JPS6350326A - Production of hematite - Google Patents

Production of hematite

Info

Publication number
JPS6350326A
JPS6350326A JP19477086A JP19477086A JPS6350326A JP S6350326 A JPS6350326 A JP S6350326A JP 19477086 A JP19477086 A JP 19477086A JP 19477086 A JP19477086 A JP 19477086A JP S6350326 A JPS6350326 A JP S6350326A
Authority
JP
Japan
Prior art keywords
hematite
suspension
ferric hydroxide
added
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19477086A
Other languages
Japanese (ja)
Inventor
Tsuneo Ishikawa
石川 恒夫
Hisanobu Yamaguchi
山口 壽信
Toshihiko Kawamura
河村 俊彦
Haruki Ichinose
一ノ瀬 治紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP19477086A priority Critical patent/JPS6350326A/en
Publication of JPS6350326A publication Critical patent/JPS6350326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce hematite which is free from voids in a particle and has high density and is free from branching and excellent in magnetic characteristics by heat-treating the aq. suspension of ferric hydroxide under the presence of tetravalent metallic compd. in an alkaline pH region. CONSTITUTION:0.001-0.1mol tetravalent metallic compd. (i.e. SnCl4) for 1g atom Fe and 0.001-0.1mol phosphorus compd. (i.e. orthophosphoric acid) and/or oxycarboxylic acid compd. (i.e. citric acid) for 1g atom Fe in accordance with necessity are added to aq. suspension contg. 0.01-100g/l (as Fe) ferric hydroxide obtained by adding alkali (i.e. NaOH) to ferric salt (i.e. FeCl3) aq. soln., and alkali is added to regulate pH to >=8. Then after heating this suspension at 80-300 deg.C, acicular hematite is obtained by separation and recovery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒子中に空孔がなく、実質的に高密度で枝分
れのない優れた磁気特性の磁気記録体用磁性粉末を製造
するのに好適な原料であるヘマタイトを湿式法にて得る
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention produces magnetic powder for magnetic recording materials that has no pores in the particles, has substantially high density, has no branches, and has excellent magnetic properties. This invention relates to a method for obtaining hematite, which is a suitable raw material for the production of hematite, by a wet method.

〔発明の技術的背景〕[Technical background of the invention]

近年、磁気テープ、磁気カードの磁気ディスク、磁気ド
ラム等の磁気記録媒体は、高密度記録化、高出力化の要
請が一層強まってきてBす、この指向とあいまって前記
磁気記録媒体に使用される磁性粉末はますます高性能化
が望まれでいる。
In recent years, magnetic recording media such as magnetic tapes, magnetic disks of magnetic cards, and magnetic drums have been required to have higher density recording and higher output. It is desired that magnetic powders used in magnetic fields have even higher performance.

ところで、磁性粉末としては、従来がら針状の磁性酸化
鉄粉末が最も多く使用されてきているが、このものは、
通常針状のオキシ水酸化鉄(例えばα−FeOOH)を
300〜700 ’Cで加熱脱水してヘマタイト(α−
Fe、O,)とし、次いで300〜500°Cで加熱還
元してマグネタイト(F e 、O−)とし、しかる後
さらに必要に応じ酸化してマグネタイト(γ−Fe=O
s )とすることによって得られている。
By the way, needle-shaped magnetic iron oxide powder has traditionally been most commonly used as magnetic powder;
Normally, needle-shaped iron oxyhydroxide (e.g. α-FeOOH) is dehydrated by heating at 300 to 700'C to form hematite (α-FeOOH).
Fe, O,), then heat-reduced at 300 to 500°C to form magnetite (F e , O-), and then further oxidized as necessary to form magnetite (γ-Fe=O-).
s).

しかして前記オキシ水酸化鉄の加熱脱水工程で生起する
ヘマタイト結晶粒子中の多数の空孔(脱水孔)は目的物
であるマグネタイトやγ−F e 2 (’) sに多
数残存し、空孔周辺で自発磁化が部分的に乱れて磁気特
性に悪影響を及ぼし易く、また前記脱水工程を高温で処
理して粒子内部の緻密化をはかろうとすると、粒子間焼
結や粒子形状筋れが起り前記目的物の磁気異方性や磁気
記録媒体への分散性、充填性がいちじるしく損なわれ易
くなるので、前記問題点を惰イ決するべ〈従来から種々
の提案がなされている。例えば水酸化第二鉄のアルカリ
性の水性懸濁液を加熱処理して湿式法で直接にヘマタイ
トを製造する方法が知られている。しかしながらこの方
法によって得られるヘマタイト、さらにはこのものを出
発原料とするマグネタイトやマグネタイトなどの磁性酸
化鉄粉末にあっては、空孔の生成はある程度抑制される
ものの形状性がいちじるしく損なわれ易く、その結果、
前記目的物の磁性酸化鉄粉末は、未だ高密度記録化、高
出力化を十分満足するまでに至っておらずその改善が強
く希求されている。
However, a large number of pores (dehydration pores) in the hematite crystal particles generated in the heat dehydration process of iron oxyhydroxide remain in the target magnetite and γ-Fe 2 (') s, and the vacancies are Spontaneous magnetization is partially disturbed in the periphery, which tends to have a negative effect on magnetic properties, and when attempting to densify the inside of the particles by processing the dehydration process at high temperatures, interparticle sintering and particle shape streaks may occur. Since the magnetic anisotropy of the target material, the dispersibility into the magnetic recording medium, and the filling property are likely to be significantly impaired, various proposals have been made in the past to resolve the above problems. For example, a method is known in which hematite is directly produced by a wet method by heating an alkaline aqueous suspension of ferric hydroxide. However, in hematite obtained by this method, and furthermore, in magnetite and magnetic iron oxide powders such as magnetite that use this as a starting material, although the formation of pores is suppressed to some extent, the shape property is easily impaired, and the result,
The desired magnetic iron oxide powder has not yet reached the point where it fully satisfies the requirements for high-density recording and high output, and there is a strong desire for improvement.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点を解決するためになされたもので
あって、空孔な実質的に有さずかっ針状性に優れ、しか
も粒度分布が狭く、磁気記録媒体用磁性粉の製造原料と
して好適なヘマタイトの製造方法を提供することにある
The present invention has been made in order to solve the above problems, and is a raw material for producing magnetic powder for magnetic recording media, which has substantially no pores, excellent acicularity, and narrow particle size distribution. An object of the present invention is to provide a method for producing hematite suitable for use as a hematite.

〔発明の構成〕[Structure of the invention]

本発明は、本発明者等がかねてより湿式法によるヘマタ
イトの5!遣方法における前記問題点について種々検討
をすすめた結果、媒晶剤として特定の金属化合物の存在
下、もしくは特定の金属化合物とリン化合物やオキシカ
ルボン酸化合物との存在下で水酸化第二鉄水性懸濁液を
加熱処理することによって、空孔を実質的に有さずがっ
形状性に優れたヘマタイトを生成し得ることの知見を得
、本発明を完成したものである。すなわち、本発明の第
一は、水酸化第二鉄の水性懸濁液を、四価の金属化合物
の存在下でアルカリ性pH領域において加熱処理子るこ
とを特徴とするヘマタイトの製造方法であり、また本発
明の第二は、水酸化第二鉄のアルカリ性の水性懸濁液を
四価の金属化合物とリン化合物または(および)オキシ
カルボン酸化合物との存在下で加熱処理することを特徴
とするヘマタイトの製造方法である。
The present invention has been carried out by the present inventors for some time using a wet method to produce hematite. As a result of conducting various studies on the above-mentioned problems in the method, we found that ferric hydroxide aqueous The present invention was completed based on the finding that hematite having substantially no pores and excellent in shape can be produced by heating a suspension. That is, the first aspect of the present invention is a method for producing hematite, which is characterized in that an aqueous suspension of ferric hydroxide is heat-treated in an alkaline pH range in the presence of a tetravalent metal compound, The second aspect of the present invention is characterized in that an alkaline aqueous suspension of ferric hydroxide is heat-treated in the presence of a tetravalent metal compound and a phosphorus compound or (and) an oxycarboxylic acid compound. This is a method for producing hematite.

本発明において、用いられる水酸化第二鉄は種々の方法
によって製造されるものを使用し得るが、通常例えば塩
化第二鉄、硫酸第二鉄、硝酸第二鉄などの第二鉄塩の水
溶液に水酸化ナトリウム、水酸化カリウム、アンモニア
、炭酸ナトリウムなどのアルカリを加えることにより水
酸化第二鉄を沈殿せしめることによって得られる。しか
して該水酸化第二鉄を用いてなる水性懸濁液は、Fe濃
度として通常0.01〜100 g/Q 、望ましくは
1〜30g/ρである。
In the present invention, the ferric hydroxide used can be produced by various methods, but is usually an aqueous solution of a ferric salt such as ferric chloride, ferric sulfate, or ferric nitrate. It is obtained by precipitating ferric hydroxide by adding an alkali such as sodium hydroxide, potassium hydroxide, ammonia, or sodium carbonate to ferric hydroxide. The aqueous suspension using the ferric hydroxide has an Fe concentration of usually 0.01 to 100 g/Q, preferably 1 to 30 g/ρ.

Fe濃度が前記範囲より低さに過ぎると経済的に有利で
なく、また前記範囲より高きに過ぎると高粘度になり反
応系の均一攪拌が困難である。
If the Fe concentration is lower than the above range, it is not economically advantageous, and if it is higher than the above range, the viscosity becomes high and it is difficult to uniformly stir the reaction system.

本発明において、用いられる四価の金属化合物としては
、Sn4+、S i 41、Ge4中、Ti什、Z r
 4f%  V ”、Nb4fなどの金属化合物であっ
て、例えば5nCd、 、5iCQ4、Na25nO=
 、Ti(j!、 、Zr0Cρ2、voso、、Ge
CQ、4などを挙げることができる。前記四価の金属化
合物の添加量は、水酸化第二鉄の鉄原子1グラム原子に
対して0.001〜0.1モル望ましくは0.003〜
0.08モルである。この四価の金属化合物の添加量が
、前記範囲より少なきに過ぎると高針状性のへマタイト
が得がたく、また前記範囲より多きに過ぎるとヘマタイ
ト化反応に長時間を要するとともに得られるヘマタイト
の粒子形状が粒状化し易く好ましくない。
In the present invention, the tetravalent metal compounds used include Sn4+, Si41, Ge4, Ti, Zr
4f% V'', a metal compound such as Nb4f, for example 5nCd, , 5iCQ4, Na25nO=
, Ti(j!, , Zr0Cρ2, voso, , Ge
Examples include CQ, 4, etc. The amount of the tetravalent metal compound added is 0.001 to 0.1 mol, preferably 0.003 to 0.1 mol, per 1 gram atom of iron atom of ferric hydroxide.
It is 0.08 mol. If the amount of the tetravalent metal compound added is less than the above range, it will be difficult to obtain highly acicular hematite, and if it is more than the above range, the hematite formation reaction will take a long time and the obtained hematite will be difficult to obtain. The shape of the particles tends to become granular, which is not preferable.

本発明において、四価の金属化合物を存在させるととも
に、さらにリン化合物または(および)オキシカルボン
酸化合物を共存させると得られる針状ヘマタイトの形状
性が一層好ましいものとなる。共存させるリン化合物と
しては、種々のものを使用し得るが、例えばオルトリン
酸、ビロリン酸、メタリン酸、次リン酸、ポリリンri
tまたはそれらの塩、有機リン酸化合物などを挙げるこ
とができ、また共存させるオキシカルボン酸化合物とし
ては、例えばクエン酸、酒石酸、乳酸、リンゴ酸、サリ
チル酸、マンデル酸、またはそれらの塩などを挙げるこ
とができる。
In the present invention, when a tetravalent metal compound is present and a phosphorus compound or (and) an oxycarboxylic acid compound is also present, the shape of the acicular hematite obtained becomes more preferable. Various phosphorus compounds can be used to coexist, such as orthophosphoric acid, birophosphoric acid, metaphosphoric acid, hypophosphoric acid, polyphosphoric acid, etc.
Examples of the oxycarboxylic acid compounds coexisting include citric acid, tartaric acid, lactic acid, malic acid, salicylic acid, mandelic acid, and salts thereof. be able to.

前記リン化合物または(および)オキシカルボン酸化合
物の添加量は、リン化合物の場合は水酸化第二鉄の鉄原
子1グラム原子に対してPとして0.001〜0.1モ
ル望ましくはo、oos〜0.03モル、またオキシカ
ルボン酸化合物の場合は、0.001〜0.1モル望ま
しくは0.005〜0.03モルである。そして、前記
リン化合物または(および)オキシカルボン酸を共存さ
せる場合には、前記四価金属化合物の添加量は水酸化第
二鉄の鉄原子1グラム原子に対してo、ooos〜0.
1モル盟主しくは0.003〜0.06モルが適当であ
る。
The amount of the phosphorus compound or (and) oxycarboxylic acid compound added is preferably 0.001 to 0.1 mol as P per 1 gram atom of iron atom of ferric hydroxide, preferably o, oos. -0.03 mol, and in the case of oxycarboxylic acid compounds, it is 0.001-0.1 mol, preferably 0.005-0.03 mol. When the phosphorus compound or (and) oxycarboxylic acid is coexisting, the amount of the tetravalent metal compound added is from o.oos to 0.0.
1 mol is suitable, preferably 0.003 to 0.06 mol.

前記の四価の金属化合物、リン化合物、オキシカルボン
酸化合物の添加は、いずれの場合もヘマタイト化反応の
生起する以前であればよく種々の段階で添加することが
でき、例えば加熱処理前のアルカリ化合物の存在下もし
くは不存在下、あるいはアルカリ化合物添加前の水酸化
第二鉄の加熱懸濁液に添加してもよく、また原料の水酸
化第二鉄の製造の際に添加しておくことによってもでき
る。
The above-mentioned tetravalent metal compounds, phosphorus compounds, and oxycarboxylic acid compounds can be added at various stages before the hematization reaction occurs. It may be added to the heated suspension of ferric hydroxide in the presence or absence of the compound or before addition of the alkali compound, or it may be added during the production of the raw material ferric hydroxide. It can also be done by

本発明において、水酸化第二鉄懸濁液の加熱反応は、該
懸濁液のpHが8以上望ましくは9〜13の範囲のアル
カリ性領域でおこなうものであり、該懸濁液のpHが8
より低いと針状晶のへマタイトが得られ難く、また該懸
濁液のpHがいちじるしく高くなると経済的に有利でな
いばかりかデーサイトが副生じ易く望ましくない、また
該懸濁液の加熱処理は、密閉系あるいは開放系の反応容
器中で常圧下または加圧下で通常、80〜300℃、望
ましくは130〜250°Cの温度下でおこなうのが適
当である。
In the present invention, the heating reaction of the ferric hydroxide suspension is carried out in an alkaline region where the pH of the suspension is 8 or more, preferably 9 to 13;
If the pH is lower, it is difficult to obtain acicular hematite crystals, and if the pH of the suspension is significantly high, it is not only economically advantageous but also undesirable because dacite tends to be produced as a by-product. The reaction is suitably carried out in a closed or open reaction vessel under normal pressure or increased pressure, usually at a temperature of 80 to 300°C, preferably 130 to 250°C.

このようにして、加熱反応処理して得られた反応生成物
を常法により処理系から分離回収することによって、本
発明のへマタイト結晶を得ることができる。しかして前
記本発明の針状ヘマタイトは、これを原料として常法の
手段により磁気記録用磁性粉末を得ることができる1例
えば水素気流中などの還元性雰囲気中で300〜500
°Cで加熱還元すればヘマタイトの針状形態を保持した
マグネタイトが得られ、これをさらに200〜400℃
の温度で酸化すれば同様にヘマタイFの針状形態を保持
したマグヘマイトが得られる。主た、前記マグネタイト
やマグヘマイトを必要に応しベルトライド化合物−二変
換することもでき、さらには高保磁力特性を付与するた
めにコバルト化合物tこよる変性処理をおこなうことも
できる。また、水素がスなどの還元剤を作用させて金属
鉄磁性粉末とすることもできる。いずれの場合も高針状
性で実質的に空孔や枝分れがなく高密度であって、高密
度磁気記鉄媒体用に好適な磁性粉末を得ることができる
The hematite crystals of the present invention can be obtained by separating and recovering the reaction product obtained by the heating reaction treatment from the treatment system by a conventional method. Therefore, the acicular hematite of the present invention can be used as a raw material to obtain a magnetic powder for magnetic recording by a conventional method.
When heated and reduced at °C, magnetite retaining the acicular form of hematite can be obtained, and this is further heated at 200 to 400 °C.
If oxidized at a temperature of , maghemite which retains the acicular form of hematite F can be obtained. Mainly, the above-mentioned magnetite and maghemite can be converted into a bertolide compound if necessary, and furthermore, in order to impart high coercive force characteristics, a modification treatment using a cobalt compound can also be performed. Further, a metal iron magnetic powder can be obtained by applying a reducing agent such as hydrogen gas. In either case, it is possible to obtain a magnetic powder that is highly acicular, has substantially no pores or branches, has high density, and is suitable for use in high-density magnetic recording media.

〔発明の実施例〕[Embodiments of the invention]

以下に実施例及び比較例を挙げ本発明をさらに説明する
The present invention will be further explained below with reference to Examples and Comparative Examples.

実施例1 硝酸第二鉄水溶液(鉄濃度20g/ff)の1.5ρに
攪拌下水酸化ナトリウム水溶液(19,7%濃度)を加
えて、液のpi−tが7になるまで中和して水酸化第二
鉄を沈殿させた。
Example 1 Add sodium hydroxide aqueous solution (19.7% concentration) to 1.5ρ of ferric nitrate aqueous solution (iron concentration 20 g/ff) with stirring, and neutralize until the pi-t of the liquid becomes 7. Ferric hydroxide was precipitated.

この沈殿を濾別、水洗し、得られた湿ケーキに水を加え
てレパルプし、水酸化第二鉄の水性懸濁液1.5Qを得
た。(鉄濃度20g/ρ)得られた懸濁液にオルトリン
酸水溶液(P濃度1.35%)を12.2−と塩化第二
錫水溶液(Sn+r濃度5.7%)を22.211IQ
とを添加し、水酸化ナトリウム水溶液(19,7%濃度
)でpHを11に調整した0次いでこの懸濁液をステン
レス製オートクレーブ(容積3ρ)中で加熱昇温し攪拌
下150°Cで2時間反応させた。生成した赤橙色沈殿
物を濾過、水洗した後乾燥して赤色粉末42gを得た。
This precipitate was separated by filtration and washed with water, and the resulting wet cake was repulped by adding water to obtain 1.5Q of an aqueous suspension of ferric hydroxide. (Iron concentration 20g/ρ) To the obtained suspension, 12.2- orthophosphoric acid aqueous solution (P concentration 1.35%) and stannic chloride aqueous solution (Sn+r concentration 5.7%) were added 22.211IQ.
and the pH was adjusted to 11 with an aqueous sodium hydroxide solution (19.7% concentration).Then, this suspension was heated in a stainless steel autoclave (volume 3ρ) and heated to 150°C with stirring for 2 hours. Allowed time to react. The resulting red-orange precipitate was filtered, washed with water, and dried to obtain 42 g of red powder.

このものは、後記表1に示すように針状性の良好な粒径
の揃ったヘマタイト(α−Fe20.)結晶微粉末であ
った。(試料A) 実施例2 実施例1において、オルトリン酸の添加に代えてクエン
酸ナトリウム水溶液(0,25モル/Q 濃度)10.
7+6121−添加したことのほがは、同例の場合と同
様に処理して、本発明の針状ヘマタイトを得た。(試料
B)実施例3 実施例1において、塩化第二錫とオル) IJン酸(P
濃度1.35%)8.5mffの添加に加えて、さらに
クエン酸ナトリウム水溶液(0,25モル/ρ濃度)3
.2a+ffを添加したことのほかは、同例の場合と同
様に処理して、本発明の針状ヘマタイトを得た。(試料
C) 実施例4 実施例1において、オルトリン酸を添加せずかつ塩化第
二錫水溶液の添加量を44.4mρとしたことのほかは
、同例の場合と同様に処理して本発明の針状ヘマタイト
を得た。
As shown in Table 1 below, this was a hematite (α-Fe20.) crystal fine powder with good acicularity and uniform particle size. (Sample A) Example 2 In Example 1, instead of adding orthophosphoric acid, a sodium citrate aqueous solution (0.25 mol/Q concentration) 10.
7+6121- was added and treated in the same manner as in the same example to obtain acicular hematite of the present invention. (Sample B) Example 3 In Example 1, stannic chloride and
In addition to the addition of 8.5 mff (concentration 1.35%), an additional sodium citrate aqueous solution (0.25 mol/ρ concentration) 3
.. Acicular hematite of the present invention was obtained by processing in the same manner as in the same example except that 2a+ff was added. (Sample C) Example 4 The present invention was prepared in the same manner as in Example 1 except that orthophosphoric acid was not added and the amount of the stannic chloride aqueous solution was 44.4 mρ. Acicular hematite was obtained.

(試料D) 比較例1 実施例1において、塩化第二錫お上りオルトリン酸を添
加しないことのほかは、同例の場合と同様に処理した。
(Sample D) Comparative Example 1 A sample was treated in the same manner as in Example 1, except that orthophosphoric acid added to stannic chloride was not added.

(試料E) 比較例2 実施例1において、塩化第二錫を添加しないことのほか
は、同例の場合と同様に処理した。(試料F)比較例3 実施例2において、塩化第二錫を添加しないことのほか
は、同例の場合と同様に処理した。(試料G)比較例4 実施例1において、水酸化第二鉄の水性懸濁液のpHを
6に調整したことのほかは、同例の場合と同様に処理し
た。
(Sample E) Comparative Example 2 A sample was treated in the same manner as in Example 1 except that stannic chloride was not added. (Sample F) Comparative Example 3 The same treatment as in Example 2 was performed except that stannic chloride was not added. (Sample G) Comparative Example 4 A sample was treated in the same manner as in Example 1, except that the pH of the aqueous suspension of ferric hydroxide was adjusted to 6.

(試料H) 前記の各実施例および比較例で得られた各試料について
特性を測定した結果を表1に示す。
(Sample H) Table 1 shows the results of measuring the characteristics of each sample obtained in each of the Examples and Comparative Examples described above.

表1 表1において、 I−二  電子顕微鏡にて500個の粒子を観察した結
果にもとづく平均長袖径(X、、μ)である。
Table 1 In Table 1, I-2 is the average long sleeve diameter (X, μ) based on the results of observing 500 particles using an electron microscope.

L/W  :  電子顕微鏡にて、500個の粒子を観
察した結果にもとづく平均長袖径と平 均短軸径(Wμ)との比 比表面積:)3ET法により測定 粒子形状:電子顕微鏡による観察 結晶系: X線回折法により同定 (参考) 前記ヘマタイト粉末の一例として実施例1の試料Aを回
転式加熱炉内で380℃で水素還元し、さらに300°
C空気中で加熱酸化したところ、磁気特性の良好なマグ
ヘマイト磁性酸化鉄粉末を得た。
L/W: Specific surface area between the average long sleeve diameter and the average short axis diameter (Wμ) based on the results of observing 500 particles with an electron microscope:) Measured by the 3ET method Particle shape: Observed with an electron microscope Crystal system: Identification by X-ray diffraction method (reference) As an example of the hematite powder, sample A of Example 1 was hydrogen-reduced at 380°C in a rotary heating furnace, and further heated at 300°C.
When heated and oxidized in air, maghemite magnetic iron oxide powder with good magnetic properties was obtained.

表1および電子顕微鏡写真の例示の結果からも明らかな
ように、本発明方法によって得られるヘマタイト粒子は
、よ(発達した形状性の良好な針状粒子であって、この
ものは実質的に空孔や分枝がみられず高記録密度用磁気
記録媒体の磁性粉末の製造原料として優れたものである
ことがわかる。
As is clear from Table 1 and the illustrative results of electron micrographs, the hematite particles obtained by the method of the present invention are acicular particles with a well-developed shape and are substantially empty. It can be seen that no holes or branches were observed, making it an excellent raw material for producing magnetic powder for high-density magnetic recording media.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明方法によれば、ヘマタイト
形成時の熱処理工程における粒子形態の変化にもとづく
空孔や粒子枝分れ、粒子の絡合いなどを実質的回避し得
る工業的有利な製造方法を提供することができるもので
あり、かつ当該ヘマタイトを原料として製造される磁性
粉末はへマタイトの高針状性を継承した磁気特性に優れ
た高密度粒子とすることができるものであって、磁気記
り媒体の高密度記録化を図る上で甚だ有用なものである
As detailed above, according to the method of the present invention, it is possible to substantially avoid pores, particle branching, particle entanglement, etc. due to changes in particle morphology during the heat treatment step during hematite formation, which is an industrially advantageous method. It is possible to provide a production method, and the magnetic powder produced using the hematite as a raw material can be made into high-density particles with excellent magnetic properties that inherit the high acicularity of hematite. This is extremely useful in achieving high-density recording in magnetic recording media.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法によって得られたヘマタイトの結
晶構造の一例(実施例1)を示す電子顕微鏡写真(3万
倍)、第2図は本発明の方法によらない場合の比較例(
比較例2)で得られたヘマタイトの結晶構造の一例を示
す電子顕微鏡写真(3万倍)である。 特許出願人  石原産業株式会社 第1図 第2図
Figure 1 is an electron micrograph (30,000x magnification) showing an example of the crystal structure of hematite (Example 1) obtained by the method of the present invention, and Figure 2 is a comparative example (example 1) in which the method of the present invention is not used.
It is an electron micrograph (30,000 times) showing an example of the crystal structure of hematite obtained in comparative example 2). Patent applicant: Ishihara Sangyo Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)水酸化第二鉄の水性懸濁液を、四価の金属化合物の
存在下でアルカリ性pH領域において加熱処理すること
を特徴とするヘマタイトの製造方法。 2)水酸化第二鉄の水性懸濁液を、四価の金属化合物と
、リン化合物または(および)オキシカルボン酸化合物
との存在下でアルカリ性pH領域において加熱処理する
ことを特徴とするヘマタイトの製造方法。
[Scope of Claims] 1) A method for producing hematite, which comprises heat-treating an aqueous suspension of ferric hydroxide in the presence of a tetravalent metal compound in an alkaline pH range. 2) Hematite production characterized by heat-treating an aqueous suspension of ferric hydroxide in an alkaline pH region in the presence of a tetravalent metal compound and a phosphorus compound or (and) an oxycarboxylic acid compound. Production method.
JP19477086A 1986-08-20 1986-08-20 Production of hematite Pending JPS6350326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19477086A JPS6350326A (en) 1986-08-20 1986-08-20 Production of hematite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19477086A JPS6350326A (en) 1986-08-20 1986-08-20 Production of hematite

Publications (1)

Publication Number Publication Date
JPS6350326A true JPS6350326A (en) 1988-03-03

Family

ID=16329954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19477086A Pending JPS6350326A (en) 1986-08-20 1986-08-20 Production of hematite

Country Status (1)

Country Link
JP (1) JPS6350326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270520A (en) * 1988-03-04 1989-10-27 Basf Ag Manufacture of needle alpha-fe203
JP2008001542A (en) * 2006-06-21 2008-01-10 Jfe Chemical Corp Iron oxide powder for red pigment
CN105905948A (en) * 2016-02-19 2016-08-31 中国科学技术大学 Preparation method of hematite submicron particles
WO2023210024A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270520A (en) * 1988-03-04 1989-10-27 Basf Ag Manufacture of needle alpha-fe203
JP2008001542A (en) * 2006-06-21 2008-01-10 Jfe Chemical Corp Iron oxide powder for red pigment
CN105905948A (en) * 2016-02-19 2016-08-31 中国科学技术大学 Preparation method of hematite submicron particles
WO2023210024A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method therefor
WO2023210830A1 (en) * 2022-04-28 2023-11-02 国立大学法人金沢大学 Complex and manufacturing method for same

Similar Documents

Publication Publication Date Title
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
US4561988A (en) Process for production of plate-like barium ferrite particles for magnetic recording
US4631090A (en) Preparation and use of iron magnetic pigments
JPH0134935B2 (en)
JPS6350326A (en) Production of hematite
JPS5919163B2 (en) Method for producing magnetic metal powder
KR890003881B1 (en) Process for production of cobalt-and-ferrous iron comtaining ferromagnetic iron oxide
US4913890A (en) Preparation of acicular α-Fe2 O3
JPS61163120A (en) Manufacture of isometric magnetic iron oxide pigment
JPS6135135B2 (en)
JPS62139803A (en) Production of ferromagnetic metallic powder
JPH0585487B2 (en)
US4774072A (en) Preparation of acicular alpha-Fe2 O3
US4501774A (en) Process for the production of cobalt-containing magnetic iron oxide powder
JPH0629144B2 (en) Method for producing acicular hematite particles
KR870001378B1 (en) Process for producing cohalt-containing magnetic iron oxide powder
KR0136167B1 (en) Manufacturing method of iron oxide
JP2931182B2 (en) Method for producing acicular γ-FeOOH
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
Arndt et al. Preparation of acicular α-Fe 2 O 3
JPS6149252B2 (en)
JPS6349722B2 (en)
JPS5921364B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JPH0310579B2 (en)
JPS6132257B2 (en)