JPS62202820A - Purification of titanium sulfate solution - Google Patents

Purification of titanium sulfate solution

Info

Publication number
JPS62202820A
JPS62202820A JP61040359A JP4035986A JPS62202820A JP S62202820 A JPS62202820 A JP S62202820A JP 61040359 A JP61040359 A JP 61040359A JP 4035986 A JP4035986 A JP 4035986A JP S62202820 A JPS62202820 A JP S62202820A
Authority
JP
Japan
Prior art keywords
titanium sulfate
activated carbon
sulfate solution
impurities
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61040359A
Other languages
Japanese (ja)
Other versions
JPH0629135B2 (en
Inventor
Etsuji Kimura
木村 悦治
Katsumi Ogi
勝実 小木
Jiro Oshima
大島 治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP4035986A priority Critical patent/JPH0629135B2/en
Publication of JPS62202820A publication Critical patent/JPS62202820A/en
Publication of JPH0629135B2 publication Critical patent/JPH0629135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To separate and remove Nb and other impurities from a Ti-containing ore easily in high efficiency, by dissolving the Ti-containing ore in sulfuric acid and contacting the obtained titanium sulfate solution with activated carbon. CONSTITUTION:A Ti-containing ore such as ilmenite is dissolved in sulfuric acid to precipitate and remove an iron component as iron sulfate and the obtained titanium sulfate solution is made to contact with activated carbon. The contacting process is carried out e.g. by passing the titanium sulfate solution through a column packed with activated carbon in layers or stirring the mixture of activated carbon and the titanium sulfate solution in a treatment tank preferably at normal temperature. Impurities in the solution such as Mn, Nb, Pb, Cr, V, Zn, Al, Ca, Fe, etc., can be removed in high efficiency by this process. the process enables the removal of Nb and other impurities which cause the lowering of whiteness and deterioration of electrical properties of produced TiO2, with simple treatment process without remarkable alteration of existing of existing TiO2 production process.

Description

【発明の詳細な説明】 く技術分野〉 本発明は硫酸チタン液の精製方法に関する。[Detailed description of the invention] Technical fields> The present invention relates to a method for purifying titanium sulfate liquid.

〈従来技術と問題点〉 硫酸チタンは酸化チタン顔料の原料として重要である。<Conventional technology and problems> Titanium sulfate is important as a raw material for titanium oxide pigments.

酸化チタン顔料は、白色顔料の中で最も屈折率が高く、
かつ粒子が微細で均一であるため、最大の着色力と隠蔽
力とを有し、また耐候性、耐熱性および酸、アルカリ等
に対する安定性も優れている。そして、その高度の分散
性と相俟って各種塗料、印刷インク、製紙材料あるいは
各種合成樹脂や電子材料の添加剤として広く使用されて
いる。
Titanium oxide pigment has the highest refractive index among white pigments.
Moreover, since the particles are fine and uniform, it has maximum coloring power and hiding power, and also has excellent weather resistance, heat resistance, and stability against acids, alkalis, etc. Coupled with its high dispersibility, it is widely used as an additive for various paints, printing inks, papermaking materials, various synthetic resins, and electronic materials.

一般に酸化チタンの製造方法には、チタン含有鉱石を硫
酸で処理することによってチタン成分を取出す硫酸法と
、塩素で処理することによりチタン成分を取出す塩素法
とがある0本発明は硫酸法によって得られた硫酸チタン
液の精製に関する。
In general, there are two methods for producing titanium oxide: the sulfuric acid method, in which the titanium component is extracted by treating titanium-containing ore with sulfuric acid, and the chlorine method, in which the titanium component is extracted by treating it with chlorine. This invention relates to the purification of a titanium sulfate solution produced by a titanium sulfate solution.

硫酸法ではイルメナイト(FeO・Fe203 ・Ti
02 )等のチタン含有鉱石を硫酸で溶解し、冷却して
鉄分を硫酸鉄として沈澱除去し、更に炉液中、に含まれ
る硫酸チタンを加水分解して得た水醜化チタンを分離、
焼成することにより酸化チタンを製造している。
In the sulfuric acid method, ilmenite (FeO・Fe203・Ti
02) and other titanium-containing ores are dissolved in sulfuric acid, cooled, and the iron content is precipitated and removed as iron sulfate, and the water-ugly titanium obtained by hydrolyzing the titanium sulfate contained in the furnace liquid is separated.
Titanium oxide is manufactured by firing.

ところで、上記原料鉱石にはチタンの他に主にマンガン
、ニオブ、鉛、クロム、バナジウム、亜鉛、アルミニウ
ム、カルシウム、鉄等が含有されており、これが酸化チ
タンに不純物として残存すると、顔料特性、電気特性に
悪影響を与える。とくにニオブは白色度を低下させかつ
電気特性を損なう、従って、上記チタン含有鉱石を硫酸
で溶解した際、該硫酸チタン液から上記不純物を除去す
る必要がある。
By the way, the raw material ore mentioned above mainly contains manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, iron, etc. in addition to titanium, and if these remain as impurities in titanium oxide, the pigment properties and electricity will be affected. adversely affect characteristics. In particular, niobium reduces whiteness and impairs electrical properties, so when the titanium-containing ore is dissolved in sulfuric acid, it is necessary to remove the impurities from the titanium sulfate solution.

溶媒抽出法では大過剰のチタン(50〜100gTi/
M)が存在する溶液中から微量のニオブ(0,05〜0
.2gNb/皇)を抽出しなければならず、その選択率
を高めるため多量の塩酸とフッ酸とを併用する必要があ
り、取扱いが煩雑である。
In the solvent extraction method, a large excess of titanium (50 to 100 gTi/
A trace amount of niobium (0,05~0
.. 2gNb/K) must be extracted, and in order to increase the selectivity, large amounts of hydrochloric acid and hydrofluoric acid must be used together, making handling complicated.

更に多量の抽出溶媒を必要とし、このため工業的規模で
実施するのは難しい。
Furthermore, it requires a large amount of extraction solvent, which makes it difficult to carry out on an industrial scale.

く問題点の解決手段〉 本発明者は、活性炭により上記硫酸チタン液を処理すれ
ば、ニオブに限らずニオブ以外の不純物も効率良く分離
出来、しかも溶媒抽出に必要な大幅な装置構成を要せず
に簡便に除去出来ることを見い出した。
The present inventor has discovered that by treating the titanium sulfate solution with activated carbon, not only niobium but also impurities other than niobium can be efficiently separated, while eliminating the need for a large equipment configuration required for solvent extraction. We have discovered that it can be easily removed without any problems.

本発明によれば、チタン含有鉱石を硫酸に溶解して得ら
れる硫酸チタン液を活性炭に接触させて液中の不純物を
除去することを特徴とする硫酸チタン液の精製方法が提
供される。またその好適な実施態様として、上記不純物
としてマンガン、ニオブ、鉛、クロム、バナジウム、亜
鉛、アルミニウム、カルシウム、鉄を硫酸チタン液から
分離する上記精製方法が提供される。
According to the present invention, there is provided a method for purifying a titanium sulfate liquid, which comprises bringing a titanium sulfate liquid obtained by dissolving a titanium-containing ore in sulfuric acid into contact with activated carbon to remove impurities in the liquid. In a preferred embodiment thereof, the purification method is provided in which impurities such as manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, and iron are separated from the titanium sulfate solution.

チタン含有鉱石を硫酸で溶解する工程は通常の方法によ
り行なえば良く、溶解条件等は格別制限されない0通常
、チタン含有鉱石を粉砕した後、濃度100〜1800
 g/ Qの硫酸で溶解する。チタン含有鉱石(イルメ
ナイト)を濃い硫酸液と共に加熱すると、次の反応によ
り硫酸チタンと硫酸鉄が生成する。
The process of dissolving the titanium-containing ore with sulfuric acid may be carried out by a normal method, and the dissolution conditions are not particularly limited.Normally, after the titanium-containing ore is crushed, the concentration is 100 to 1800.
Dissolve in g/Q of sulfuric acid. When titanium-containing ore (ilmenite) is heated with a concentrated sulfuric acid solution, the following reaction produces titanium sulfate and iron sulfate.

FeTi03 + 2H2SO45Feso 4 +T
i09O4+2H20上記溶液にH2Oまたは薄いH2
soaを加えて濃度を調整し、 50〜200 Ti 
g/見の硫酸チタン液が得られる。 該硫酸チタン液に
は、上記チタン含有鉱石の産地にもよるが、上記不純物
としてマンガン、ニオブ、鉛、クロム、バナジウム、亜
鉛、アルミニウム、カルシウム、鉄等が夫々第1表に示
す程度含有されている。
FeTi03 + 2H2SO45Feso4 +T
i09O4+2H20 Add H2O or dilute H2 to the above solution
Adjust the concentration by adding soa, 50-200 Ti
g/ml of titanium sulfate solution is obtained. The titanium sulfate solution may contain manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, iron, etc. as the impurities shown in Table 1, depending on the origin of the titanium-containing ore. There is.

第1表 そこで、上、記硫酸チタン液にFeのスクラップを加え
、液中のFe3+をFe2+に還元して冷却し、Fe5
Oaを晶出させ、液中から除去する。
Table 1 Therefore, Fe scrap was added to the above titanium sulfate solution, Fe3+ in the solution was reduced to Fe2+ and cooled, and Fe5
Oa is crystallized and removed from the liquid.

次いで、上記硫酸チタン液を活性炭に接触させて残余の
不純物を活性炭に吸着させ、分離する。
Next, the titanium sulfate solution is brought into contact with activated carbon to adsorb remaining impurities on the activated carbon and to separate them.

E記活性炭による処理はFeSO4を晶出させる前に行
なっても良い、尚、 Feの含有量は他の不純物に比べ
て非常に多いので、FeSO4の晶出後に活性炭処理を
行なえば、活性炭の負担を軽減できるので好ましい。
The treatment with activated carbon described in E may be carried out before crystallizing FeSO4. However, since the content of Fe is much higher than other impurities, if the activated carbon treatment is carried out after the crystallization of FeSO4, the load on the activated carbon will be reduced. This is preferable because it can reduce the

硫酸チタンを活性炭に接触させるには、使用活性炭をカ
ラムに層状に充填し、該層状部分に硫酸チタン液を通液
する方法、あるいは処理槽の内部に活性炭と硫酸チタン
液とを混合し攪拌しながら接触させる方法、またはこれ
らの方法を併用する方法等いづれの方法によっても良い
To bring titanium sulfate into contact with activated carbon, the activated carbon used is packed in a column in layers and the titanium sulfate solution is passed through the layered portion, or the activated carbon and titanium sulfate solution are mixed inside a treatment tank and stirred. Any method may be used, such as a method of contacting each other, or a method of using these methods in combination.

使用する活性炭は通常市販されているものを用いること
が出来、またその形状も、粒状、粉状、繊維状、シート
状、ハニカム状、等いづれの形状でも良い。
Commercially available activated carbon can be used, and its shape may be granular, powder, fibrous, sheet, honeycomb, or the like.

また活性炭処理する硫酸チタン液の温度は常温〜60℃
程度であれば良い、尚、液温は常温の方がやや不純物の
除去率が良好である。
In addition, the temperature of the titanium sulfate solution used for activated carbon treatment is room temperature to 60℃.
It should be noted that the removal rate of impurities is slightly better when the liquid temperature is at room temperature.

活性炭処理により不純物が除去された硫酸チタン液は、
そのまま加水分解工程に送ることが出来る。該加水分解
工程において硫酸チタンは次式のように水酸化チタンの
沈澱を生じ、該沈澱を分離し、′勤すれば不純物の無い
酸化チタンTiO2が得られる。
Titanium sulfate liquid from which impurities have been removed by activated carbon treatment is
It can be directly sent to the hydrolysis process. In the hydrolysis step, titanium sulfate produces a precipitate of titanium hydroxide as shown in the following formula, and by separating the precipitate and working, titanium oxide TiO2 free of impurities can be obtained.

Ti09Oa ”2H20−Tio(OH) 2◆H2
5o4一方、不純物を吸着した活性炭は塩酸、フッ斂、
苛性ソーダ等で処理して活性炭を再生し、必要に応じて
不純物を処理液から回収することが出来る。あるいは使
用済の活性炭をそのまま乾燥後、加熱燃焼させて不純物
を酸化物として回収することが出来る。
Ti09Oa "2H20-Tio(OH) 2◆H2
5o4 On the other hand, activated carbon that has adsorbed impurities is hydrochloric acid, fluoride,
Activated carbon can be regenerated by treatment with caustic soda or the like, and impurities can be recovered from the treatment liquid if necessary. Alternatively, the used activated carbon can be dried as it is, then heated and burned to recover impurities as oxides.

〈発明の効果〉 本発明の精製方法によれば、硫酸チタン液からニオブの
他にマンガン、鉛、クロム、バナジウム、亜鉛、アルミ
ニウム、カルシウム、鉄等の不純物を選択性良く分離す
ることが出来るので純度の高い酸化チタンを製造するこ
とが出来る。
<Effects of the Invention> According to the purification method of the present invention, impurities such as manganese, lead, chromium, vanadium, zinc, aluminum, calcium, iron, etc. in addition to niobium can be separated with good selectivity from a titanium sulfate solution. Highly pure titanium oxide can be produced.

更に、本発明は活性炭と硫酸チタン液との接触処理を行
なうためその処理操作が極めて簡便であり、しかも既存
の酸化チタン製造プロセスを大幅に変更せずに実施出来
るなど実用性に優れる。
Furthermore, since the present invention carries out a contact treatment between activated carbon and a titanium sulfate solution, the treatment operation is extremely simple, and it is excellent in practicality, as it can be carried out without significantly changing the existing titanium oxide production process.

また、活性炭の再生処理や不純物の回収処理によりニオ
ブ等を高収率で回収出来、該回収ニオブを各種の製造原
料等に利用出来るので安定なニオブ供給源になりうる等
の利点をも有する。
In addition, niobium and the like can be recovered in high yield through activated carbon regeneration treatment and impurity recovery treatment, and the recovered niobium can be used as a raw material for various manufacturing processes, so it has the advantage of becoming a stable niobium supply source.

〈実施例〉 実施例1 直径30mmのポリエチレン製カラムに活性)¥(クラ
レケミカル社製;クラレコールGLC)を充填し、次表
の組成を有する液温BO℃の硫酸チタン液を給液速度0
.1〜2 Q/hr  (SV比 0.5〜10)で給
液した。
<Example> Example 1 A polyethylene column with a diameter of 30 mm was filled with active) ¥ (manufactured by Kuraray Chemical Co., Ltd.; Kuraray Coal GLC), and a titanium sulfate solution having the composition shown in the following table and a liquid temperature of BO°C was fed at a feeding rate of 0.
.. The liquid was supplied at a rate of 1 to 2 Q/hr (SV ratio 0.5 to 10).

第2表 カラムに通液後、カラムから排出される硫酸チタン液の
不純物の含有量を分析した。その結果を第3表に示す。
Table 2 After passing through the column, the content of impurities in the titanium sulfate solution discharged from the column was analyzed. The results are shown in Table 3.

上記結果から明らかなように、非常に広いSV比の範囲
に亘って、マンガン、ニオブ、鉛、クロム、バナジウム
、亜鉛、アルミニウム、カルシウム、鉄の不純物が高い
除去率で分離されている。
As is clear from the above results, impurities such as manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, and iron are separated at a high removal rate over a very wide range of SV ratios.

一方、Tiおよび遊離硫酸の濃度は殆ど変化がなく従っ
て上記不純物はTiおよび遊離硫酸から選択性良く分離
されていることが判る。
On the other hand, the concentrations of Ti and free sulfuric acid hardly changed, indicating that the impurities were separated from Ti and free sulfuric acid with good selectivity.

実施例2 SV比を2に固定し、活性炭の種類を変えた以外は全〈
実施例1と同様に活性炭処理を行ない、各活性炭の種類
について上記硫酸チタン液からの不純物の除去効果を調
べた。この結果を第4表に示す、上記結果から明らかな
ように本発明の処理方法は活性炭の種類を変えても高い
不純物除去効果を達成しうる。
Example 2 All cases except that the SV ratio was fixed at 2 and the type of activated carbon was changed.
Activated carbon treatment was carried out in the same manner as in Example 1, and the effectiveness of each type of activated carbon in removing impurities from the titanium sulfate solution was investigated. The results are shown in Table 4. As is clear from the above results, the treatment method of the present invention can achieve a high impurity removal effect even if the type of activated carbon is changed.

実施例3 Sv比を2に固定し、硫酸チタン液の温度を、20.4
0.80℃に設定した以外は全〈実施例1と同様に活性
炭処理を行ない、各液温について上記硫酸チタン液から
の不純物の除去効果を調べた。この結果を第5表に示す
、上記結果から明らかなように本発明の処理方法は上記
温度のいずれにおいても高い不純物除去効果を達成し、
また常温において除去効果が最も高いことが判る。
Example 3 The Sv ratio was fixed at 2, and the temperature of the titanium sulfate solution was set at 20.4.
The activated carbon treatment was carried out in the same manner as in Example 1 except that the temperature was set at 0.80° C., and the effect of removing impurities from the titanium sulfate solution at each liquid temperature was investigated. The results are shown in Table 5. As is clear from the above results, the treatment method of the present invention achieves a high impurity removal effect at any of the above temperatures,
It can also be seen that the removal effect is highest at room temperature.

実施例4 硫酸チタン液500sJJを12のビー力に採り、この
溶液に活性炭(タラレコールGLC) 12.5..2
5gを夫々添加し、攪拌しながら硫酸チタン液を該活性
炭に1〜3時間接触させた。この結果を第6表および第
7表に示す0本実施例においてはカラム方式に比べて活
性炭の量が減少するが不純物は選択性良く1分離されて
いる。
Example 4 Take 500 sJJ of titanium sulfate solution to a beer strength of 12, and add activated carbon (Tararecol GLC) to this solution 12.5. .. 2
5 g of each were added, and the titanium sulfate solution was brought into contact with the activated carbon for 1 to 3 hours while stirring. The results are shown in Tables 6 and 7. In this example, the amount of activated carbon was reduced compared to the column method, but impurities were separated with good selectivity.

Claims (2)

【特許請求の範囲】[Claims] (1)チタン含有鉱石を硫酸に溶解して得られる硫酸チ
タン液を活性炭に接触させて液中の不純物を除去するこ
とを特徴とする硫酸チタン液の精製方法。
(1) A method for purifying a titanium sulfate liquid, which comprises bringing a titanium sulfate liquid obtained by dissolving a titanium-containing ore in sulfuric acid into contact with activated carbon to remove impurities in the liquid.
(2)上記不純物としてマンガン、ニオブ、鉛、クロム
、バナジウム、亜鉛、アルミニウム、カルシウム、鉄を
硫酸チタン液から分離する特許請求の範囲第1項の精製
方法。
(2) The purification method according to claim 1, wherein the impurities such as manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, and iron are separated from the titanium sulfate solution.
JP4035986A 1986-02-27 1986-02-27 Purification method of titanium sulfate solution Expired - Lifetime JPH0629135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035986A JPH0629135B2 (en) 1986-02-27 1986-02-27 Purification method of titanium sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035986A JPH0629135B2 (en) 1986-02-27 1986-02-27 Purification method of titanium sulfate solution

Publications (2)

Publication Number Publication Date
JPS62202820A true JPS62202820A (en) 1987-09-07
JPH0629135B2 JPH0629135B2 (en) 1994-04-20

Family

ID=12578443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035986A Expired - Lifetime JPH0629135B2 (en) 1986-02-27 1986-02-27 Purification method of titanium sulfate solution

Country Status (1)

Country Link
JP (1) JPH0629135B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127148A (en) * 2009-12-15 2011-06-30 Toho Titanium Co Ltd Method of melt-forming metal ingot
CN114345295A (en) * 2021-12-17 2022-04-15 昆山市年沙助剂有限公司 Impurity removal process for chemical auxiliary

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD920804S1 (en) 2019-10-23 2021-06-01 S. C. Johnson & Son, Inc. Dispenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127148A (en) * 2009-12-15 2011-06-30 Toho Titanium Co Ltd Method of melt-forming metal ingot
CN114345295A (en) * 2021-12-17 2022-04-15 昆山市年沙助剂有限公司 Impurity removal process for chemical auxiliary
CN114345295B (en) * 2021-12-17 2024-03-26 昆山市年沙助剂有限公司 Impurity removal process for chemical auxiliary agent

Also Published As

Publication number Publication date
JPH0629135B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JP6268328B2 (en) Method for preparing nanometer titanium dioxide
CN100357361C (en) Method for preparing high purity iron oxide yellow and iron oxide red using titanium dioxide byproduct ferrous sulfate
AU2001262583B2 (en) Recovery of titanium dioxide from titanium oxide bearing materials like steelmaking slags
US20110129397A1 (en) Method for recovering valuable metal from waste catalyst
WO2019137544A1 (en) Method for extracting valent component in vanadium titanium magnetite by means of oxygen-rich selective leaching
AU2001262583A1 (en) Recovery of titanium dioxide from titanium oxide bearing materials like steelmaking slags
CA2736379A1 (en) Process for the production of high purity magnesium hydroxide
WO2019137543A1 (en) Method for preparing high-purity tio2 by selectively leaching from titanium concentrate with rich oxygen
CN109399712A (en) A method of with hydrogen peroxide clean manufacturing high purity vanadic anhydride
WO2019137542A1 (en) Method for selectively leaching and upgrading high-titanium slag
CN109368688A (en) A kind of production technology of high pure zinc oxide indirect method
CN108529666B (en) Method for preparing lithium titanate from inorganic titanium source, product and application
GB1567964A (en) Process for working up waste fly dusts into zeolites
CN109336177A (en) A method of with hydrogen peroxide and ammonium hydroxide clean manufacturing high purity vanadic anhydride
JPH05208824A (en) Production of trimanganese tetroxide
CN112607785A (en) MnFe2O4/C nano composite microsphere and preparation method thereof
CN110803714A (en) Method for producing vanadium pentoxide by vanadium-containing solution
JPS62202820A (en) Purification of titanium sulfate solution
JP2823070B2 (en) Method for producing high-purity zirconium oxychloride crystal
CN111057846A (en) Method for separating and recovering cobalt, copper and iron in white alloy
CN108622927A (en) A method of producing nano zine oxide using containing zinc ore crude
CN108796234B (en) Method for separating antimony and arsenic from antimony-arsenic material
WO2020125000A1 (en) Method for separating cobalt from cobalt and manganese carbonate mixture
JPS6354641B2 (en)
CN111057856B (en) Method for leaching and recovering cobalt, nickel and molybdenum in catalyst