JP2012176884A - Method of manufacturing ferric chloride solution - Google Patents

Method of manufacturing ferric chloride solution Download PDF

Info

Publication number
JP2012176884A
JP2012176884A JP2012019722A JP2012019722A JP2012176884A JP 2012176884 A JP2012176884 A JP 2012176884A JP 2012019722 A JP2012019722 A JP 2012019722A JP 2012019722 A JP2012019722 A JP 2012019722A JP 2012176884 A JP2012176884 A JP 2012176884A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
recovered
chloride solution
ferric chloride
ferric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012019722A
Other languages
Japanese (ja)
Inventor
Haruyoshi Hiraishi
晴宜 平石
Mitsuhiro Kuga
光広 久我
Takashi Takagi
堅志 高木
Hideaki Okada
英晃 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2012019722A priority Critical patent/JP2012176884A/en
Publication of JP2012176884A publication Critical patent/JP2012176884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a ferric chloride solution in which the production process is easy, the cost is low, and also the quality is high.SOLUTION: A hydrochloric acid recovery manufacturing process in which a hydrochloric acid pickling waste liquid is used as a raw material comprises as follows. Iron oxide and hydrochloric acid are generated by a roasting reaction of the following formula (1) 2FeCl+1/2O+2HO→FeO+4HCl (1), next, the generated hydrochloric acid is recovered, the recovered high temperature hydrochloric acid is partially directly supplied to a dissolution reaction tank, the recovered hydrochloric acid is stirred in the dissolution reaction tank, and the recovered iron oxide is supplied from the upper part of the dissolution reaction tank in a molar ratio of 1.3-2.5 based on the free hydrochloric acid part of the recovered hydrochloric acid, and the recovered iron oxide is directly dissolved to the recovered hydrochloric acid to be turned into a ferric chloride solution by a reaction of the following formula (2) FeO+6HCl→2FeCl+3HO (2).

Description

本発明は、鋼板の塩酸酸洗廃液から塩酸を回収して再製造する、いわゆる塩酸回収製造プロセスにおいて、廃塩酸を焙焼処理した際に生成する酸化第二鉄を鉄原料とし、この鉄原料と上記プロセスで併せて回収される回収塩酸とを用いて塩化第二鉄溶液を製造する方法に関するものである。
本発明で製造する塩化第二鉄溶液は、一般的に、金属のエッチング剤や水処理用凝集剤として使用される。
In the so-called hydrochloric acid recovery manufacturing process, in which the hydrochloric acid is recovered from the hydrochloric acid pickling waste solution of the steel sheet, the present invention uses ferric oxide produced when the waste hydrochloric acid is roasted as an iron raw material. And a method of producing a ferric chloride solution using recovered hydrochloric acid recovered together in the above process.
The ferric chloride solution produced in the present invention is generally used as a metal etching agent or a water treatment flocculant.

塩化第二鉄溶液の製造方法として、従来、鉄粉や鉄屑(スクラップ)等の鉄原料を塩酸に溶解してまず塩化第一鉄溶液とし、ついでこの塩化第一鉄溶液に塩素ガス等の酸化剤を加えて塩化第二鉄溶液とする方法が知られている。
しかしながら、この方法では、鉄原料を塩酸に溶解する際に水素ガスが発生し、爆発等の危険があるだけでなく、塩化第一鉄溶液を酸化させる際に塩素ガスを使用することから、品質及び安全性、さらには公害防止の面で問題を残していた。
As a method for producing a ferric chloride solution, conventionally, an iron raw material such as iron powder or iron scrap (scrap) is dissolved in hydrochloric acid to obtain a ferrous chloride solution. A method of adding an oxidizing agent to form a ferric chloride solution is known.
However, in this method, hydrogen gas is generated when iron raw material is dissolved in hydrochloric acid, and there is a risk of explosion, etc., and chlorine gas is used when oxidizing ferrous chloride solution. In addition, problems remained in terms of safety and pollution prevention.

上記の問題を解決するものとして、特許文献1には、原料の鉄源を塩酸に溶解した後、酸化剤として過酸化物と反応させて塩基性塩化第二鉄沈殿物を生成させ、この沈殿物に対して塩酸を添加反応させて、塩化第二鉄溶液を生成する方法が提案されている。
この方法は、酸化剤として塩素ガスを使用しない点で安全上かつ公害上有利であるが、塩基性塩化第二鉄沈殿物の生成工程を経るため、製造工程上の管理が難しく、また原料中に不純物等を多く含む場合には、上記した塩基性沈殿物の存在が不明確となるため、塩酸の添加時点を明確に把握できないという問題があった。
In order to solve the above problem, Patent Document 1 discloses that a raw iron source is dissolved in hydrochloric acid and then reacted with a peroxide as an oxidizing agent to form a basic ferric chloride precipitate. There has been proposed a method of producing a ferric chloride solution by adding and reacting hydrochloric acid to a product.
This method is advantageous in terms of safety and pollution in that chlorine gas is not used as an oxidizing agent, but it is difficult to manage in the manufacturing process because it undergoes a production process of basic ferric chloride precipitates. In the case of containing a large amount of impurities, the presence of the basic precipitate described above becomes unclear, so that there is a problem that the time point of hydrochloric acid addition cannot be clearly grasped.

また、特許文献2には、95%以上の鉄鉱(赤鉄鉱又は磁鉄鉱)に適用されるもので、かかる鉄鉱を比表面積:1〜2m2/gに粉砕したものを、予熱した塩酸に溶解する方法が提案されている。
この方法では、鉄鉱を事前に粉砕し、かつ塩酸を予熱をした上で、溶解→沈殿物沈降→上澄液の回収等の各工程を繰り返し2回以上の単位操作を行っているが、使用する鉄鉱中の残滓(スラッジ)の処理が大変なところに問題があった。さらには、上澄液(塩化第二鉄溶液)にも一部未沈殿物が混入するため、濾過を行う必要が生じることもあり、この場合には単位操作がさらに増大する不利があった。
Patent Document 2 applies to 95% or more of iron ore (hematite or magnetite), and pulverizes the iron ore to a specific surface area of 1 to 2 m 2 / g and dissolves it in preheated hydrochloric acid. A method has been proposed.
In this method, iron ore is pulverized in advance and hydrochloric acid is preheated, and then each step of dissolution → sedimentation → recovery of the supernatant is repeated two or more unit operations. There was a problem in the treatment of residue (sludge) in iron ore. Furthermore, since some unprecipitates are also mixed in the supernatant (ferric chloride solution), it may be necessary to perform filtration. In this case, there is a disadvantage that the unit operation further increases.

さらに、特許文献3には、塩化第二鉄分の残存量が多い溶液に対し、純鉄分の多い鉄原料を用いることによって、塩化第二鉄分を次式(3)により還元して塩化第一鉄とした上で、酸化剤として塩素ガスもしくは酸素ガスを使用して、塩化第二鉄に酸化することが提案されている。
Fe+2FeCl3→3FeCl2 --- (3)
しかしながら、この方法では、塩化第二鉄溶液の増産には寄与するものの、本来ならば直接塩素ガス酸化を行えば塩化第二鉄溶液は製造できるにもかかわらず、純鉄分の多い鉄原料を必要とするので、純鉄含有量の多い鉄原料の入手を考慮すると問題が残る。
Furthermore, in Patent Document 3, ferrous chloride is reduced by the following formula (3) by using an iron raw material having a large amount of pure iron for a solution having a large amount of remaining ferric chloride. Then, it has been proposed to oxidize to ferric chloride using chlorine gas or oxygen gas as an oxidant.
Fe + 2FeCl 3 → 3FeCl 2 --- (3)
However, although this method contributes to an increase in the production of ferric chloride solution, it can produce ferric chloride solution by direct chlorine gas oxidation, but it requires iron raw material with high pure iron content. Therefore, the problem remains in consideration of obtaining an iron raw material having a high pure iron content.

特開昭57−67027号公報JP 57-67027 A 特開平8−253325号公報JP-A-8-253325 特開平6−92643号公報JP-A-6-92643

本発明は、上記の現状に鑑み開発されたもので、製造工程が簡単なだけでなく、低コストで、しかも安定した品質の製品を得ることができる塩化第二鉄溶液の新規な製造方法を提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and has a novel manufacturing method of a ferric chloride solution that not only provides a simple manufacturing process but also provides a low-cost and stable quality product. The purpose is to propose.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板を塩酸で酸洗した後のFeCl2を含む塩酸酸洗廃液を原料とする、塩酸回収製造プロセスにおいて、次式(1)の焙焼反応
2FeCl2+1/2O2+2H2O→Fe2O3+4HCl --- (1)
によって酸化第二鉄と塩酸を生成させ、ついで生成した塩酸を回収し、この回収した高温の塩酸の一部を直接溶解反応槽に供給し、該回収塩酸を溶解反応槽内で撹拌する一方、併せて回収した酸化第二鉄を、溶解反応槽の上部から、該回収塩酸の遊離塩酸分に対しモル比で1.3〜2.5の割合で供給し、次式(2)の反応
Fe2O3+6HCl→2FeCl3+3H2O --- (2)
により、該回収酸化第二鉄を該回収塩酸に直接溶解させて塩化第二鉄溶液とすることを特徴とする塩化第二鉄溶液の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In the hydrochloric acid recovery manufacturing process using hydrochloric acid pickling waste liquid containing FeCl 2 after pickling the steel plate with hydrochloric acid, the roasting reaction of the following formula (1)
2FeCl 2 + 1 / 2O 2 + 2H 2 O → Fe 2 O 3 + 4HCl --- (1)
To generate ferric oxide and hydrochloric acid, and then recover the generated hydrochloric acid, and supply a part of the recovered high-temperature hydrochloric acid directly to the dissolution reaction tank, while stirring the recovered hydrochloric acid in the dissolution reaction tank, The recovered ferric oxide is supplied from the upper part of the dissolution reaction tank at a molar ratio of 1.3 to 2.5 with respect to the free hydrochloric acid content of the recovered hydrochloric acid, and the reaction of the following formula (2)
Fe 2 O 3 + 6HCl → 2FeCl 3 + 3H 2 O --- (2)
The ferric chloride solution is produced by dissolving the recovered ferric oxide directly in the recovered hydrochloric acid to obtain a ferric chloride solution.

2.前記塩酸回収製造プロセスに先立ち、前記塩酸酸洗廃液中の固形不純物を低減しておくことを特徴とする前記1に記載の塩化第二鉄溶液の製造方法。 2. 2. The method for producing a ferric chloride solution according to 1 above, wherein solid impurities in the hydrochloric acid pickling waste liquid are reduced prior to the hydrochloric acid recovery production process.

3.前記酸化第二鉄として、前記塩酸回収製造プロセスにおいて回収した顆粒品の他、該顆粒品の粉砕品、サイクロン捕集品および焙焼炉内部付着品のうちから選んだ一種または二種以上を用いることを特徴とする前記1または2に記載の塩化第二鉄溶液の製造方法。 3. As the ferric oxide, in addition to the granule recovered in the hydrochloric acid recovery manufacturing process, one or more selected from the pulverized product of the granule, the cyclone collection product, and the product attached to the inside of the roasting furnace are used. 3. The method for producing a ferric chloride solution according to 1 or 2 above.

4.前記酸化第二鉄として、フィッシャーサブシーブサイザー法による平均粒径が0.65μm以上のものを用いることを特徴とする前記1〜3のいずれかに記載の塩化第二鉄溶液の製造方法。 4). 4. The method for producing a ferric chloride solution according to any one of 1 to 3 above, wherein the ferric oxide has an average particle size of 0.65 μm or more as determined by the Fischer sub-sieving method.

本発明は、鋼板の塩酸酸洗廃液を原料とする塩酸回収製造プロセスにおいて生成する酸化第二鉄を主鉄原料とし、併せて生成する回収塩酸を副原料としているため、従来法のように鉄鉱や鉄屑等の鉄源を必要とすることがなく、また塩素ガス等による酸化工程が不要で、しかも新たな加熱源も必要としないため、高品質の塩化第二鉄溶液を低コストで得ることができる。
また、本発明によれば、設置する設備も従来法のような大掛かりな設備を必要としないという利点もある。
In the present invention, ferric oxide produced in the hydrochloric acid recovery manufacturing process using hydrochloric acid pickling waste solution of steel sheet as a raw material, and recovered hydrochloric acid produced together as a secondary material is used as an iron ore as in the conventional method. No need for an iron source such as iron scraps, no oxidation process with chlorine gas, etc., and no need for a new heating source, resulting in a high-quality ferric chloride solution at low cost be able to.
Further, according to the present invention, there is an advantage that the equipment to be installed does not require large-scale equipment as in the conventional method.

本発明法の実施要領を示すフローシートである。It is a flow sheet which shows the implementation point of this invention method. 回収酸化第二鉄を回収塩酸に溶解させたときの、溶解時間に伴う回収塩酸中の遊離塩酸分の濃度変化を、回収塩酸の温度をパラメータとして示したグラフである。It is the graph which showed the concentration change of the free hydrochloric acid content in the recovery hydrochloric acid accompanying the dissolution time when the recovered ferric oxide was dissolved in the recovery hydrochloric acid, using the temperature of the recovered hydrochloric acid as a parameter. 回収酸化第二鉄を回収塩酸に溶解させたときの、溶解時間に伴う塩化第二鉄溶液の濃度変化を、回収塩酸の温度をパラメータとして示したグラフである。It is the graph which showed the concentration change of the ferric chloride solution accompanying dissolution time when the recovered ferric oxide was dissolved in the recovered hydrochloric acid, using the temperature of the recovered hydrochloric acid as a parameter. 酸化第二鉄の平均粒径と沈降速度との関係を示したグラフである。It is the graph which showed the relationship between the average particle diameter of ferric oxide, and a sedimentation rate.

以下、本発明を具体的に説明する。
図1に、本発明法の実施要領をフローシートで示す。図中、符号1は鋼板酸洗ライン、2は鋼板、3は回収塩酸、4は廃塩酸、5は焙焼炉、6は燃料、7は空気、8は酸化第二鉄、9はサイクロン、10はサイクロン酸化第二鉄、11は吸収塔、12は水、13は酸化第二鉄の貯槽、そして14が溶解反応槽、15が塩化第二鉄溶液の貯槽、16が排ガスラインである。
Hereinafter, the present invention will be specifically described.
In FIG. 1, the implementation point of this invention method is shown with a flow sheet. In the figure, reference numeral 1 is a steel plate pickling line, 2 is a steel plate, 3 is recovered hydrochloric acid, 4 is waste hydrochloric acid, 5 is a roasting furnace, 6 is fuel, 7 is air, 8 is ferric oxide, 9 is a cyclone, 10 is a cyclone ferric oxide, 11 is an absorption tower, 12 is water, 13 is a ferric oxide storage tank, 14 is a dissolution reaction tank, 15 is a ferric chloride solution storage tank, and 16 is an exhaust gas line.

さて、図1に示したところにおいて、鋼板酸洗ライン1の塩酸浴槽に鋼板2を通板し、鋼板表面に生成した錆を、次式(4)の反応
FeO+2HCl→FeCl2+H2O --- (4)
により、塩酸にて酸洗する。
上記の反応に伴い、鋼板の酸洗量に対して酸洗ラインの浴槽内の遊離塩酸分が低下をするので、その分を補充しなければならない。
この補充する遊離塩酸分は、塩酸回収製造プロセスの焙焼炉5にて、廃塩酸4を次式(1)の焙焼反応
2FeCl2+1/2O2+2H2O→Fe2O3+4HCl --- (1)
にて生成した回収塩酸3を使用する。
なお、焙焼反応は500〜800℃の高温下で行うため、焙焼炉5の下部で燃料6を空気7により燃焼させ、高温熱風を発生させて焙焼炉5の内部へ吹き込んでいる。
In the place shown in FIG. 1, the steel plate 2 is passed through the hydrochloric acid bath of the steel plate pickling line 1, and the rust generated on the steel plate surface is expressed by the reaction of the following formula (4).
FeO + 2HCl → FeCl 2 + H 2 O --- (4)
Then, pickle with hydrochloric acid.
Along with the above reaction, the amount of free hydrochloric acid in the bath of the pickling line is reduced with respect to the amount of pickling of the steel sheet, so that amount must be replenished.
The free hydrochloric acid to be replenished is obtained by using the roasting furnace 5 in the hydrochloric acid recovery manufacturing process to turn the waste hydrochloric acid 4 into the roasting reaction of the following formula (1).
2FeCl 2 + 1 / 2O 2 + 2H 2 O → Fe 2 O 3 + 4HCl --- (1)
The recovered hydrochloric acid 3 produced in step 1 is used.
In addition, since the roasting reaction is performed at a high temperature of 500 to 800 ° C., the fuel 6 is combusted by the air 7 in the lower part of the roasting furnace 5 to generate high-temperature hot air and blown into the roasting furnace 5.

焙焼炉5内で反応生成した酸化第二鉄8は、焙焼炉5の底部より焙焼炉外へ排出され、貯槽13に貯める。
一方、焙焼反応により生成した300〜450℃の高温でかつ酸化第二鉄を含有した塩酸ガスは、サイクロン9を経由して吸収塔11に供給する。このとき、サイクロン9で捕集した酸化第二鉄もサイクロン酸化第二鉄10として貯槽13に導く。
The ferric oxide 8 produced by reaction in the roasting furnace 5 is discharged from the bottom of the roasting furnace 5 to the outside of the roasting furnace and stored in the storage tank 13.
On the other hand, hydrochloric acid gas generated at a high temperature of 300 to 450 ° C. and containing ferric oxide is supplied to the absorption tower 11 via the cyclone 9. At this time, the ferric oxide collected by the cyclone 9 is also led to the storage tank 13 as the cyclonic ferric oxide 10.

サイクロン9で除塵された高温の塩酸ガスは、吸収塔11に供給されると共に、塔頂部より水12を供給し、次式(5)の反応
HCl(ガス)+H2O→HCl(液) --- (5)
により、水12中に塩酸ガスを吸収させ、その結果、70〜93℃程度の塩酸液(回収塩酸3)が生成する。
かようにして得られた高温の回収塩酸3は、直接或いは保温施工された貯槽を経由して溶解反応槽14へ所定量導入し、その後貯槽13から酸化第二鉄を定量供給器により溶解反応槽14へ所定量供給する。
The high-temperature hydrochloric acid gas removed by the cyclone 9 is supplied to the absorption tower 11 and water 12 is supplied from the top of the tower, and the reaction of the following formula (5)
HCl (gas) + H 2 O → HCl (liquid) --- (5)
As a result, hydrochloric acid gas is absorbed in water 12, and as a result, a hydrochloric acid solution (recovered hydrochloric acid 3) of about 70 to 93 ° C. is formed.
The high-temperature recovered hydrochloric acid 3 obtained in this way is introduced into the dissolution reaction tank 14 directly or via a storage tank that has been kept warm, and then the ferric oxide from the storage tank 13 is dissolved by a quantitative feeder. A predetermined amount is supplied to the tank 14.

上述したとおり、塩酸回収製造プロセスより得られた回収塩酸は70〜93℃という高温であるため、酸化第二鉄の溶解反応に必要な新たな加熱源を必要としないという利点がある。
また、酸化第二鉄の貯槽13から溶解反応槽14への供給に際しては、貯槽13から輸送機等により溶解反応槽14へ供給する方法の他、ハンドリングの面より貯槽から一度フレコンパック等へ抜き出した後、溶解反応槽14へ供給することもできる。
As described above, since the recovered hydrochloric acid obtained from the hydrochloric acid recovery manufacturing process has a high temperature of 70 to 93 ° C., there is an advantage that a new heating source necessary for the dissolution reaction of ferric oxide is not required.
In addition, when supplying ferric oxide from the storage tank 13 to the dissolution reaction tank 14, in addition to the method of supplying from the storage tank 13 to the dissolution reaction tank 14 by means of a transporter, etc., it is once extracted from the storage tank to the flexible container pack etc. from the handling aspect. After that, it can be supplied to the dissolution reactor 14.

ここに、酸化第二鉄の供給量については、溶解反応槽内での撹拌流動性に支障が出ない範囲で、出来る限り過剰供給とすることが好ましい。そこで、酸化第二鉄の供給量は、回収塩酸の遊離塩酸分に対しモル比で1.3〜2.5の割合とした。
この理由は、溶解反応槽内の遊離塩酸分との接触効率を高め、反応時間の短縮と製造した塩化第二鉄溶液中の遊離塩酸分の低減を図るためである。
Here, the supply amount of ferric oxide is preferably as much as possible as long as it does not hinder the stirring fluidity in the dissolution reaction tank. Therefore, the supply amount of ferric oxide was set to a ratio of 1.3 to 2.5 in terms of molar ratio with respect to the free hydrochloric acid content of the recovered hydrochloric acid.
This is because the contact efficiency with the free hydrochloric acid content in the dissolution reaction tank is increased, the reaction time is shortened, and the free hydrochloric acid content in the manufactured ferric chloride solution is reduced.

上記の溶解反応は、回分(バッチ)運転とし、溶解反応槽にて酸化第二鉄が回収塩酸に溶解し、次式(2)の反応
Fe2O3+6HCl→2FeCl3+3H2O --- (2)
により、所定の塩化第二鉄溶液になったことが確認できた時点で静置分離を行い、未反応の酸化第二鉄は溶解反応槽底部へ沈降分離する。
そして、所定の沈降分離時間が経過をした時点で、溶解反応槽より製品貯槽15へ塩化第二鉄溶液を抜き出す。
これにより、安定かつ高品質な塩化第二鉄溶液が得られる。
The above dissolution reaction is batch (batch) operation, and ferric oxide is dissolved in the recovered hydrochloric acid in the dissolution reaction tank.
Fe 2 O 3 + 6HCl → 2FeCl 3 + 3H 2 O --- (2)
Thus, when it is confirmed that the solution has become a predetermined ferric chloride solution, standing separation is performed, and unreacted ferric oxide is settled and separated to the bottom of the dissolution reaction tank.
Then, when a predetermined sedimentation time has elapsed, the ferric chloride solution is extracted from the dissolution reaction tank to the product storage tank 15.
Thereby, a stable and high-quality ferric chloride solution is obtained.

ところで、上記した溶解反応工程において、未反応の酸化第二鉄は、溶解反応槽底部へ沈降させて分離するわけであるが、この溶解反応槽底部への沈降時間が長いと、その分製造時間が長くなり、生産性の低下を招く。
そこで、発明者らは、未反応の酸化第二鉄の沈降速度の上昇、ひいては製造時間の短縮を図るべく、酸化第二鉄の粒径と沈降速度との関係について調査した。
その結果、図4に示すように、酸化第二鉄の貯槽13における平均粒径を大きくするほど沈降速度が上昇することを見いだした。酸化第二鉄の平均粒径は、0.65μm以上とすることが好ましい。なお、酸化第二鉄の平均粒径は、フィッシャーサブシーブサイザー法(測定装置:Fisher Scientific社製,型式 95型)により求めた。また、回収塩酸の温度は90℃とした。
By the way, in the above-described dissolution reaction step, unreacted ferric oxide is settled and separated at the bottom of the dissolution reaction tank, but if the sedimentation time at the bottom of the dissolution reaction tank is long, the production time is correspondingly increased. Increases the productivity.
In view of this, the inventors investigated the relationship between the particle size of ferric oxide and the settling rate in order to increase the settling rate of unreacted ferric oxide and thus shorten the production time.
As a result, as shown in FIG. 4, it was found that as the average particle size in the ferric oxide storage tank 13 was increased, the sedimentation rate was increased. The average particle size of ferric oxide is preferably 0.65 μm or more. In addition, the average particle diameter of ferric oxide was calculated | required by the Fisher subsieve sizer method (measurement apparatus: Fisher Scientific company make, type 95 type). The temperature of recovered hydrochloric acid was 90 ° C.

ここに、図1に示した、焙焼炉5から排出される酸化第二鉄の貯槽13における平均粒径は、焙焼炉5内における反応温度を調整することによって、制御することができる。すなわち、上記した酸化第二鉄8の平均粒径を0.65μm 以上とするには焙焼炉内における反応温度を600℃以上程度とすることによって達成することができる。   Here, the average particle size of the ferric oxide storage tank 13 discharged from the roasting furnace 5 shown in FIG. 1 can be controlled by adjusting the reaction temperature in the roasting furnace 5. That is, the above-mentioned average particle size of the ferric oxide 8 can be 0.65 μm or more by setting the reaction temperature in the roasting furnace to about 600 ° C. or more.

なお、上記の溶解反応に際しては、塩酸ガスベーパーが発生するため、排ガスライン16を介して塩酸回収プロセス内の吸収塔入り口ガスダクト(図示省略)に吸引させ、大気への放散を防止すると共に回収塩酸として回収する。勿論、専用の洗浄設備を配備しても構わない。   In the above dissolution reaction, hydrochloric acid gas vapor is generated. Therefore, the gas is sucked into the absorption tower entrance gas duct (not shown) in the hydrochloric acid recovery process through the exhaust gas line 16 to prevent the release to the atmosphere and the recovered hydrochloric acid. As recovered. Of course, a dedicated cleaning facility may be provided.

以下、実施例により本発明を具体的に説明する。
塩酸回収製造プロセスにより得られた温度が90℃で、遊離塩酸分が22.7mass%の回収塩酸を、ビーカーに所定量入れ、温度低下が起こらないように保温をする。ビーカー内底部にスターラーを入れて撹拌を行う。この撹拌状態下で焙焼炉より得られた常温の顆粒酸化第二鉄を1.5〜2モル比になるように投入し、前掲(2)式の反応により、回収酸化第二鉄を回収塩酸に溶解させた。なお、顆粒酸化第二鉄としては、平均粒径が0.55μm(発明例1)と0.65μm(発明例2)と0.80μm (発明例3)の3種類を用いた。これらはそれぞれ、焙焼炉内での反応温度をそれぞれ、570℃、600℃および700℃として得たものである。
Hereinafter, the present invention will be described specifically by way of examples.
A predetermined amount of recovered hydrochloric acid having a temperature of 90 ° C. and a free hydrochloric acid content of 22.7 mass% obtained in the hydrochloric acid recovery manufacturing process is placed in a beaker and kept warm so that the temperature does not decrease. A stirrer is placed in the bottom of the beaker and stirred. Under this stirring state, normal temperature granular ferric oxide obtained from a roasting furnace is charged at a molar ratio of 1.5 to 2, and the recovered ferric oxide is converted into recovered hydrochloric acid by the reaction of the above formula (2). Dissolved. As the granular ferric oxide, three types having an average particle size of 0.55 μm (Invention Example 1), 0.65 μm (Invention Example 2), and 0.80 μm (Invention Example 3) were used. These were obtained by setting the reaction temperatures in the roasting furnace to 570 ° C., 600 ° C. and 700 ° C., respectively.

このときの、回収塩酸中の遊離塩酸分の濃度変化について調べた結果を、溶解時間との関係で図2に示す。
また、同図には、回収塩酸の温度を80℃,70℃まで低下させて溶解反応試験を実施したときの調査結果についても、併せて示す。なお、この実験は、平均粒径が0.55μm (発明例1)の顆粒酸化第二鉄を用いた場合のものであるが、粒径の変化による溶解時間への影響はほとんどなかった。
同図に示したとおり、回収塩酸の温度が90℃の場合は、約20分間で回収塩酸中の遊離塩酸分は酸化第二鉄と反応し、塩化第二鉄溶液になることが確認された。なお、この時の残存した遊離塩酸分は0.3mass%以下であった。
また、回収塩酸の温度が80℃の場合には、約30分で回収塩酸中の遊離塩酸分を0.3mass%以下まで低減することができた。
さらに、回収塩酸の温度が70℃の場合においても、約60分間で回収塩酸中の遊離塩酸分を0.3mass%以下に低減することができた。
The results of examining the concentration change of the free hydrochloric acid in the recovered hydrochloric acid at this time are shown in FIG. 2 in relation to the dissolution time.
The figure also shows the survey results when the dissolution reaction test was conducted with the recovered hydrochloric acid temperature lowered to 80 ° C and 70 ° C. This experiment was conducted when granular ferric oxide having an average particle size of 0.55 μm (Invention Example 1) was used, but there was almost no effect on the dissolution time due to the change in particle size.
As shown in the figure, when the temperature of recovered hydrochloric acid was 90 ° C, it was confirmed that the free hydrochloric acid content in recovered hydrochloric acid reacted with ferric oxide in about 20 minutes to become a ferric chloride solution. . The remaining free hydrochloric acid content at this time was 0.3 mass% or less.
In addition, when the temperature of the recovered hydrochloric acid was 80 ° C., the free hydrochloric acid content in the recovered hydrochloric acid could be reduced to 0.3 mass% or less in about 30 minutes.
Furthermore, even when the temperature of the recovered hydrochloric acid was 70 ° C., the free hydrochloric acid content in the recovered hydrochloric acid could be reduced to 0.3 mass% or less in about 60 minutes.

なお、上記の実験において、回収塩酸と酸化第二鉄は全て同じ物を使用した。
また、反応終了時点における回収塩酸の各々の温度は、90℃品は84℃まで、80℃品は75℃まで、70℃品は67℃までそれぞれ低下をしたが、塩化第二鉄溶液の凝集剤用として使用する場合の品質としては何ら問題はない。
In the above experiment, the same recovered hydrochloric acid and ferric oxide were used.
The temperature of each recovered hydrochloric acid at the end of the reaction decreased to 84 ° C for the 90 ° C product, 75 ° C for the 80 ° C product, and 67 ° C for the 70 ° C product. There is no problem as to the quality when used as an agent.

次に、かくして得られた塩化第二鉄溶液の濃度について調べた結果を、溶解時間との関係で図3に示す。
同図に示したとおり、回収塩酸の温度が高いほど反応が速く進む傾向にあるが、いずれの場合も溶解後の塩化第二鉄溶液の最終濃度は略25mass%となった。なお、この濃度は、塩化第二鉄のJIS規格品より低いものの、産業上の利用分野の面では問題のないレベルである。
Next, the results of examining the concentration of the ferric chloride solution thus obtained are shown in FIG. 3 in relation to the dissolution time.
As shown in the figure, the higher the temperature of the recovered hydrochloric acid, the faster the reaction proceeds. In either case, the final concentration of the ferric chloride solution after dissolution was approximately 25 mass%. Although this concentration is lower than JIS standard products of ferric chloride, it is at a level that does not cause any problems in terms of industrial applications.

さらに、酸化第二鉄の粒径が沈降速度に及ぼす影響についても調査したところ、平均粒径が大きいほど、短時間で沈降分離できることが確認された。   Furthermore, when the influence of the particle size of ferric oxide on the sedimentation rate was also investigated, it was confirmed that the larger the average particle size, the faster the sedimentation could be achieved.

本発明の製造プロセスによって得られる塩化第二鉄溶液の特筆すべき事項を、従来法と比較して表1に示す。   Notable items of the ferric chloride solution obtained by the production process of the present invention are shown in Table 1 in comparison with the conventional method.

Figure 2012176884
Figure 2012176884

同表に示したとおり、本発明法によれば、従来法に比べて、高品質(高純度)の塩化第二鉄溶液を、公害のおそれなしに、短時間で得ることができる。特に、酸化第二鉄の平均粒径が0.65μm以上の場合には、沈降速度が上昇し、製造時間を大幅に短縮することができた。   As shown in the table, according to the method of the present invention, a high-quality (high-purity) ferric chloride solution can be obtained in a short time without fear of pollution as compared with the conventional method. In particular, when the average particle size of ferric oxide was 0.65 μm or more, the sedimentation rate increased and the production time could be greatly shortened.

1 鋼板酸洗ライン
2 鋼板
3 回収塩酸
4 廃塩酸
5 焙焼炉
6 燃料
7 空気
8 酸化第二鉄
9 サイクロン
10 サイクロン酸化第二鉄
11 吸収塔
12 水
13 酸化第二鉄の貯槽
14 溶解反応槽
15 塩化第二鉄溶液の貯槽
16 排ガスライン

DESCRIPTION OF SYMBOLS 1 Steel plate pickling line 2 Steel plate 3 Collected hydrochloric acid 4 Waste hydrochloric acid 5 Roasting furnace 6 Fuel 7 Air 8 Ferric oxide 9 Cyclone
10 Cyclone ferric oxide
11 Absorption tower
12 water
13 Ferric oxide storage tank
14 Dissolution reactor
15 Ferric chloride solution storage tank
16 Exhaust gas line

Claims (4)

鋼板を塩酸で酸洗した後のFeCl2を含む塩酸酸洗廃液を原料とする、塩酸回収製造プロセスにおいて、次式(1)の焙焼反応
2FeCl2+1/2O2+2H2O→Fe2O3+4HCl --- (1)
によって酸化第二鉄と塩酸を生成させ、ついで生成した塩酸を回収し、この回収した高温の塩酸の一部を直接溶解反応槽に供給し、該回収塩酸を溶解反応槽内で撹拌する一方、併せて回収した酸化第二鉄を、溶解反応槽の上部から、該回収塩酸の遊離塩酸分に対しモル比で1.3〜2.5の割合で供給し、次式(2)の反応
Fe2O3+6HCl→2FeCl3+3H2O --- (2)
により、該回収酸化第二鉄を該回収塩酸に直接溶解させて塩化第二鉄溶液とすることを特徴とする塩化第二鉄溶液の製造方法。
In the hydrochloric acid recovery manufacturing process using hydrochloric acid pickling waste liquid containing FeCl 2 after pickling the steel plate with hydrochloric acid, the roasting reaction of the following formula (1)
2FeCl 2 + 1 / 2O 2 + 2H 2 O → Fe 2 O 3 + 4HCl --- (1)
To generate ferric oxide and hydrochloric acid, and then recover the generated hydrochloric acid, and supply a part of the recovered high-temperature hydrochloric acid directly to the dissolution reaction tank, while stirring the recovered hydrochloric acid in the dissolution reaction tank, The recovered ferric oxide is supplied from the upper part of the dissolution reaction tank at a molar ratio of 1.3 to 2.5 with respect to the free hydrochloric acid content of the recovered hydrochloric acid, and the reaction of the following formula (2)
Fe 2 O 3 + 6HCl → 2FeCl 3 + 3H 2 O --- (2)
The ferric chloride solution is produced by dissolving the recovered ferric oxide directly in the recovered hydrochloric acid to obtain a ferric chloride solution.
前記塩酸回収製造プロセスに先立ち、前記塩酸酸洗廃液中の固形不純物を低減しておくことを特徴とする請求項1に記載の塩化第二鉄溶液の製造方法。   The method for producing a ferric chloride solution according to claim 1, wherein solid impurities in the hydrochloric acid pickling waste liquid are reduced prior to the hydrochloric acid recovery production process. 前記酸化第二鉄として、前記塩酸回収製造プロセスにおいて回収した顆粒品の他、該顆粒品の粉砕品、サイクロン捕集品および焙焼炉内部付着品のうちから選んだ一種または二種以上を用いることを特徴とする請求項1または2に記載の塩化第二鉄溶液の製造方法。   As the ferric oxide, in addition to the granule recovered in the hydrochloric acid recovery manufacturing process, one or more selected from the pulverized product of the granule, the cyclone collection product, and the product attached to the inside of the roasting furnace are used. The manufacturing method of the ferric chloride solution of Claim 1 or 2 characterized by the above-mentioned. 前記酸化第二鉄として、フィッシャーサブシーブサイザー法による平均粒径が0.65μm以上のものを用いることを特徴とする請求項1〜3のいずれかに記載の塩化第二鉄溶液の製造方法。


The method for producing a ferric chloride solution according to any one of claims 1 to 3, wherein the ferric oxide is one having an average particle size of 0.65 µm or more according to a Fischer sub-sieving method.


JP2012019722A 2011-02-04 2012-02-01 Method of manufacturing ferric chloride solution Pending JP2012176884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019722A JP2012176884A (en) 2011-02-04 2012-02-01 Method of manufacturing ferric chloride solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011023174 2011-02-04
JP2011023174 2011-02-04
JP2012019722A JP2012176884A (en) 2011-02-04 2012-02-01 Method of manufacturing ferric chloride solution

Publications (1)

Publication Number Publication Date
JP2012176884A true JP2012176884A (en) 2012-09-13

Family

ID=46979024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019722A Pending JP2012176884A (en) 2011-02-04 2012-02-01 Method of manufacturing ferric chloride solution

Country Status (1)

Country Link
JP (1) JP2012176884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648682B1 (en) * 2015-12-09 2016-08-17 이제훈 Method of iron dichloride
CN105895300A (en) * 2015-07-23 2016-08-24 南通万宝实业有限公司 Roasting method of ferric oxide magnetic ring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315521A (en) * 1987-06-18 1988-12-23 Kemiraito Kogyo Kk Method for purifying waste liquor from acid cleaning with hydrochloric acid
JPS6414116A (en) * 1987-07-08 1989-01-18 Kawasaki Steel Co Production of ferric chloride for flocculant in waste water treatment
JP2000264640A (en) * 1999-03-17 2000-09-26 Tsurumi Soda Co Ltd Treatment of waste liquor of hydrochloric acid
JP2008285366A (en) * 2007-05-18 2008-11-27 Jfe Chemical Corp Iron chloride solution, and method for producing iron oxide
JP2010241629A (en) * 2009-04-03 2010-10-28 Jfe Chemical Corp Method for refining ferrous chloride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315521A (en) * 1987-06-18 1988-12-23 Kemiraito Kogyo Kk Method for purifying waste liquor from acid cleaning with hydrochloric acid
JPS6414116A (en) * 1987-07-08 1989-01-18 Kawasaki Steel Co Production of ferric chloride for flocculant in waste water treatment
JP2000264640A (en) * 1999-03-17 2000-09-26 Tsurumi Soda Co Ltd Treatment of waste liquor of hydrochloric acid
JP2008285366A (en) * 2007-05-18 2008-11-27 Jfe Chemical Corp Iron chloride solution, and method for producing iron oxide
JP2010241629A (en) * 2009-04-03 2010-10-28 Jfe Chemical Corp Method for refining ferrous chloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895300A (en) * 2015-07-23 2016-08-24 南通万宝实业有限公司 Roasting method of ferric oxide magnetic ring
KR101648682B1 (en) * 2015-12-09 2016-08-17 이제훈 Method of iron dichloride

Similar Documents

Publication Publication Date Title
Ma et al. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction
AU2018225820A1 (en) Metallurgical and chemical processes for recovering vanadium and iron values from vanadiferous titanomagnetite and vanadiferous feedstocks
CN101550485B (en) Oxidative pressure acid leaching method for processing purified waste residue in zinc hydrometallurgy process
JP6219325B2 (en) Method for producing metal manganese
JPWO2015016086A1 (en) Zinc recovery method from electric furnace steelmaking dust and zinc recovery device from electric furnace steelmaking dust
CN101941723A (en) Method for producing high-activity nano magnesia by utilizing low-grade magnesite
JP6168000B2 (en) Method for producing nickel sulfate solution
JP5935098B2 (en) Zinc production method
JP5676206B2 (en) Method for recovering germanium tetrachloride
CN104640812A (en) Method for improving quality of titanium-containing feedstock
US20120034154A1 (en) Production of hydrogen through oxidation of metal sulfides
Polsilapa et al. Thermodynamics analysis for the zinc ferrite reduction by hydrogen
JP2019508361A (en) Process for the separation of vanadium
JP2012176884A (en) Method of manufacturing ferric chloride solution
CN109226779A (en) A kind of method tungsten powder waste material removal of impurities and produce high purity tungsten
CN107381654A (en) A kind of method that liquid industrial frerrous chloride is converted into by hydrochloric acid pickling waste liquor
CN105358486B (en) Method and apparatus for purifying red soil
KR20160124160A (en) PROCESS FOR REDUCING THE AMOUNTS OF ZINC(Zn) AND LEAD(Pb)IN MATERIALS CONTAINING IRON(Fe)
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
Liu et al. Extraction behaviours of titanium and other impurities in the decomposition process of ilmenite by highly concentrated KOH solution
JP2001172021A (en) Method for producing iron oxide and production facility
TWI518041B (en) A method of recycling sodium hexafluoroaluminate from hydrofluoric acid waste liquid
JP6317197B2 (en) Method for producing perrhenic acid aqueous solution, method for producing potassium perrhenate, method for producing ammonium perrhenate, and method for producing rhenium metal
JP6743858B2 (en) Zinc separation method, zinc material manufacturing method, and iron material manufacturing method
JP2010275188A (en) Treated manganese ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217