生装置に通して発生させた。次いで、洗浄後の水酸化鉄は、濃塩酸100mlに溶解して塩化鉄溶液とし、ICP発光分析装置を用いて、Fe,Mn濃度の他に、Al,Cr,Ni,P,SiO濃度を測定した。この測定結果から、溶液中に含まれるFeが全て酸化鉄(Fe)であるとした場合におけるFe,Mn,Al,Cr,Ni,P,SiOの含有量を求めた。
<原料とした塩化第一鉄溶液>
・Fe濃度:160g/L
・Fe純度:99.6mass%(発明例7)、99.2mass%(発明例8)、98.5mass%(比較例3)
・Mn濃度:3000massppm
・pH:1.6
(Invention Examples 7 and 8, Comparative Example 3)
While adjusting the pH to 5.0 by adding 8 mol / L sodium hydroxide solution to 1 liter of the following three raw material solutions (ferrous chloride solution) with different Fe purity, air was adjusted at 1 L / min for 1 hour. After aeration to produce iron hydroxide, the solution was filtered to obtain iron hydroxide, and then the iron hydroxide was washed by settling with pure water and collected by filtration. The ozone was generated by passing oxygen gas through an ozone generator. Next, the iron hydroxide after washing is dissolved in 100 ml of concentrated hydrochloric acid to form an iron chloride solution, and using an ICP emission analyzer, in addition to Fe and Mn concentrations, Al, Cr, Ni, P, and SiO 2 concentrations are adjusted. It was measured. From this measurement result, the content of Fe, Mn, Al, Cr, Ni, P, and SiO 2 when all the Fe contained in the solution was iron oxide (Fe 2 O 3 ) was determined.
<Ferrous chloride solution as raw material>
-Fe concentration: 160 g / L
Fe purity: 99.6 mass% (Invention Example 7), 99.2 mass% (Invention Example 8), 98.5 mass% (Comparative Example 3)
・ Mn concentration: 3000 massppm
・ PH: 1.6

上記発明例7,8および比較例3の測定結果を纏めて表2に示した。表2から、原料溶液(塩化第一鉄溶液)のFe純度が高ければ、Mn以外に酸化鉄の色調に悪影響を及ぼすCr,Niの他、Al,P,SiOなどの不純物の含有量も少ない塩化鉄溶液が得られることがわかる。 The measurement results of Invention Examples 7 and 8 and Comparative Example 3 are summarized in Table 2. From Table 2, if the Fe purity of the raw material solution (ferrous chloride solution) is high, the contents of impurities such as Al, P, SiO 2 as well as Cr, Ni which adversely affect the color tone of iron oxide in addition to Mn It can be seen that less iron chloride solution is obtained.

Figure 2008285366
Figure 2008285366

(比較例4)
下記塩化第一鉄溶液を、温度800℃で噴霧焙焼して酸化鉄とし、水洗・乾燥後、振動ミルを用いて乾式粉砕し、空気透過法で測定した平均粒径が0.45μmの酸化鉄粉とし、得られた酸化鉄粉について、蛍光X線分析装置を用いて不純物の含有量を測定した。
<噴霧焙焼した塩化鉄溶液>
・Fe濃度:120g/L
・Fe純度:99.5mass%
・Mn濃度:2000massppm
・pH:2.0
(Comparative Example 4)
The following ferrous chloride solution is spray roasted at a temperature of 800 ° C. to obtain iron oxide, washed with water, dried, then dry pulverized using a vibration mill, and an average particle diameter measured by an air permeation method is 0.45 μm. About the obtained iron oxide powder as an iron powder, the content of impurities was measured using a fluorescent X-ray analyzer.
<Spray-baked iron chloride solution>
-Fe concentration: 120 g / L
-Fe purity: 99.5 mass%
・ Mn concentration: 2000 massppm
-PH: 2.0

(発明例9)
容量が10mの反応槽に、比較例4と同じ原料溶液(塩化第一鉄溶液)を7m入れ、この溶液中に40mass%の水酸化ナトリウム溶液を加えてpH4〜5の範囲に調整しながら空気を吹き込んで水酸化鉄を生成させ、その水酸化鉄をフィルタープレスでろ過して回収したのち水洗し、塩酸に溶解して塩化鉄溶液とした。その後、この塩化鉄溶液を、Fe濃度が120g/Lとなるよう調整したのち噴霧焙焼して酸化鉄とし、水洗・乾燥後、振動ミルを用いて乾式粉砕し、空気透過法で測定した平均粒径が0.43μmの酸化鉄粉とした。上記のようにして得た酸化鉄粉について、比較例4と同様にして、酸化鉄粉中の不純物量を測定した。
(Invention Example 9)
The reactor capacity is 10 m 3, the same starting solution as in Comparative Example 4 (solution of ferrous chloride) 7m 3 placed, is adjusted to a range of pH4~5 adding 40 mass% of sodium hydroxide solution to this solution Then, air was blown in to produce iron hydroxide, and the iron hydroxide was collected by filtration with a filter press, washed with water, dissolved in hydrochloric acid to obtain an iron chloride solution. Thereafter, this iron chloride solution was adjusted to have an Fe concentration of 120 g / L, then spray roasted to obtain iron oxide, washed with water, dried, then dry pulverized using a vibration mill, and measured by an air permeation method. An iron oxide powder having a particle size of 0.43 μm was used. About the iron oxide powder obtained as mentioned above, it carried out similarly to the comparative example 4, and measured the impurity amount in an iron oxide powder.

さらに、上記比較例4および発明例9で得た酸化鉄粉について、日本電色製の色差計を用いて色調(L値、a値、b値)を測定した。色調の測定は、上記酸化鉄1gに、あまに油0.6gを加えてフーバー式マラーでペースト化し、得られたペーストに透明ラッカー12gを加え、アプリケーターにて厚み0.2mmの塗膜とし、この塗膜試料を測定することにより行った。なお、両酸化鉄粉の色調の違いは、比較例4の鉄粉のL値、a値、b値を0(基準)として、発明例9の酸化鉄粉と比較例4の酸化鉄粉のL値、a値、b値の差(ΔL、Δa、Δb)で評価した。   Furthermore, the color tone (L value, a value, b value) of the iron oxide powder obtained in Comparative Example 4 and Invention Example 9 was measured using a color difference meter made by Nippon Denshoku. The color tone is measured by adding 0.6 g of oil to 1 g of the iron oxide and pasting with a Hoover type muller, adding 12 g of transparent lacquer to the obtained paste, and forming a coating film having a thickness of 0.2 mm with an applicator. This was done by measuring the coating sample. In addition, the difference in the color tone of both iron oxide powders is that the L value, a value, and b value of the iron powder of Comparative Example 4 are 0 (reference), and the iron oxide powder of Invention Example 9 and the iron oxide powder of Comparative Example 4 are compared. Evaluation was based on the difference (ΔL, Δa, Δb) between the L value, the a value, and the b value.

上記比較例4および発明例9の測定結果を表3に示した。表3から、Mn含有量の少ない発明例9の酸化鉄は、比較例4の酸化鉄と比較して、ΔLが+2.5、Δaが+5.9、Δbが+1.9であり、鮮やかな色調であることがわかる。   The measurement results of Comparative Example 4 and Invention Example 9 are shown in Table 3. From Table 3, the iron oxide of Invention Example 9 with a low Mn content has a brighter ΔL of +2.5, Δa of +5.9, and Δb of +1.9 than the iron oxide of Comparative Example 4. It turns out that it is a color tone.

Figure 2008285366
Figure 2008285366

Claims (5)

溶質中のFe含有量が酸化鉄(Fe)に換算して99.0mass%以上である塩化第一鉄溶液を、pH6以下で酸化して含水酸化鉄(FeOOH)またはマグネタイト(Fe)を生成させ、その含水酸化鉄またはマグネタイトを洗浄・脱水したのち塩酸に溶解することを特徴とする塩化鉄溶液の製造方法。 A ferrous chloride solution in which the Fe content in the solute is 99.0 mass% or more in terms of iron oxide (Fe 2 O 3 ) is oxidized at a pH of 6 or less to hydrous iron oxide (FeOOH) or magnetite (Fe 3 A method for producing an iron chloride solution, characterized in that O 4 ) is produced, the hydrous iron oxide or magnetite is washed and dehydrated and then dissolved in hydrochloric acid. 上記塩化第一鉄溶液に、アルカリ溶液を添加することを特徴とする請求項1に記載の塩化鉄溶液の製造方法。 The method for producing an iron chloride solution according to claim 1, wherein an alkaline solution is added to the ferrous chloride solution. 上記塩酸に溶解した塩化鉄溶液中のFe含有量とMn含有量の和に対するMn含有量を720massppm以下とすることを特徴とする請求項1または2に記載の塩化鉄溶液の製造方法。 The method for producing an iron chloride solution according to claim 1 or 2, wherein the Mn content with respect to the sum of the Fe content and the Mn content in the iron chloride solution dissolved in the hydrochloric acid is 720 massppm or less. 請求項1または請求項2で得られる塩化鉄溶液を噴霧焙焼して酸化鉄とすることを特徴とする酸化鉄の製造方法。 A method for producing iron oxide, characterized in that the iron chloride solution obtained in claim 1 or claim 2 is spray roasted to obtain iron oxide. 上記酸化鉄中のMn含有量を500massppm以下とすることを特徴とする請求項4に記載の酸化鉄の製造方法。 The method for producing iron oxide according to claim 4, wherein the content of Mn in the iron oxide is 500 mass ppm or less.
JP2007132608A 2007-05-18 2007-05-18 Iron chloride solution, and method for producing iron oxide Pending JP2008285366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132608A JP2008285366A (en) 2007-05-18 2007-05-18 Iron chloride solution, and method for producing iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132608A JP2008285366A (en) 2007-05-18 2007-05-18 Iron chloride solution, and method for producing iron oxide

Publications (1)

Publication Number Publication Date
JP2008285366A true JP2008285366A (en) 2008-11-27

Family

ID=40145465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132608A Pending JP2008285366A (en) 2007-05-18 2007-05-18 Iron chloride solution, and method for producing iron oxide

Country Status (1)

Country Link
JP (1) JP2008285366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176884A (en) * 2011-02-04 2012-09-13 Jfe Chemical Corp Method of manufacturing ferric chloride solution
CN110304661A (en) * 2019-06-20 2019-10-08 李柏丛 Soft magnetic ferrite high-performance iron oxide new preparation process
CN112875762A (en) * 2021-01-30 2021-06-01 嘉诚环保工程有限公司 Method for preparing iron oxide red by using iron-containing pickling waste liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157043A (en) * 1992-11-13 1994-06-03 Daiso Co Ltd Continuous production of ferric chloride solution
JPH06171953A (en) * 1992-12-14 1994-06-21 Daiso Co Ltd Production of ferric chloride solution
JP2006265421A (en) * 2005-03-25 2006-10-05 Jfe Chemical Corp Iron oxide for iron chloride-based red pigment and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157043A (en) * 1992-11-13 1994-06-03 Daiso Co Ltd Continuous production of ferric chloride solution
JPH06171953A (en) * 1992-12-14 1994-06-21 Daiso Co Ltd Production of ferric chloride solution
JP2006265421A (en) * 2005-03-25 2006-10-05 Jfe Chemical Corp Iron oxide for iron chloride-based red pigment and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176884A (en) * 2011-02-04 2012-09-13 Jfe Chemical Corp Method of manufacturing ferric chloride solution
CN110304661A (en) * 2019-06-20 2019-10-08 李柏丛 Soft magnetic ferrite high-performance iron oxide new preparation process
CN112875762A (en) * 2021-01-30 2021-06-01 嘉诚环保工程有限公司 Method for preparing iron oxide red by using iron-containing pickling waste liquid
CN112875762B (en) * 2021-01-30 2022-05-17 河北粤海水务集团有限公司 Method for preparing iron oxide red by using iron-containing pickling waste liquid

Similar Documents

Publication Publication Date Title
US7695698B2 (en) Method of producing iron-arsenic compound excellent in crystallinity
JP5619257B2 (en) Yellow iron oxide pigment
US6689206B2 (en) Process for producing yellow iron oxide pigments
JPH04214037A (en) Black manganese/iron oxide pigment
AU3340801A (en) Treated manganese ore, process for producing the same, and use thereof
JP2003300732A (en) Method for producing high purity iron oxide and its use
JPS586688B2 (en) Method for producing black iron oxide pigment
US4382822A (en) Synthetic rhombohedral magnetite pigment
CN112441621A (en) Comprehensive utilization method of manganese-rich slag
JP2008285366A (en) Iron chloride solution, and method for producing iron oxide
JP3272759B2 (en) Manufacture of trimanganese oxide
JP4718435B2 (en) Method for producing iron oxide
JP4685651B2 (en) Method for producing iron oxide powder for red pigment
GB2040904A (en) Synthetic rhombohedral magnetite pigment
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
JP2013111524A (en) Harmful substance adsorbent and method of producing the same, and environment cleaning method using the same
CN109775725A (en) The processing method of Waste Sulfuric Acid in a kind of graphene production process
RU2431603C2 (en) Method of producing metatitanic acid and sorbent for extracting actinide elements
US2403248A (en) Iron hydrate and the manufacture and of use the same
WO2005097683A1 (en) Method for processing iron chloride and/or iron chloride-containing solutions and the use of an iron chloride solution obtained by said processing
JPH03131524A (en) Production of high-purity hematite granular powder
KR920005574B1 (en) Process for the production of alpha-feooh
JPH11292543A (en) Production of iron oxide or metal magnetic powder for magnetic recording medium
JPS62202820A (en) Purification of titanium sulfate solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100408

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Effective date: 20111206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814