KR920005574B1 - Process for the production of alpha-feooh - Google Patents

Process for the production of alpha-feooh Download PDF

Info

Publication number
KR920005574B1
KR920005574B1 KR1019900009396A KR900009396A KR920005574B1 KR 920005574 B1 KR920005574 B1 KR 920005574B1 KR 1019900009396 A KR1019900009396 A KR 1019900009396A KR 900009396 A KR900009396 A KR 900009396A KR 920005574 B1 KR920005574 B1 KR 920005574B1
Authority
KR
South Korea
Prior art keywords
solution
feooh
iron
magnetic
purified
Prior art date
Application number
KR1019900009396A
Other languages
Korean (ko)
Other versions
KR920000622A (en
Inventor
변태봉
이재영
김대영
Original Assignee
포항종합제철 주식회사
정명식
재단법인 한국과학기술연구소
박태준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 정명식, 재단법인 한국과학기술연구소, 박태준 filed Critical 포항종합제철 주식회사
Priority to KR1019900009396A priority Critical patent/KR920005574B1/en
Publication of KR920000622A publication Critical patent/KR920000622A/en
Application granted granted Critical
Publication of KR920005574B1 publication Critical patent/KR920005574B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

The preparation of α-FeOOH for self-recording media comprises (A) refining waste hydrochloric acid, which is a byproduct from acidic pickling process at steel-making plant, to remove non- soluble materials and scales by membrane filter, (B) adding alkali solution to refined hydrochloric acid to adjust pH to 2.5-7 so that Fe+3 ion and other impurities are removed and refined ferrous chloride solution is produced, (C) adding alkali solution to above ferrous chloride solution under non-oxidizing atmosphere to adjust the pH of initial reactants to more than 13, and (D) oxidizing above solution with an oxidizing gas at 10-100 deg.C for more than 1 hr.

Description

자기 기록매체용-FeOOH)의 제조방법Method for manufacturing magnetic recording medium (FeOOH)

제1a도 내지 1n도 : 본 발명에 따라 1, 2차 정제단계를 거친 폐산으로부터의 반응물을 초기 pH 4.5-13.65범위에서 45℃로 산화반응시켜 합성한 수산화철들의 전자현미경 사진들.1a to 1n degrees: Electron micrographs of iron hydroxides synthesized by oxidizing the reaction product from waste acid after the first and second purification steps according to the present invention at 45 ° C in the initial pH range of 4.5-13.65.

제2a도 내지 2c도 : 1차 정제 단계만을 거친 폐산으로부터의 반응물을 초기 pH 13, 13.5 및 13.6에서 45℃로 산화반응시켜 합성한 수산화철들의 전자현미경사진들.2a to 2c: Electron micrographs of iron hydroxides synthesized by oxidizing the reaction product from waste acid that passed only the first purification step at 45 ° C. at an initial pH of 13, 13.5 and 13.6.

제3a도 내지 3h도 : 본 발명에 따라 1, 2차 정제단계를 거친 폐산으로부터의 반응물을 초기 pH 13에서 여러 반응온도에 따라 산화반응시켜 합성한 수산화철들의 전자현미경 사진들.3a to 3h: Electron micrographs of the iron hydroxides synthesized by oxidizing the reactants from the waste acid after the first and second purification steps according to the present invention at various pHs at an initial pH of 13.

본 발명은 자기 기록 매체용 출발원료로 적합한 침상형

Figure kpo00004
-수산화철(
Figure kpo00005
-FeOOH)분말을 제조하는 방법에 관한 것으로서, 보다 상세하게는 제철소에서 열연강판의 스케일(Scale)을 제거하기 위해 염산 산세 처리과정중 부생되는 폐산을 이용하여 알칼리 중화법으로 정제한 후 염화제일철 용액을 습식산화하여 자기 기록용매체로 시용되는
Figure kpo00006
-Fe2O3계 산화철 및 철분말을 제조하기 위한 출발원료인
Figure kpo00007
-FeOOH을 제조하는 방법에 관한 것이다.The present invention is a needle type suitable as a starting material for a magnetic recording medium
Figure kpo00004
Iron hydroxide (
Figure kpo00005
-FeOOH) powder, and more particularly, to remove the scale of the hot-rolled steel sheet in the steel mill, the ferric chloride solution after purification by alkaline neutralization method using waste acid generated by by-product during hydrochloric acid pickling process Wet oxidized and applied to magnetic recording media
Figure kpo00006
-Fe 2 O 3 is a starting material for manufacturing iron oxide and iron powder
Figure kpo00007
It relates to a method of producing -FeOOH.

현재 자기 기록매체로서 가장 범용화되어 있는 것은

Figure kpo00008
-Fe2O3계 산화철로서, 이는 오디오 및 비디오 테이프, 컴퓨터 테이프, 플로피 디스크(floppy disk), 카드(card)등 각종 정보 기록분야에 다양햐게 활용되고 있는 자성분말이다. 급속한 정보사회의 발달에 따라, 보다 좁은 면적에 보다 많은 정보량을 기억할 수 있는 매체가 절실히 요구되고 있다. 이에 부응하는 기록매체용 산화철계 자성재료로서는 8밀리 비디오용 테이프, 전자카메라 디스크, 접촉자기 전사용 모체 테이프, 디지탈 기록용 테이프 등에 활용도가 높은 철분말(metal powder)을 들 수가 있다. 이처럼 자기 기록분야에 있어서 산화철에 자성재료가 차지하는 비중이 큰 것은 우수한 물리적 화학적 특성을 겸비하고 있는데 반해 다른 기록매체에 비해 값이 싸기 때문이다.At present, the most popular type of magnetic recording medium
Figure kpo00008
-Fe 2 O 3 -based iron oxide, which is a magnetic powder widely used in various information recording fields such as audio and video tapes, computer tapes, floppy disks, cards, and the like. With the rapid development of information society, there is an urgent need for a medium capable of storing more information in a smaller area. Corresponding iron oxide-based magnetic materials for recording media include high-availability iron powder such as 8-millimeter video tapes, electronic camera disks, contact magnetic transfer matrix tapes, and digital recording tapes. The reason why the magnetic material occupies a large portion of the iron oxide in the magnetic recording field is because it has excellent physical and chemical properties but is cheaper than other recording media.

자기 기록매체에 요구되는 특성에는, 포화자속밀도가 크고 각형비가 크며 보자력이 자기 헤드가 허용하는 한 클것등과 같은 기본적인 자기 특성외에, 자성입자의 균일 분산성, 표면조도, 화학적 및 기계적 내구성등이 포함된다. 이들 자기기록용 매체의 성질은 크게 내적요인(intrinsic factor)과 외적요인(extrinsic factor)에 의해 지배되고 있다. 내적요인은 포화자화, 잔류자화, 보자력, 각형비등이며, 외적요인은 입자의 모양 및 크기, 압도분포, 기공의 크기와수, 및 분산성등이다. 외적요인은 내적요인에 크게 영향을 미치므로 특성이 좋은 자기 기록매체를 얻기 위해서는 외적요인을 잘 조절해야 한다. 침상형 산화철계 자성재료의 자기특성은 결정자기 이방성, 자왜이방성, 형상자기 이방성에 의존하고 있다. 결정자기 이방성 및 자왜이방성은 물질고유의 정수로서 입자형태와는 관계없이 일정한 값을 가지나, 형상자기 이방성은 입자형태에 의해 결정되어 자기 특성에 큰영향을 주게 된다. 우수한 자기 특성을 얻기 위해서는 침상성이 좋고 균일한 입도 분포를 가지는

Figure kpo00009
-FeOOH를 제조하여야 한다.In addition to the basic magnetic properties such as high saturation magnetic flux density, large square ratio, and coercive force as large as the magnetic head allows, the characteristics required for the magnetic recording medium include the uniform dispersion, surface roughness, chemical and mechanical durability of the magnetic particles. Included. The properties of these magnetic recording media are largely dominated by intrinsic factors and extrinsic factors. Internal factors include saturation magnetization, residual magnetization, coercive force, angular boiling, and external factors include particle shape and size, overwhelming distribution, pore size and number, and dispersibility. Since external factors greatly influence internal factors, external factors must be well controlled to obtain a magnetic recording medium having good characteristics. Magnetic properties of acicular iron oxide-based magnetic materials are dependent on crystal magnetic anisotropy, magnetostrictive anisotropy, and shape magnetic anisotropy. Crystalline magnetic anisotropy and magnetostrictive anisotropy are material-specific integers that have a constant value regardless of particle shape, but shape magnetic anisotropy is determined by particle shape, which greatly affects magnetic properties. In order to obtain excellent magnetic properties, it has a good acicular property and a uniform particle size distribution.
Figure kpo00009
-FeOOH should be manufactured.

Figure kpo00010
-Fe2O3계 산화철 및 철분말의 입자형태는 출발물질인
Figure kpo00011
-수산화철(
Figure kpo00012
-FeOOH)의 입자 형태를 그대로 유지하며 결정학적 배향관계도
Figure kpo00013
-수산화철침상축이
Figure kpo00014
-Fe2O3및 철분말의 침상축과 일치하는 토포태틱(topotactic) 반응이므로
Figure kpo00015
-수산화철 입자형태의 제어는 대단히 중요하다.
Figure kpo00010
The particle shape of -Fe 2 O 3 -based iron oxide and iron powder is a starting material
Figure kpo00011
Iron hydroxide (
Figure kpo00012
-FeOOH) particle shape and crystallographic orientation
Figure kpo00013
-Iron hydroxide needle shaft
Figure kpo00014
Is a topotactic reaction consistent with the needle axis of Fe 2 O 3 and iron powder
Figure kpo00015
Control of the iron hydroxide particle shape is very important.

종래에

Figure kpo00016
-수산화철(
Figure kpo00017
-FeOOH) 제조에 사용되었던 원료는 주로 황산철이었다. 황산철은 다량으로 손쉽게 입수가 가능하였으며 이를 원료로 하여 제조한 생성물의 품질이 우수하다는 점에 그 이유가 있었으나, 근간에 관련업계들이 제반사정으로 인하여 황산철보다 염화철이 원료입수가 유리하게 되었으며, 황산철을 원료로한 생성물의 특성과 동등이상의 품질의 나타내는
Figure kpo00018
-수산화철을 염화철로부터 합성할 수 있다는 것이 확인되었다.(일본 특허 소 57-61635)Conventionally
Figure kpo00016
Iron hydroxide (
Figure kpo00017
The raw material used for the production of -FeOOH) was mainly iron sulfate. Iron sulfate was easily available in large quantities, and there was a reason that the quality of the product manufactured using this material was excellent. However, due to the general circumstances of related industries, iron chloride was more advantageous than iron sulfate. Indicative of quality equivalent to or higher than that of iron sulfate
Figure kpo00018
It was confirmed that iron hydroxide can be synthesized from iron chloride. (Japanese Patent No. 57-61635)

Figure kpo00019
-수산화철(
Figure kpo00020
-FeOOH) 제조방법에는 일반적으로 산성영역법과 알칼리 영역법이 있다.("Condition for the Formation of Fe3O4by the Air Oxidation of Fe(OH)2Suspension, " Bull Chem Soc Jpn., Vol 47(7), 1646-1650(1974) 산성 수용액에서 제조한
Figure kpo00021
-수산화철은 수지상이 많이 생성하므로 최종생성물의 분산성과 자장배향성 및 자기 특성에 악영향을 미치게 되나 공업적으로는 유리한 방법이다. 한편 알칼리 수용액에서 제조한
Figure kpo00022
-수산화철은 수지상이 거의 없고 침상성이 비교적 크기 때문에 고성능 테이프용 자성분 원료로 이용되고 있다.
Figure kpo00019
Iron hydroxide (
Figure kpo00020
-FeOOH) In general, there are acidic and alkalinized methods ("Condition for the Formation of Fe 3 O 4 by the Air Oxidation of Fe (OH) 2 Suspension," Bull Chem Soc Jpn., Vol 47 ( 7), 1646-1650 (1974) prepared in acidic aqueous solution
Figure kpo00021
-Iron hydroxide produces a lot of dendritic phase, which adversely affects dispersibility, magnetic field orientation, and magnetic properties of the final product, but is an industrially advantageous method. Meanwhile prepared in alkaline aqueous solution
Figure kpo00022
Iron hydroxide is used as a magnetic raw material for high-performance tape because it has almost no dendritic phase and relatively high acicularity.

일본 특허(소56-73633)에서는 제일철 용액으로서 황산철을 이용하고 PH 11이상에서 생성된 제일철 침전 현탁액을 장시간 방치한 후 산화제를 이용, 80℃이하로 산화반응시킴으로서 결정성이 양호하고 축 비가 크며 입자크기가 작은 침상

Figure kpo00023
-FeOOH를 제조하고자 하였으며; 일본 특허(소 56-169131, 56-73631, 56-73632)에서는 입자크기가 작고 축비가 큰
Figure kpo00024
-수산화철을 제조하기 위해, 황산철 용액에 알칼리를 가하고 입자 크기를 작게 하기 위한 목적으로 산화제(염소산칼륨, 염소산나트륨)를 첨가하거나 입도분포를 균일하게 하기 위하여 Zn, Si 등을 첨가하고 이를 장시간 방치한후, 후속 열처리시 입자간 소결방지 목적으로 규산나트륨을 첨가하여 산화반응시켜
Figure kpo00025
-FeOOH를 제조하였다. 일본특허(소 58-25202)에서는 황산철 용액에 P를 첨가하여 입도분포가 균일하고 수지상이 적으며 합성 반응온도(50℃)가 높아도 마그네타이트(Fe3O4)의 생성이 없는
Figure kpo00026
-FeOOH를 제조하였다. 또한 일본 특허(소 57-61635)에서는, 출발원료로 염화철을 이용하여 값싸고 고품질인
Figure kpo00027
-수산화철을 제조하기 위하여, 염화철 용액에 임의로 유산 이온을 첨가하고 침상비나 크기를 조절하기 위한 첨가제(Zn, Ni, Co) 및 환원처리시의 소결방지제(Si)를 첨가하여
Figure kpo00028
-수산화철을 제조하였다.In Japanese Patent (S56-73633), ferrous sulfate is used as ferrous iron solution, ferrous precipitate suspension produced at pH 11 or more is left for a long time, and then oxidized to 80 ° C or lower using an oxidizing agent to have good crystallinity and high axial ratio. Bed with small particle size
Figure kpo00023
Attempted to produce -FeOOH; Japanese Patent (S 56-169131, 56-73631, 56-73632) has a small particle size and a large axial ratio.
Figure kpo00024
To prepare iron hydroxide, add oxidizing agents (potassium chlorine, sodium chlorate) for the purpose of adding alkali to the iron sulfate solution and reduce the particle size, or add Zn, Si, etc. to make the particle size distribution and leave it for a long time. After the subsequent heat treatment, sodium silicate was added for oxidation prevention
Figure kpo00025
-FeOOH was prepared. Japanese Patent No. 58-25202 discloses that the addition of P to the iron sulfate solution results in a uniform particle size distribution, low dendritic phase, and no formation of magnetite (Fe 3 O 4 ) even at high synthesis reaction temperatures (50 ° C).
Figure kpo00026
-FeOOH was prepared. In addition, the Japanese patent (S 57-61635) uses iron chloride as a starting material, which is cheap and high quality.
Figure kpo00027
To prepare iron hydroxide, optionally add lactic acid ions to the iron chloride solution, add additives (Zn, Ni, Co) for adjusting the bed ratio or size, and anti-sintering agent (Si) during the reduction treatment.
Figure kpo00028
Iron hydroxide was prepared.

전술한 바와 같이,

Figure kpo00029
-FeOOH 제조를 위한 대부분의 공지 방법들은 출발원료로 황산철을 사용하고 있으며 각종 첨가제로
Figure kpo00030
-수산화철의 입자특성향상 및 후속 열처리시 유발되는 소결 현상들을 억제하고자 하였다. 또한 염화철을 원료로 사용하는 방법에서도 여러 첨가제 및 소결방지제를 사용하였다.As mentioned above,
Figure kpo00029
Most known methods for producing FeOOH use iron sulfate as a starting material and various additives.
Figure kpo00030
-To improve the particle characteristics of iron hydroxide and to suppress the sintering phenomenon caused by the subsequent heat treatment. In addition, various additives and antisintering agents were used in the method using iron chloride as a raw material.

근래에 제철소의 산세라인에 사용되는 산이 산세(pickling)의 능력 때문에 황산에서 염산으로 거의 대부분 전환됨에 따라 염화철이 산화철 자기 기록매체의 주된 공급원으로 될 것이 자명한 사실이다. 현재 국내에서는 염산 산세폐액을 이용하여 자성 유체개발이라든지 안료용수 산화철제조에 관한 연구는 진행되었지만 자기 기록용에 적합한

Figure kpo00031
-수산화철의 제조에 관한 방법에 대해서는 전무한 상태에 있다. 이것은 폐산속에 용해되어 있는 불순물들의 제어가 곤란하여 불순물의 영향에 민감한 전자기제품, 그중에서도 기록매체로 사용되는 자성분의 자기적 성질을 열화시켜 자성분으로서의 구비조건을 갖추지 못하기 때문이다.It is obvious that iron chloride will become a major source of iron oxide magnetic recording media as the acid used in pickling lines in steel mills has been almost entirely converted from sulfuric acid to hydrochloric acid because of its pickling ability. At present, the development of magnetic fluid using hydrochloric acid pickling waste and the manufacture of pigment water iron oxide have been conducted.
Figure kpo00031
There is no state on the method for producing iron hydroxide. This is because it is difficult to control the impurities dissolved in the waste acid and deteriorates the magnetic properties of the magnetic products sensitive to the influence of the impurities, among them, the magnetic material used as the recording medium, thereby failing to meet the requirements for the magnetic material.

본 발명은 제철소 산세라인에서 부생되는 폐산중의 불순물을 정제한 염화제일철 용액으로부터 자기기록용에 적합한

Figure kpo00032
-수산화철을 제조하는 방법을 제공하고자 하는 것이다. 본 발명은 특히 상기 정제 염화제일철 용액의 초기 반응을 pH 및 산화반응시간을 적절히 조절함으로서 여러가지 첨가제를 첨가함이 없이 우수한 입도 및 침상 결정성을 갖는
Figure kpo00033
-수산화철의 제조방법을 제공하고자 하는 것이다.The present invention is suitable for magnetic recording from ferrous chloride solution which is purified from impurities in waste acid produced in by-product steel pickling line.
Figure kpo00032
It is to provide a method for producing iron hydroxide. In particular, the present invention has excellent particle size and acicular crystallinity without adding various additives by appropriately adjusting the pH and oxidation reaction time of the initial reaction of the purified ferrous chloride solution.
Figure kpo00033
It is to provide a method for producing iron hydroxide.

본 발명의 제조방법은 제철소 산세라인에서 부생되는 염산 폐액을 여과막에 의해 정제하는 1차 정제단계; 1차 정제된 염산 폐액에 알카리 용액을 첨가하여 pH를 2.5-7 범위로 조정하고 염산 폐액중의 Fe+3이온 및 기타 불순물을 제거하여 염화제일철 용액을 제조하는 2차 정제단계; 1, 2차 정제하여 얻은 염화제일철 용액에 비산화성 가스를 불어 넣으면서 알카리를 첨가하여 초기 반응물의 pH를 조절한 후 산화성 가스를 이용하여 산화반응시켜 자기기록매체용에 적합한 침상형

Figure kpo00034
-수산화철을 제조하는 단계를 포함하여 구성된다.The production method of the present invention comprises the first purification step of purifying the hydrochloric acid waste liquid by-product from the iron pickling line by a filtration membrane; Adding a alkaline solution to the first purified hydrochloric acid waste solution to adjust the pH to a range of 2.5-7 and removing a Fe + 3 ion and other impurities in the hydrochloric acid waste solution to prepare a ferric chloride solution; Alkaline is added to the ferric chloride solution obtained by the first and second purification while alkali is added to adjust the pH of the initial reactant, and then oxidized using oxidizing gas to make a needle type suitable for magnetic recording media.
Figure kpo00034
It comprises a step of preparing the iron hydroxide.

상기 폐산 정제단계

Figure kpo00035
-수산화철 제조단계를 좀 더 상세히 설명하면 다음과 같다.The waste acid purification step
Figure kpo00035
-The iron hydroxide manufacturing step is described in more detail as follows.

[폐산정제][Waste settlement]

제철소 폐산이 여과막을 통한 1차 정제단계를 거치면 고농도의 염화철(즉, 약 3.58몰(M)의 염화제일철 및 약 0.16M의 염화제이철(Fe+3/Fe+2=0.0446)을 비롯하여, Mn, Ca, Al, Mg, CR, Ti, K, Si등의 기타 불순물이 함유된 용액이 얻어진다.The steel mill waste acid undergoes a first purification step through the filtration membrane, including high concentrations of iron chloride (ie, about 3.58 mol (M) of ferric chloride and about 0.16 M of ferric chloride (Fe +3 / Fe +2 = 0.0446), including Mn, A solution containing other impurities such as Ca, Al, Mg, CR, Ti, K, Si is obtained.

자기 기록매체용에 적합한 침상 수산화철을 제조하기 위해서는 염화제이철 이온을 비롯한 기타 함유불순물의 제어가 대단히 중요하다. 즉 제이철 이온이 다량 함유된 철염용액을 원료로 사용하면 입상의 마그네타이트가 생성함으로서 기록매체의 구비조건이되는 형상자기 이방성을 기대할 수가 없다. Mn, Si를 비롯한 기타불순물들은 기록 매체의 자기적 특성에 악 영향을 미치므로 이러한 성분의 제어가 대단히 중요하다.In order to produce acicular iron hydroxide suitable for magnetic recording media, control of ferric chloride ions and other containing impurities is very important. In other words, when a ferrous salt solution containing a large amount of ferric ions is used as a raw material, granular magnetite is produced, so that shape magnetic anisotropy, which is a requirement for recording media, cannot be expected. Mn, Si and other impurities impair the magnetic properties of the recording medium, so controlling these components is very important.

염화제이철 이온 및 기타불순물의 정제에 있어서, 본 발명은 pH 및 용해도적 관계를 이용한다. 즉, 1차 정제한 폐산을 비산화성 분위기에서 서서히 교반하면서 알칼리용액(바람직하게는 4M NaOH 용액)을 pH2.5-7이 될때까지 소량씩 적가하면 붉은색의 염화제이철 침전물이 생성되며, 이를 여과함으로써 침상의 수산화철 제조에 적합한 연녹새의 고농도 염화제일철 용액(Fe+2: 1.63M, Fe+3: 0.01M, Fe+3/Fe+2=0.006, 기타불순물 : ppm정도의 극소량)을 얻을 수 있다.In the purification of ferric chloride ions and other impurities, the present invention utilizes pH and solubility relationships. That is, a small amount of alkaline solution (preferably 4M NaOH solution) was added dropwise until the pH2.5-7 was gradually stirred in the first purified waste acid in a non-oxidizing atmosphere, and a red ferric chloride precipitate was formed, which was filtered. By this, a high concentration of ferrous chloride solution (Fe +2 : 1.63M, Fe +3 : 0.01M, Fe +3 / Fe +2 = 0.006, and other impurities: about ppm) can be obtained. have.

[

Figure kpo00036
-수산화철(
Figure kpo00037
-FeOOH)제조][
Figure kpo00036
Iron hydroxide (
Figure kpo00037
-FeOOH) Manufacture]

전술한 바와 같이 1, 2차 정제하여 얻은 고농도 염화제일철 용액을 반응용기에 넣고 비산화성분위기(예를들면, 질소가스를 5ℓ/min로 불어넣음)하에서 교반함과 동시에 알칼리 용액(예를들면, 4M NaOH용액)을 소량씩 첨가하여 초기 반응물의 pH를 적정 수준으로 한 다음, 비산화성 분위기를 공기 흡기(3ℓ/min)등에 의하여 산화성 분위기로 교체하고, 약 10-100℃의 온도에서 1시간동안 산화반응시킨다. 반응 진행과 더불어 pH가 감소하고 염화제일철을 포함하는 초기의 백색 침전물은 녹색의 그린러스트(green rust)를 거쳐 점차 황색으로 변화하며, 반응시간 약 3시간 이후에는 pH의 변화가 거의 없고 진한 황색으로 완전히 변화된다.

Figure kpo00038
-수산화철 단일상(single phase)이 생성되는 반응물의 초기 pH는 약 13이상이며 최종 pH는 약 11.9-12.97범위이다.As described above, the high-concentration ferric chloride solution obtained by the first and second purification is placed in a reaction vessel and stirred under a non-oxidizing atmosphere (eg, nitrogen gas is blown at 5 L / min) and an alkaline solution (for example, 4M NaOH solution) was added in small portions to adjust the pH of the initial reactant to an appropriate level, and then the non-oxidizing atmosphere was replaced with an oxidizing atmosphere by air intake (3 L / min) and the like for 1 hour at a temperature of about 10-100 ° C. Oxidize. As the reaction progresses, the pH decreases, and the initial white precipitate containing ferrous chloride gradually changes to yellow through green green rust. After about 3 hours, there is little change of pH and dark yellow. Completely changed.
Figure kpo00038
The initial pH of the reactants from which the iron hydroxide single phase is produced is at least about 13 and the final pH is in the range of about 11.9-12.97.

본 발명에서 중요한 것은 반응액의 초기 pH, 반응온도 및 반응시간으로서 반응물의 초기 pH가 낮으면

Figure kpo00039
-FeOOH와
Figure kpo00040
-FeOOH의 혼합물,
Figure kpo00041
-FeOOH와 Fe3O4등의 혼합물과 기록재료에 부적합한 구형의 산화철이 생성된다. 또한 반응온도가 낮으면 너무 미세한 입자가 생성되어 후속 열처리시 입자간의 소결이 일어나 침상성을 소실하므로 자기 기록 재로로서는 부적합하게 된다. 반면에 반응온도가 너무 높게 되면 구상의 마그네타이트(Fe3O4)가 생성되므로 이들의 제어가 대단히 중요하다.What is important in the present invention is that the initial pH of the reaction solution, the reaction temperature and reaction time if the initial pH of the reactants is low
Figure kpo00039
-With FeOOH
Figure kpo00040
A mixture of -FeOOH,
Figure kpo00041
A mixture of -FeOOH and Fe 3 O 4 and a spherical iron oxide which is not suitable for the recording material are produced. In addition, when the reaction temperature is low, too fine particles are generated and sintering between the particles occurs during the subsequent heat treatment, thus losing the acicular property, which is not suitable as a magnetic recording material. On the other hand, if the reaction temperature is too high, spherical magnetite (Fe 3 O 4 ) is produced, so their control is very important.

Figure kpo00042
-수산화철 단일상이 생성되는 pH 영역에서는 pH의 증가에 따라 침상입자의 길이가 증가하는 경향과 더불어
Figure kpo00043
-Fe2O3의 자기적 성질도 향상되었다. 반응온도가 증가함에 따라 침상비가 증가하며 40-60℃ 범위에서 생성된 시료로부터 제조된
Figure kpo00044
-Fe2O3의 자기적 성질이 가장 우수하였다.
Figure kpo00042
In the pH range where iron hydroxide single phase is produced, the length of needle-shaped particles increases with increasing pH.
Figure kpo00043
The magnetic properties of -Fe 2 O 3 were also improved. As the reaction temperature increases, the needle ratio increases and is prepared from the sample produced in the range of 40-60 ° C.
Figure kpo00044
The magnetic properties of -Fe 2 O 3 were the best.

이하 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

제철소 산세라인에서 부생되는 폐산을 여과막을 사용하여 1차 정제하고 1차 정제된 폐산 성분중 Fe+3이온을 비롯한 기타 불순물을 pH 및 용액도적 관계를 이용, 알카리 중화법으로 2차 정제하였다. 2차 정제는 1차 정제한 폐산을 서서히 교반하면서 4M 가성 소다(NaOH)용액을 pH 2.4-7 범위가 될때까지 소량씩 첨가하여 붉은색의 염화제이철 침전물을 생성시키고, 염화제이철 침전물을 여과하여 침상의 수산화철 제조에 적합한 연한 초록색의 염화제일철 용액을 얻었다.The waste acid produced in the iron pickling line was first purified using a filtration membrane, and other impurities, including Fe +3 ions, among the first purified waste acid components were secondly purified by alkaline neutralization using pH and solution diagrams. Secondary purification was performed by slowly stirring the first purified waste acid and adding a small amount of 4M caustic soda (NaOH) solution until the pH was in the range of 2.4-7, producing a red ferric chloride precipitate, and filtering the ferric chloride precipitate into a needle bed. A light green ferric chloride solution suitable for the production of iron hydroxide was obtained.

상기와 같이 1차 및 2차 정제한 염화제일철 용액에 대하여 습식분석(wet chemical analysis)을 행하고 그 결과를 하기 표 1에 나타내었다.Wet chemical analysis was performed on the first and second purified ferric chloride solutions as described above, and the results are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00045
Figure kpo00045

상기와 같이 1, 2차 정제하여 제조된 연한 초록색의 1.63M 염화제일철 용액 300ml씩을 각각 채취하여 교반기에 넣고 비산화성 분위기속에서 교반속도 1500rpm으로 교반하면서 4M 가성소다 용액을 가하여 반응액의 초기 pH를 4.5에서 13.65범위로 변화시키고, 산화성 분위기, 즉, 공기를 3ℓ/min로 불어넣어 주면서 반응온도 45℃에서 4시간동안 산화반응시켰다.300 ml of the light green 1.63M ferrous chloride solution prepared by the first and second purification as described above were collected and put into a stirrer, and 4M caustic soda solution was added while stirring at a stirring speed of 1500 rpm in a non-oxidizing atmosphere to adjust the initial pH of the reaction solution. It was changed in the range of 4.5 to 13.65 and oxidized for 4 hours at the reaction temperature of 45 DEG C while blowing an oxidizing atmosphere, that is, air at 3 L / min.

각 조건에서 생성된 침전물을 여과, 건조하여 X-선 회절분석으로 생성물질을 정성분석하고 전자현미경 관찰로 침상비를 구하여 하기 표 2에 표기하였으며, 각 시료의 전자현미경 사진을 제1도에 나타내었다.The precipitate produced under each condition was filtered and dried, and the product was qualitatively analyzed by X-ray diffraction analysis, and the needle ratio was obtained by electron microscope observation. The results are shown in Table 2 below. The electron micrographs of the samples are shown in FIG. It was.

한편, 전자현미경 관찰 결과 침상 입자들만이 존재하는 시료를 후속 열처리(탈수 550℃ 1hr, 환원 325 30min, 산화 250℃ 30min)하여

Figure kpo00046
-Fe2O3를 제조하고 VSM를 이용하여 측정한 자기적 특성도 표 2에 나타내었다. 또한 제이철 이온 및 기타 불순물의 함유량을 제어하지 않은 1차 정제 폐산을 이용, 침상의
Figure kpo00047
-FeOOH 단일상이 생성되는 조건(즉, ph 13이상의 조건)에서 반응시켜 얻은 수산화철의 생성물을 X-선으로 정성 분석하여 표 2에 나타내었으며 전자 현미경사진을 제2도에 나타내었다. 또한 이들을
Figure kpo00048
-Fe2O3로 전환해서 측정한 자기적 특성도 표 2에 나타내었다.On the other hand, as a result of electron microscope observation, a sample containing only needle-shaped particles was subjected to subsequent heat treatment (dehydration 550 ° C 1hr, reduction 325 30min, oxidation 250 ° C 30min).
Figure kpo00046
The magnetic properties of -Fe 2 O 3 and measured using VSM are also shown in Table 2. In addition, by using primary purified waste acid that does not control the content of ferric ions and other impurities,
Figure kpo00047
The product of iron hydroxide obtained by the reaction under the condition of producing -FeOOH single phase (that is, above pH 13) was qualitatively analyzed by X-ray and shown in Table 2, and the electron micrograph is shown in FIG. Also these
Figure kpo00048
The magnetic properties measured by conversion to -Fe 2 O 3 are also shown in Table 2.

[표 2]TABLE 2

Figure kpo00049
Figure kpo00049

상기 표 2 및 첨부 제1-1 내지 1-14도에서 알 수 있듯이, 전술한 1, 2차 정제단계를 거쳐 염화제이철 이온 및 기타 불순물을 제어한 폐산을 사용한 경우 각 반응조건에 따라 여러 형태의 수산화물을 얻을 수 있었다. 즉 반응물의 초기 pH가 낮으면

Figure kpo00050
-FeOOH를 비롯하여
Figure kpo00051
-FeOOH와
Figure kpo00052
-FeOOH의 혼합물, Fe3O4등이 생성되며 pH 13이상에서는
Figure kpo00053
-FeOOH 단일상이 생성됨을 알 수 있다. 자기적 성질 또한
Figure kpo00054
-FeOOH 단일상이 생성되는 pH 13이상의 시료가 우수한 특성을 나타내고 있다. 그러나 1차 정제단계만을 거쳐 제이철 이온의 량 및 기타 불순물의 함유량을 제어하지 않은 폐산을 사용한 경우는 표 2 및 제2도에 나타난 바와 같이 침상의
Figure kpo00055
-FeOOH와 구상의 마그네타이트 혼합상이 생성되었으며 구상의 마구네타이트 생성으로 형상이방성의 기여효과가 감소되기 때문에 자기적 성질도 열악하였다.As can be seen in Table 2 and the accompanying 1-1 to 1-14 degrees, in the case of using waste acid in which ferric chloride ions and other impurities were controlled through the above-described first and second purification steps, The hydroxide could be obtained. That is, if the initial pH of the reactants is low,
Figure kpo00050
-Including FeOOH
Figure kpo00051
-With FeOOH
Figure kpo00052
-FeOOH mixture, Fe 3 O 4, etc. are formed, pH above 13
Figure kpo00053
It can be seen that -FeOOH single phase is generated. Magnetic properties
Figure kpo00054
Samples with a pH of 13 or above, where a -FeOOH single phase is produced, exhibit excellent properties. However, in the case of using waste acid which did not control the amount of ferric ions and other impurities through only the first purification step, as shown in Table 2 and FIG.
Figure kpo00055
The mixture of -FeOOH and spherical magnetite was produced and its magnetic properties were poor because spherical magnetite production reduced the contribution of shape anisotropy.

[실시예 2]Example 2

실시예 1에서와 마찬가지로 1, 2차 정제하여 얻은 연한 초록색의 1.63M 염화제일철 용액 300ml씩을 채취하여 각각 교반기에 넣고 비산화성 분위기 속에서 교반속도 1500rpm으로 교반하면서 4M 가성소다 용액을 가하여 반응액의 초기 pH를 13으로 유지하고, 산화성분위기 즉 공기를 3ℓ/min로 불어 넣어주면서 반응온도를 10-70℃로 변화하고 반응시간은 4시간으로 일정하게 하여 산화반응시켰다. 각 조건에서 생성된 침전물을 여과, 건조하여 X-선회절분석으로 생성물질을 분석하고 전자현미경 관찰로 침상비를 구하여 하기표 3에 표기하였으며, 각 시료의 전자현미경 사진들을 제3도에 나타내었다. 또한, 후속 열처리(탈수 550℃ 1hr, 환원 325℃ 30min, 산화 250 30min)로

Figure kpo00056
-Fe2O3를 제조하고 VSM을 이용하여 측정한 자기적 특성도 표 3에 함께 표기하였다.As in Example 1, 300 ml of the light green 1.63M ferrous chloride solution obtained by the 1st and 2nd purification were collected and put into a stirrer, and 4M caustic soda solution was added at a stirring speed of 1500rpm in a non-oxidizing atmosphere and the initial reaction of the reaction solution was carried out. The pH was maintained at 13, and the oxidation temperature, that is, air was blown at 3 l / min, the reaction temperature was changed to 10-70 ° C., and the reaction time was constant at 4 hours for oxidation reaction. The precipitate produced under each condition was filtered and dried to analyze the product by X-ray diffraction analysis, and the needle ratio was obtained by electron microscope observation. The results are shown in Table 3 below. The electron micrographs of the samples are shown in FIG. . Further heat treatment (dehydration 550 ℃ 1hr, reduction 325 ℃ 30min, oxidation 250 30min)
Figure kpo00056
-Fe 2 O 3 was prepared and the magnetic properties measured using the VSM are also shown in Table 3.

[표 3]TABLE 3

Figure kpo00057
Figure kpo00057

상기 표 3 및 첨부 제3-1 내지 3-8도에서 보듯이, 반응온도가 높으면 구상의 마그네타이트가 생성되고 이로 인해 자기적 특성이 나빠지게 된다. 반면에, 반응온도가 낮으면, 극히 미세한 입자 생성으로, 후속 열처리시 입자간 소결로 인해 침상성이 소실되어 자기적 성질이 열화됨을 알 수 있다.As shown in Table 3 and the accompanying 3-1 to 3-8 degrees, when the reaction temperature is high, spherical magnetite is produced, which causes a deterioration of magnetic properties. On the other hand, if the reaction temperature is low, it can be seen that the formation of extremely fine particles, the needle property is lost due to inter-sintering sintering during the subsequent heat treatment, the magnetic properties deteriorate.

[실시예 3]Example 3

상기 실시예 1에서와 마찬가지로, 1,2차 정제하여 얻은 연한 초록색의 1.63M 염화제일철 용액 300ml씩을 채취하여 각각 교반기에 넣고 비산화성 분위기속에서 교반속도 1500rpm으로 교반하면서 4M 가성소다 용액을 가하여 반응액의 초기 pH를 13.2로 유지하고, 산화성 분위기 즉 공기를 3ℓ/min로 불어넣어 주면서 반응온도를 10-90℃로 변화하고 반응시간은 4시간으로 일정하게 하여 산화반응시켰다. 각 조건에서 생성된 침전물을 여과 및 건조하여 X-선 회절분석으로 생성물질을 정성 분석하고 전자 현미경관찰로 침상비를 구하였으며, 후속 열처리(탈수 550℃ 1hr, 환원 325℃ 30min, 산화 250℃ 30min)로

Figure kpo00058
-Fe2O3를 제조하고 VSM을 이용하여 자기특성들을 측정하고 결과들을 하기표 4에 표기하였다.As in Example 1, 300 ml of the light green 1.63M ferrous chloride solution obtained by the first and second purification was collected and put into a stirrer, and 4M caustic soda solution was added thereto while stirring at a stirring speed of 1500 rpm in a non-oxidizing atmosphere. The initial pH of was maintained at 13.2, and the reaction temperature was changed to 10-90 ° C. while the oxidizing atmosphere, that is, air was blown at 3 L / min, and the reaction time was constant at 4 hours for oxidation reaction. The precipitates produced under each condition were filtered and dried to qualitatively analyze the product by X-ray diffraction analysis, and the needle ratio was obtained by electron microscopy. Subsequent heat treatment (dehydration 550 ° C 1hr, reduction 325 ° C 30min, oxidation 250 ° C 30min) )in
Figure kpo00058
-Fe 2 O 3 was prepared, magnetic properties were measured using VSM, and the results are shown in Table 4 below.

[표 4]TABLE 4

Figure kpo00059
Figure kpo00059

(비고)

Figure kpo00060
:
Figure kpo00061
-FeOOH(Remarks)
Figure kpo00060
:
Figure kpo00061
-FeOOH

[실시예 4]Example 4

상기 실시예 1에서와 마찬가지로 1, 2차 정제하여 얻은 연한 초록색의 1.63M 염화제일철 용액 300ml씩을 채취하여 각각 교반기에 넣고 비산화성 분위기 속에서 교반속도 1500rpm으로 교반하면서 4M 가성소다 용액을 가하여 반응액의 초기 pH를 13.65로 유지하고, 산화성 분위기 즉 공기를 3ℓ/min로 불어넣어 주면서 반응온도를 10-90℃로 변화하고 반응시간은 4시간으로 일정하게 하여 산화반응시켰다.As in Example 1, 300 ml of the light green 1.63M ferrous chloride solution obtained by the first and second purification were collected and put into a stirrer, and 4M caustic soda solution was added thereto while stirring at a stirring speed of 1500 rpm in a non-oxidizing atmosphere. The initial pH was maintained at 13.65 and the reaction temperature was changed to 10-90 ° C. while the oxidative atmosphere, that is, air was blown at 3 L / min, and the reaction time was constant at 4 hours for oxidation reaction.

각 조건에서 생성된 침전물을 여과 및 건조하여 X-선 회절 분석으로 생성물질을 정성 분석하였으며, 후속 열처리(탈수 550℃ 1hr, 환원 325℃ 30min, 산화 250℃ 30min)로

Figure kpo00062
-Fe2O3를 제조하고 VSM을 이용하여 자기특성을 측정한 결과를 표 5에 나타내었다.The precipitate produced under each condition was filtered and dried. The product was analyzed qualitatively by X-ray diffraction analysis, followed by subsequent heat treatment (dehydration 550 ° C. 1hr, reduction 325 ° C. 30min, oxidation 250 ° C. 30min).
Figure kpo00062
-Fe 2 O 3 was prepared and the results of measuring the magnetic properties using the VSM is shown in Table 5.

[표 5]TABLE 5

Figure kpo00063
Figure kpo00063

[실시예 5]Example 5

상기 실시예 1에서와 마찬가지로 1, 2차 정제하여 얻은 연한 초록색의 1.63M 염화제일철 용액 300ml씩을 채취하여 각각 교반기에 넣고 비산화성 분위기 속에서 교반속도 1500rpm으로 교반하면서 4M 가성소다 용액을 가하여 반응액의 초기 pH를 13.5로 유지하고, 산화성 분위기 즉 공기를 3ℓ/min로 불어넣어 주면서 반응온도 45℃로 일정하게하며 반응시간을 1-10시간으로 변화시켜 산화반응시켰다.As in Example 1, 300 ml of the light green 1.63M ferrous chloride solution obtained by the first and second purification were collected and put into a stirrer, and 4M caustic soda solution was added thereto while stirring at a stirring speed of 1500 rpm in a non-oxidizing atmosphere. The initial pH was maintained at 13.5, the reaction temperature was changed to 1-10 hours while the oxidizing atmosphere, that is, the air was blown at 3 L / min, and the reaction time was changed to 1-10 hours for oxidation.

각 조건하에서 생성된 침전물을 여과 및 건조하여 X-선 회절 분석으로 생성물질을 정성분석하였으며, 전자현미경 관찰로 침상비를 구하고, 후속 열처리(탈수 550℃ 1hr, 환원 325℃ 30min, 산화 250℃ 30min)로

Figure kpo00064
-Fe2O3를 제조하고 VSM을 이용하여 자기특성을 측정하고 결과를 하기표 6에 표기하였다.The precipitate produced under each condition was filtered and dried to qualitatively analyze the product by X-ray diffraction analysis. The needle ratio was obtained by electron microscopy, followed by subsequent heat treatment (dehydration 550 ℃ 1hr, reduction 325 ℃ 30min, oxidation 250 ℃ 30min). )in
Figure kpo00064
-Fe 2 O 3 was prepared, magnetic properties were measured using VSM, and the results are shown in Table 6 below.

[표 6]TABLE 6

Figure kpo00065
Figure kpo00065

Claims (1)

제철소 산세라인에서 부생되는 염산폐액중의 불용성 물질 및 스케일등을 여과막에 의하여 1차 정제하고, 상기 1차 정제된 염산 폐액에 알칼리 용액을 첨가하여 pH를 2.5-7범위로 조절함으로써 Fe+3이온 및 기타 불순물을 제거하여 2차 정제된 염화제일철 용액을 제조하고, 상기 2차 정제된 용액에 비산화성 분위기하에서 알칼리 용액을 첨가하여 초기 반응물의 pH를 13이상으로 조절한 후 10-100℃의 온도에서 산화성 가스를 이용하여 1시간이상 산화반응시킴을 특징으로 하는 자기기록매체용
Figure kpo00066
-수산화철(
Figure kpo00067
-FeOOH)의 제조방법.
Insoluble matters and scales in the hydrochloric acid wastewater produced in the pickling line at the steel mill are first purified by a filtration membrane, and an alkali solution is added to the primary purified hydrochloric acid waste solution to adjust the pH to a range of 2.5-7, thereby increasing the Fe +3 ion. And removing other impurities to prepare a secondary purified ferrous chloride solution, and to the secondary purified solution by adding an alkaline solution in a non-oxidizing atmosphere to adjust the pH of the initial reactant to 13 or more, the temperature of 10-100 ℃ For magnetic recording media using an oxidizing gas for at least 1 hour
Figure kpo00066
Iron hydroxide (
Figure kpo00067
-FeOOH) manufacturing method.
KR1019900009396A 1990-06-25 1990-06-25 Process for the production of alpha-feooh KR920005574B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900009396A KR920005574B1 (en) 1990-06-25 1990-06-25 Process for the production of alpha-feooh

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900009396A KR920005574B1 (en) 1990-06-25 1990-06-25 Process for the production of alpha-feooh

Publications (2)

Publication Number Publication Date
KR920000622A KR920000622A (en) 1992-01-29
KR920005574B1 true KR920005574B1 (en) 1992-07-09

Family

ID=19300464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900009396A KR920005574B1 (en) 1990-06-25 1990-06-25 Process for the production of alpha-feooh

Country Status (1)

Country Link
KR (1) KR920005574B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786602B (en) * 2022-10-11 2024-04-09 中国恩菲工程技术有限公司 Method for preparing hematite by using iron-aluminum slag

Also Published As

Publication number Publication date
KR920000622A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
KR900002818B1 (en) Process for production of plate-like barium fenite pasticles for magnetic recording
US4529524A (en) Process for producing plate-like barium ferrite particles for magnetic recording
Pozas et al. Uniform nanosized goethite particles obtained by aerial oxidation in the FeSO4–Na2CO3 system
KR920005574B1 (en) Process for the production of alpha-feooh
JPS6341854B2 (en)
US4115106A (en) Method for producing metallic oxide compounds
CA1291318C (en) Process for the preparation of isometric magnetic iron oxide pigments
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
Konishi et al. Preparation and characterization of fine magnetite particles from iron (III) carboxylate dissolved in organic solvent
KR920005334B1 (en) Gamma-feooh manufacturing method for magnetic recording medium
JPS60239327A (en) Manufacture of fine grain isotropic cobalt-containing ferrite powder
JP2829644B2 (en) Production method of α-iron oxide
JPS62139803A (en) Production of ferromagnetic metallic powder
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP2844932B2 (en) Composite spinel ferrite fine particles and method for producing the same
JPS63233017A (en) Magnetic powder of barium ferrite and its production
KR920001518B1 (en) Process for the preparation iron oxide of particle size
JPS62252324A (en) Production of fine barium ferrite powder
SU1752521A1 (en) Method of manganese-zinc ferrite powder preparation
KR930004508B1 (en) Process for preparation of gamma-feooh
JP2007123544A (en) Spinel type ferrimagnetic fine-grain powder and its manufacturing method
JPS6350326A (en) Production of hematite
JPH0251204A (en) Production of plate-like barium ferrite minute powder
JPS61186224A (en) Acicular goethite and production thereof
JPS59174530A (en) Manufacture of w-phase type hexagonal ferrite particles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19970707

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee