JPH0629135B2 - Purification method of titanium sulfate solution - Google Patents
Purification method of titanium sulfate solutionInfo
- Publication number
- JPH0629135B2 JPH0629135B2 JP4035986A JP4035986A JPH0629135B2 JP H0629135 B2 JPH0629135 B2 JP H0629135B2 JP 4035986 A JP4035986 A JP 4035986A JP 4035986 A JP4035986 A JP 4035986A JP H0629135 B2 JPH0629135 B2 JP H0629135B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- titanium sulfate
- sulfate solution
- activated carbon
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】 <技術分野> 本発明は硫酸チタン液の精製方法に関する。TECHNICAL FIELD The present invention relates to a method for purifying a titanium sulfate solution.
<従来技術と問題点> 硫酸チタンは酸化チタン顔料の原料として重要である。<Prior Art and Problems> Titanium sulfate is important as a raw material for titanium oxide pigments.
酸化チタン顔料は、白色顔料の中で最も屈折率が高く、
かつ粒子が微細で均一であるため、最大の着色力と隠蔽
力とを有し、また耐候性、耐熱性および酸、アルカリ等
に対する安定性も優れている。そして、その高度の分散
性と相俟って各種塗料、印刷インク、製紙材料あるいは
各種合成樹脂や電子材料の添加剤として広く使用されて
いる。Titanium oxide pigment has the highest refractive index among white pigments,
Moreover, since the particles are fine and uniform, they have maximum coloring power and hiding power, and are also excellent in weather resistance, heat resistance, and stability against acids, alkalis and the like. In combination with its high dispersibility, it is widely used as an additive for various paints, printing inks, paper-making materials, various synthetic resins and electronic materials.
一般に酸化チタンの製造方法には、チタン含有鉱石を硫
酸で処理することによってチタン成分を取出す硫酸法
と、塩素で処理することによりチタン成分を取出す塩素
法とがある。本発明は硫酸法によって得られた硫酸チタ
ン液の精製に関する。Generally, as a method for producing titanium oxide, there are a sulfuric acid method in which a titanium component is treated by treating a titanium-containing ore with sulfuric acid, and a chlorine method in which a titanium component is treated by treating with chlorine. The present invention relates to the purification of titanium sulfate liquid obtained by the sulfuric acid method.
硫酸法ではイルメナイト(FeO・Fe2O3・TiO2)等のチタン
含有鉱石を硫酸で溶解し、冷却して鉄分を硫酸鉄として
沈澱除去し、更に液中に含まれる硫酸チタンを加水分
解して得た水酸化チタンを分離、焼成することにより酸
化チタンを製造している。In the sulfuric acid method, titanium-containing ores such as ilmenite (FeO · Fe 2 O 3 · TiO 2 ) are dissolved in sulfuric acid, cooled to remove iron as iron sulfate by precipitation, and titanium sulfate contained in the liquid is hydrolyzed. Titanium oxide is produced by separating and firing the titanium hydroxide obtained as described above.
ところで、上記原料鉱石にはチタンの他に主にマンガ
ン、ニオブ、鉛、クロム、バナジウム、亜鉛、アルミニ
ウム、カルシウム、鉄等が含有されており、これが酸化
チタンに不純物として残存すると、顔料特性、電気特性
に悪影響を与える。とくにニオブは白色度を低下させか
つ電気特性を損なう。従って、上記チタン含有鉱石を硫
酸で溶解した際、該硫酸チタン液から上記不純物を除去
する必要がある。By the way, the above-mentioned raw ore mainly contains manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, iron, etc. in addition to titanium, and when they remain as impurities in titanium oxide, pigment characteristics, electrical properties It adversely affects the characteristics. In particular, niobium reduces whiteness and impairs electrical characteristics. Therefore, when the titanium-containing ore is dissolved in sulfuric acid, it is necessary to remove the impurities from the titanium sulfate liquid.
従来、上記不純物のうちニオブを除去する方法として溶
媒抽出法が知られている。(Ind.Eng.Chem.Prod.Res.Dev
elop.,Vol 10,No.4 1971)ところが、該溶媒抽出法では
大過剰のチタン(50〜100gTi/)が存在する溶液中か
ら微量のニオブ(0.05〜0.2g Nb/)を抽出しなければ
ならず、その選択率を高めるため多量の塩酸とフッ酸と
を併用する必要があり、取扱いが煩雑である。更に多量
の抽出溶媒を必要とし、このため工業的規模で実施する
のは難しい。Conventionally, a solvent extraction method has been known as a method for removing niobium among the above impurities. (Ind.Eng.Chem.Prod.Res.Dev
elop., Vol 10, No. 4 1971) However, in the solvent extraction method, a trace amount of niobium (0.05 to 0.2 g Nb /) must be extracted from a solution containing a large excess of titanium (50 to 100 g Ti /). However, it is necessary to use a large amount of hydrochloric acid and hydrofluoric acid together in order to increase the selectivity, and the handling is complicated. Larger amounts of extraction solvent are required, which makes it difficult to carry out on an industrial scale.
<問題点の解決手段> 本発明者は、活性炭により上記硫酸チタン液を処理すれ
ば、ニオブに限らずニオブ以外の不純物も効率良く分離
出来、しかも溶媒抽出に必要な大幅な装置構成を要せず
に簡便に除去出来ることを見い出した。<Means for Solving Problems> The present inventor can efficiently separate not only niobium but also impurities other than niobium by treating the titanium sulfate solution with activated carbon, and requires a large apparatus configuration necessary for solvent extraction. It has been found that it can be easily removed without using.
本発明によれば、チタン含有鉱石を硫酸に溶解して得ら
れる硫酸チタン液を活性炭に接触させて液中の不純物を
除去することを特徴とする硫酸チタン液の精製方法が提
供される。またその好適な実施態様として、上記不純物
としてマンガン、ニオブ、鉛、クロム、バナジウム、亜
鉛、アルミニウム、カルシウム、鉄を硫酸チタン液から
分離する上記精製方法が提供される。According to the present invention, there is provided a method for purifying a titanium sulfate solution, which comprises contacting a titanium sulfate solution obtained by dissolving a titanium-containing ore with sulfuric acid with activated carbon to remove impurities in the solution. Further, as a preferred embodiment thereof, the above-mentioned purification method for separating manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, iron as the impurities from the titanium sulfate solution is provided.
チタン含有鉱石を硫酸で溶解する工程は通常の方法によ
り行なえば良く、溶解条件等は格別制限されない。通
常、チタン含有鉱石を粉砕した後、濃度100〜1800g/
の硫酸で溶解する。チタン含有鉱石(イルメナイト)
を濃い硫酸液と共に加熱すると、次の反応により硫酸チ
タンと硫酸鉄が生成する。The step of dissolving the titanium-containing ore with sulfuric acid may be carried out by an ordinary method, and the dissolving conditions and the like are not particularly limited. Usually, after crushing titanium-containing ore, the concentration is 100-1800g /
Dissolve with sulfuric acid. Titanium-containing ore (ilmenite)
When is heated with a concentrated sulfuric acid solution, titanium sulfate and iron sulfate are produced by the following reaction.
FeTiO3+2H2SO4=FeSO4+TiOSO4+2H2O 上記溶液にH2Oまたは薄いH2SO4を加えて濃度を
調整し、50〜200Tig/の硫酸チタン液が得られる。
該硫酸チタン液には、上記チタン含有鉱石の産地にもよ
るが、上記不純物としてマンガン、ニオブ、鉛、クロ
ム、バナジウム、亜鉛、アルミニウム、カルシウム、鉄
等が夫々第1表に示す程度含有されている。 FeTiO 3 + 2H 2 SO 4 = FeSO 4 + TiOSO 4 + 2H to 2 O above solution was added to H 2 O or thin H 2 SO 4 to adjust the concentration, 50~200Tig / titanium sulphate solution is obtained.
The titanium sulfate solution contains manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium, iron and the like as the impurities to the extent shown in Table 1, depending on the place of production of the titanium-containing ore. There is.
そこで、上記硫酸チタン液にFeのスクラップを加え、液
中のFe3+をFe2+に還元して冷却し、FeSO4を晶出させ、
液中から除去する。 Therefore, Fe scrap is added to the titanium sulfate solution, Fe 3+ in the solution is reduced to Fe 2+ and cooled, and FeSO 4 is crystallized,
Remove from liquid.
次いで、上記硫酸チタン液を活性炭に接触させて残余の
不純物を活性炭に吸着させ、分離する。Then, the titanium sulfate solution is brought into contact with activated carbon to adsorb the remaining impurities on the activated carbon and then separated.
上記活性炭による処理はFeSO4を晶出させる前に行なっ
ても良い。尚、Feの含有量は他の不純物に比べて非常に
多いので、FeSO4の晶出後に活性炭処理を行なえば、活
性炭の負担を軽減できるので好ましい。The treatment with the above activated carbon may be performed before crystallizing FeSO 4 . Since the content of Fe is much higher than that of other impurities, it is preferable to carry out the activated carbon treatment after crystallization of FeSO 4 because the burden on the activated carbon can be reduced.
硫酸チタンを活性炭に接触させるには、使用活性炭をカ
ラムに層状に充填し、該層状部分に硫酸チタン液を通液
する方法、あるいは処理槽の内部に活性炭と硫酸チタン
液とを混合し撹拌しながら接触させる方法、またはこれ
らの方法を併用する方法等いづれの方法によっても良
い。To contact the titanium sulfate with the activated carbon, the activated carbon used is packed into a column in a layered manner, and the titanium sulfate solution is passed through the layered portion, or the activated carbon and the titanium sulfate solution are mixed and stirred in the treatment tank. Any method such as a method of bringing them into contact with each other or a method of using these methods together may be used.
使用する活性炭は通常市販されているものを用いること
が出来、またその形状も、粒状、粉状、繊維状、シート
状、ハニカム状、等いづれの形状でも良い。As the activated carbon to be used, commercially available one can be used, and the shape thereof may be any of granular, powdery, fibrous, sheet-like, honeycomb-like and the like.
また活性炭処理する硫酸チタン液の温度は常温〜60℃程
度であれば良い。尚、液温は常温の方がやや不純物の除
去率が良好である。The temperature of the titanium sulfate solution to be treated with activated carbon may be room temperature to 60 ° C. In addition, the removal rate of impurities is slightly better when the liquid temperature is room temperature.
活性炭処理により不純物が除去された硫酸チタン液は、
そのまま加水分解工程に送ることが出来る。該加水分解
工程において硫酸チタンは次式のように水酸化チタンの
沈澱を生じ、該沈澱を分離し、焼すれば不純物の無い
酸化チタンTiO2が得られる。Titanium sulfate liquid from which impurities have been removed by activated carbon treatment is
It can be directly sent to the hydrolysis step. In the hydrolysis step, titanium sulfate causes precipitation of titanium hydroxide as shown in the following formula, and if the precipitation is separated and baked, titanium oxide TiO 2 free of impurities can be obtained.
TiOSO4+2H2O=TiO(OH)2+H2SO4 一方、不純物を吸着した活性炭は塩酸、フッ酸、苛性ソ
ーダ等で処理して活性炭を再生し、必要に応じて不純物
を処理液から回収することが出来る。あるいは使用済の
活性炭をそのまま乾燥後、加熱燃焼させて不純物を酸化
物として回収することが出来る。TiOSO 4 + 2H 2 O = TiO (OH) 2 + H 2 SO 4 On the other hand, activated carbon that has adsorbed impurities is treated with hydrochloric acid, hydrofluoric acid, caustic soda, etc. to regenerate the activated carbon, and impurities are recovered from the treatment liquid as necessary. You can Alternatively, the used activated carbon may be dried as it is and then burnt by heating to recover impurities as oxides.
<発明の効果> 本発明の精製方法によれば、硫酸チタン液からニオブの
他にマンガン、鉛、クロム、バナジウム、亜鉛、アルミ
ニウム、カルシウム、鉄等の不純物を選択性良く分離す
ることが出来るので純度の高い酸化チタンを製造するこ
とが出来る。<Effects of the Invention> According to the purification method of the present invention, impurities such as manganese, lead, chromium, vanadium, zinc, aluminum, calcium, and iron in addition to niobium can be separated from the titanium sulfate solution with good selectivity. It is possible to manufacture highly pure titanium oxide.
更に、本発明は活性炭と硫酸チタン液との接触処理を行
なうためその処理操作が極めて簡便であり、しかも既存
の酸化チタン製造プロセスを大幅に変更せずに実施出来
るなど実用性に優れる。Further, the present invention is excellent in practicability such that the treatment operation is extremely simple because the activated carbon is contacted with the titanium sulfate solution, and the existing titanium oxide production process can be carried out without being significantly changed.
また、活性炭の再生処理や不純物の回収処理によりニオ
ブ等を高収率で回収出来、該回収ニオブを各種の製造原
料等に利用出来るので安定なニオブ供給源になりうる等
の利点をも有する。Further, niobium and the like can be recovered in a high yield by regenerating the activated carbon and recovering impurities, and the recovered niobium can be used as various production raw materials and the like, so that it can be a stable niobium supply source.
<実施例> 実施例1 直径30mmのポリエチレン製カラムに活性炭(クラレケミ
カル社製;クラレコールGLC)を充填し、次表の組成を
有する液温60℃の硫酸チタン液を給液速度0.1〜2/h
r(SV比0.5〜10)で給液した。<Example> Example 1 A polyethylene column having a diameter of 30 mm was packed with activated carbon (Kuraray Chemical Co., Ltd .; Kuraray Coal GLC), and a titanium sulfate liquid having a composition of the following table and a liquid temperature of 60 ° C was supplied at a rate of 0.1 to 2 / H
The liquid was supplied at r (SV ratio 0.5 to 10).
カラムに通液後、カラムから排出される硫酸チタン液の
不純物の含有量を分析した。その結果を第3表に示す。 After passing through the column, the content of impurities in the titanium sulfate solution discharged from the column was analyzed. The results are shown in Table 3.
上記結果から明らかなように、非常に広いSV比の範囲
に亘って、マンガン、ニオブ、鉛、クロム、バナジウ
ム、亜鉛、アルミニウム、カルシウム、鉄の不純物が高
い除去率で分離されている。一方、Tiおよび遊離硫酸
の濃度は殆ど変化がなく従って上記不純物はTiおよび
遊離硫酸から選択性良く分離されていることが判る。 As is clear from the above results, impurities of manganese, niobium, lead, chromium, vanadium, zinc, aluminum, calcium and iron are separated at a high removal rate over a very wide range of SV ratios. On the other hand, the concentrations of Ti and free sulfuric acid are almost unchanged, so it is understood that the above impurities are separated from Ti and free sulfuric acid with good selectivity.
実施例2 SV比を2に固定し、活性炭の種類を変えた以外は全く
実施例1と同様に活性炭処理を行ない、各活性炭の種類
について上記硫酸チタン液からの不純物の除去効果を調
べた。この結果を第4表に示す。上記結果から明らかな
ように本発明の処理方法は活性炭の種類を変えても高い
不純物除去効果を達成しうる。Example 2 Activated carbon treatment was carried out in the same manner as in Example 1 except that the SV ratio was fixed at 2 and the type of activated carbon was changed, and the effect of removing impurities from the titanium sulfate solution was examined for each type of activated carbon. The results are shown in Table 4. As is clear from the above results, the treatment method of the present invention can achieve a high effect of removing impurities even if the type of activated carbon is changed.
実施例3 SV比を2に固定し、硫酸チタン液の温度を、20、40、60
℃に設定した以外は全く実施例1と同様に活性炭処理を
行ない、各液温について上記硫酸チタン液からの不純物
の除去効果を調べた。この結果を第5表に示す。上記結
果から明らかなように本発明の処理方法は上記温度のい
ずれかにおいても高い不純物除去効果を達成し、また常
温において除去効果が最も高いことが判る。 Example 3 The SV ratio was fixed at 2, and the temperature of the titanium sulfate solution was 20, 40, 60.
Activated carbon treatment was carried out in the same manner as in Example 1 except that the temperature was set to 0 ° C., and the effect of removing impurities from the titanium sulfate solution was examined at each solution temperature. The results are shown in Table 5. As is clear from the above results, the treatment method of the present invention achieves a high impurity removing effect at any of the above temperatures, and has the highest removing effect at room temperature.
実施例4 硫酸チタン液500mlを1のビーカに採り、この溶液に
活性炭(クラレコールGLC)12.5g、25gを夫々添加し、
撹拌しながら硫酸チタン液を該活性炭に1〜3時間接触
させた。この結果を第6表および第7表に示す。本実施
例においてはカラム方式に比べて活性炭の量が減少する
が不純物は選択性良く、分離されている。 Example 4 500 ml of titanium sulfate solution was placed in a beaker, and 12.5 g and 25 g of activated carbon (Kuraray Coal GLC) were added to this solution,
The titanium sulfate solution was brought into contact with the activated carbon for 1 to 3 hours while stirring. The results are shown in Tables 6 and 7. In this embodiment, the amount of activated carbon is reduced as compared with the column system, but the impurities are separated with good selectivity.
Claims (2)
硫酸チタン液を活性炭に接触させて液中の不純物を除去
することを特徴とする硫酸チタン液の精製方法。1. A method for purifying a titanium sulfate solution, which comprises dissolving a titanium-containing ore in sulfuric acid to bring a titanium sulfate solution into contact with activated carbon to remove impurities in the solution.
クロム、バナジウム、亜鉛、アルミニウム、カルシウ
ム、鉄を硫酸チタン液から分離する特許請求の範囲第1
項の精製方法。2. Manganese, niobium, lead, as the impurities,
A method for separating chromium, vanadium, zinc, aluminum, calcium and iron from a titanium sulfate solution.
Item purification method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4035986A JPH0629135B2 (en) | 1986-02-27 | 1986-02-27 | Purification method of titanium sulfate solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4035986A JPH0629135B2 (en) | 1986-02-27 | 1986-02-27 | Purification method of titanium sulfate solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62202820A JPS62202820A (en) | 1987-09-07 |
JPH0629135B2 true JPH0629135B2 (en) | 1994-04-20 |
Family
ID=12578443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4035986A Expired - Lifetime JPH0629135B2 (en) | 1986-02-27 | 1986-02-27 | Purification method of titanium sulfate solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0629135B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD944089S1 (en) | 2019-10-23 | 2022-02-22 | S. C. Johnson & Son, Inc. | Dispenser |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5380264B2 (en) * | 2009-12-15 | 2014-01-08 | 東邦チタニウム株式会社 | Method for melting metal ingots |
CN114345295B (en) * | 2021-12-17 | 2024-03-26 | 昆山市年沙助剂有限公司 | Impurity removal process for chemical auxiliary agent |
-
1986
- 1986-02-27 JP JP4035986A patent/JPH0629135B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD944089S1 (en) | 2019-10-23 | 2022-02-22 | S. C. Johnson & Son, Inc. | Dispenser |
Also Published As
Publication number | Publication date |
---|---|
JPS62202820A (en) | 1987-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60113716T2 (en) | RECOVERY OF TITANIUM DIOXIDE FROM TIO2-rich RAW MATERIALS SUCH AS STEEL MANUFACTURING SLAGS | |
JP2016507637A (en) | Method for producing scandium-containing solid material with high scandium content | |
US2876065A (en) | Process for producing pure ammonium perrhenate and other rhenium compounds | |
JPH0260606B2 (en) | ||
JPS63502890A (en) | Production of ultra-pure silver nitrate | |
JPS60501901A (en) | Production of high purity alumina | |
JPH04119919A (en) | Production of titanium dioxide | |
CN111620481B (en) | Recycling treatment method of industrial wastewater containing chlorine and arsenic | |
NZ258438A (en) | Removal of iron impurities of titanium-containing ores by heating the ore with a flux (alkali metal hydroxide) to form distinct separable oxides | |
JPH0629135B2 (en) | Purification method of titanium sulfate solution | |
JP2823070B2 (en) | Method for producing high-purity zirconium oxychloride crystal | |
JPH0310576B2 (en) | ||
JP2849779B2 (en) | Method for producing high-purity titanium oxide powder | |
WO2001000530A1 (en) | Processing aqueous titanium solutions to titanium dioxide pigment | |
US4137292A (en) | Purification of titanium trichloride | |
JPH09512057A (en) | Leaching of titanium-containing materials | |
US3006728A (en) | Preparation of ceramic grade titanium dioxide | |
GB2221901A (en) | Titanium dioxide pigment | |
JPS5818416B2 (en) | A method of extracting metals, especially nickel, cobalt, and other materials such as rock powder and red mud from ultramafic rocks. | |
JPS6354641B2 (en) | ||
WO2024101157A1 (en) | Production method for magnesium oxide | |
US3600128A (en) | Process for iron removal from zinc chloride solutions | |
JPH01115820A (en) | Production of niobium hydroxide of tantalum hydroxide | |
JPH0436143B2 (en) | ||
EP0286564A1 (en) | Process for the production of high-purity magnesium oxide from minerals containing calcium and magnesium |