JPH085676B2 - A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel - Google Patents
A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steelInfo
- Publication number
- JPH085676B2 JPH085676B2 JP20477689A JP20477689A JPH085676B2 JP H085676 B2 JPH085676 B2 JP H085676B2 JP 20477689 A JP20477689 A JP 20477689A JP 20477689 A JP20477689 A JP 20477689A JP H085676 B2 JPH085676 B2 JP H085676B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfuric acid
- liquid
- stainless steel
- iron sulfate
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/36—Regeneration of waste pickling liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、ステンレス鋼の硫酸酸洗廃液から低Crの高
純度硫酸鉄を回収する方法に関するものである。The present invention relates to a method for recovering high-purity iron sulfate having low Cr from a sulfuric acid pickling waste liquid of stainless steel.
現在、ステンレス鋼の表面処理法として硫酸による酸
洗処理が行われている。酸洗により鋼材中のFe,CrがH2S
O4に溶解し、これらの濃度が高くなると酸洗速度が著し
く低下するため、系外に排出し新酸と入れ替えねばなら
ない。従って、比較的H2SO4濃度の高い廃硫酸液が大量
に排出されている。 一方、普通鋼の場合の硫酸酸洗廃液は減圧濃縮により
水分を蒸発せしめ、free−H2SO4濃度を45〜60%に高め
ることにより溶存しているFeSO4を硫酸鉄一水塩として
析出せしめた上、これをH2SO4液と分離し、H2SO4液は酸
洗槽に戻して再使用する方法が行われている。また分離
された硫酸鉄一水塩中にはCrその他の重金属が殆ど含ま
れていないので、顔料やフェライト用等の原料として利
用されている。(特公昭50−2879号公報参照) また別法として、廃硫酸をそのまま、或いは予備濃縮
若しくは濃硫酸を添加する等の手段によりH2SO4濃度を
調整した上、これを20℃以下に冷却することによりFeSO
4・7H2Oを析出せしめた後これを分離し、その分離液は
水を添加してH2SO4濃度を調整した上、回収酸として繰
り返し酸洗に利用されている。(特公昭47−40629号公
報参照)Currently, a pickling treatment with sulfuric acid is performed as a surface treatment method for stainless steel. By pickling, Fe and Cr in the steel material become H 2 S
When it is dissolved in O 4 and the concentration of these increases, the pickling rate decreases significantly, so it must be discharged out of the system and replaced with fresh acid. Therefore, a large amount of waste sulfuric acid solution having a relatively high H 2 SO 4 concentration is discharged. On the other hand, in the case of ordinary steel, the sulfuric acid pickling waste liquid is evaporated under reduced pressure to evaporate water, and the dissolved FeSO 4 is precipitated as iron sulfate monohydrate by increasing the free-H 2 SO 4 concentration to 45-60%. after having allowed, which was separated from the H 2 SO 4 solution, H 2 SO 4 solution how to re-use back into the pickling tank is being performed. Further, since the separated iron sulfate monohydrate contains almost no heavy metals such as Cr, it is used as a raw material for pigments and ferrites. (See Japanese Examined Patent Publication No. 50-2879) As an alternative method, the H 2 SO 4 concentration is adjusted as it is by using waste sulfuric acid as it is, or by preconcentrating or adding concentrated sulfuric acid, and then cooling it to 20 ° C. or less. By doing FeSO
4 · 7H 2 O to separate it after allowed precipitate, the separated liquid is after adjusting the H 2 SO 4 concentration by addition of water, is utilized to repeatedly pickling as recovered acid. (See Japanese Patent Publication No. 47-40629)
しかるに、ステンレス鋼の硫酸酸洗廃液中にはFeの外
にCrが多量に含まれており、これを前記方法にて処理す
る場合は、濃縮法,冷却法の何れの場合においても硫酸
鉄が析出する。この中に含まれるCr量は当初は微量であ
るが、時間の経過とともに缶内母液中のCr濃度が上昇
し、これにつれて結晶中に含まれるCr濃度が増大するば
かりでなく、母液を酸洗槽に再利用する場合は酸洗速度
が低下する等の問題があるので、回収酸として再利用出
来ないため回収装置を設置する例は見当たらない。従っ
て、石灰中和によって処理する方法が行われているが、
生成する水酸化鉄中にCrの水酸化物が混入し公害上から
そのままでは廃棄できないため、セメントによる固化等
不溶性化したり、中和時に空気酸化してフェライト化し
無害化した上で廃棄する方法が現在行われている。 そこで、特開昭63−295442号公報に記載されているよ
うに、高純度酸化鉄又は水酸化鉄を製造する際の鉄塩水
溶液の効率的精製法として、廃酸に鉄や塩基を添加しPH
3〜7に調整し生成する水酸化物を自然沈降、濾過、又
は遠心分離等により分離除去する方法が提案されてい
る。 この方法の場合、Crとして100ppm以下を含有する廃硫
酸を鉄や塩基を用いて中和しPHを5.0以上とし、Crを水
酸化物として分離除去した場合濾液中のCr濃度は10ppm
に低下する。ただし、廃硫酸中のCr濃度が数百ppm以上
ではPHを5.0以上に中和しても残留Crは80ppm以上とな
る。PHを6.0以上としても20ppm以上のCrが残留する。 しかしながら、ステンレス鋼を硫酸にて酸洗する際に
排出される廃硫酸中のCrは4000ppm以上と格段に高いた
め、塩基による中和、或いは鉄屑及び塩基併用による中
和では脱Crが有効的且つ充分には行われないという問題
がある。 本発明はこの問題を解決するためなされたものであ
る。However, in the sulfuric acid pickling waste liquid of stainless steel, a large amount of Cr is contained in addition to Fe. When this is treated by the above method, iron sulfate is contained in both the concentration method and the cooling method. To deposit. The amount of Cr contained in this is initially small, but the Cr concentration in the mother liquor in the can rises with the passage of time, and the Cr concentration contained in the crystals increases accordingly, and the mother liquor is pickled. When it is reused in the tank, there is a problem that the pickling rate will decrease, so it cannot be reused as the recovered acid, so there is no example of installing a recovery device. Therefore, although the method of treating by lime neutralization is performed,
Since the hydroxide of Cr is mixed in the generated iron hydroxide and cannot be discarded as it is from the standpoint of pollution, it is possible to make it insoluble such as solidification by cement, or to make it harmless by air oxidation and ferrite during neutralization before discarding. Currently being conducted. Therefore, as described in JP-A-63-295442, as an efficient purification method of an iron salt aqueous solution when producing high-purity iron oxide or iron hydroxide, iron or base is added to waste acid. PH
A method has been proposed in which the hydroxides produced by adjusting to 3 to 7 are separated and removed by natural sedimentation, filtration, centrifugation, or the like. In the case of this method, waste sulfuric acid containing 100 ppm or less as Cr is neutralized with iron or a base to PH of 5.0 or more, and when Cr is separated and removed as hydroxide, the Cr concentration in the filtrate is 10 ppm.
Fall to. However, if the Cr concentration in the waste sulfuric acid is several hundred ppm or more, the residual Cr will be 80 ppm or more even if the PH is neutralized to 5.0 or more. Even if the pH is 6.0 or more, 20 ppm or more of Cr remains. However, Cr in waste sulfuric acid discharged when pickling stainless steel with sulfuric acid is significantly high at 4000 ppm or more, so de-Cr is effective in neutralization with a base or neutralization with iron scrap and base. And there is a problem that it is not performed sufficiently. The present invention has been made to solve this problem.
本発明においては、まずCr濃度の高い廃硫酸を拡散透
析装置にて処理し、遊離硫酸の大部分を除去することに
より残留硫酸濃度数%以下の脱酸液を得る。この脱酸液
に金属鉄又はミルスケールを投入し、これを50〜100℃
に加熱し、攪拌,混合,振盪等の機械的手段により固液
間の接触作用を強力に行い、置換還元反応を行わしめCr
を金属物として析出させる。これを濾過又は遠心分離等
によって分離除去した後、硫酸を添加しPHを2以下に調
整し、この調整脱Cr液をそのまま或いは濃縮によりFeSO
4濃度を例えば20%以上にした後、20℃以下に冷却し硫
酸鉄結晶を析出せしめ、これを母液と分離することによ
って、低Cr高純度FeSO4・7H2SO4をステンレス鋼の硫酸
酸洗廃液より回収するものである。In the present invention, waste sulfuric acid having a high Cr concentration is first treated with a diffusion dialyzer to remove most of the free sulfuric acid to obtain a deoxidized liquid having a residual sulfuric acid concentration of several% or less. Metallic iron or mill scale is added to this deoxidation liquid, and this is heated at 50 to 100 ° C.
The solid-liquid contact is strongly effected by mechanical means such as stirring, mixing, and shaking to perform the substitution reduction reaction.
Is deposited as a metal substance. After separating and removing this by filtration or centrifugation, sulfuric acid is added to adjust the pH to 2 or less, and the adjusted Cr-free solution is directly or concentrated by FeSO.
4 After increasing the concentration to, for example, 20% or higher, cool it to 20 ° C or lower to precipitate iron sulfate crystals, and separate this from the mother liquor to convert low Cr high-purity FeSO 4・ 7H 2 SO 4 into sulfuric acid of stainless steel. It is collected from the washing waste liquid.
以下に本発明の各工程における作用について詳述す
る。廃硫酸を拡散透析装置にかけることにより廃硫酸中
のfree−H2SO4の大部分を分離除去し、透析廃液側にFe,
Cr等のそのまま取り残されたfree−H2SO4濃度の低い脱
酸液を得ることができる。次いで、これに金属鉄又はミ
ルスケールを添加し、液温を50〜100℃に加温して攪
拌,混合,振盪等の機械的手段により固液の間の接触作
用を促進させ、Crイオンを添加した金属鉄又はミルスケ
ールと置換、還元し金属物として析出沈澱させて脱Crを
有効に行うものである。この場合、添加する金属鉄又は
ミルスケールは充分過剰にしておくことが好ましい。 主な反応機構は (1) Feの溶解によるPHの上昇 2H++Fe→Fe2++H2↑ (2) FeによるCr3+の還元 Cr3++Fe→Fe2++Cr が考えられる。 (2)の反応は酸濃度に関係なくPHの低い時にも起こ
るが、硫酸濃度が高いと析出したCrの再溶解が起こるの
で、(1)の反応が進行してPHが上がってからでないと
実質的に進行しない。従って、第一工程に於ける脱酸率
はPH値で1〜2に近づけることが望ましいが、脱酸率を
上げることは透析装置の膜面積の増加を必要とし、設備
費の上昇につながるので、PH1以下でもよい。 脱酸液中のCrは金属鉄又はミルスケールによる置換還
元反応より殆ど全部が析出するが、Cr濃度は上記の反応
機構よりして、単にPHだけでは決定できないが、PHの下
限は一応4を目安とする。 脱Crされた処理液中には金属鉄又はミルスケール及び
Cr等の沈澱物が含まれているので、これらを濾別した
後、その濾液にH2SO4を添加してPHを2以下に調整す
る。これは処理液をそのまま放置すると、溶存中のFe2+
が酸化されてFe3+となりFe(OH)3の沈澱が析出され易
いので、これを防止するためである。PH調整液は、これ
をそのまま10℃以下に冷却するか、或いは濃縮してFeSO
420%以上、好ましくは30%以上とした上で20℃以下に
冷却することにより、高純度硫酸鉄結晶を析出回収し得
られるが、結晶の析出量を多くしたい場合には10℃以下
に冷却するとよい。 一方、回収液側には廃硫酸中のfree−H2SO4の大部分
が移行しているが、Fe,Cr等はわずか(原液中濃度の3
〜4%)しか含まれていないので、これに補給硫酸を添
加し濃度調整することにより酸洗に再利用し得るメリッ
トがある。また第三工程における残留Cr濃度はPH4の場
合20ppm,PH5の場合1ppmとなり、残留Cr濃度20ppmの脱Cr
溶液から晶析分離したFeSO4・7H2O中のCr含有量は1ppm
以下、また残留Cr濃度1ppmの脱Cr液から晶析分離したFe
SO4・7H2O中のCr含有量は0.1ppm以下になる。The operation of each step of the present invention will be described in detail below. Most of the free-H 2 SO 4 in the waste sulfuric acid is separated and removed by applying the waste sulfuric acid to a diffusion dialysis device, and Fe,
It is possible to obtain a deoxidized liquid having a low concentration of free-H 2 SO 4 that is left as it is, such as Cr. Next, metallic iron or mill scale is added to this, the liquid temperature is heated to 50 to 100 ° C., mechanical action such as stirring, mixing, and shaking is promoted to promote the contact action between the solid and the liquid, and Cr ions are removed. It replaces the added metallic iron or mill scale, reduces it, and precipitates and precipitates it as a metal substance to effectively remove Cr. In this case, it is preferable to add the metallic iron or mill scale to be added sufficiently. The main reaction mechanism is believed that reducing Cr 3+ + Fe → Fe 2+ + Cr of Cr 3+ by (1) increasing the PH due to dissolution of Fe 2H + + Fe → Fe 2+ + H 2 ↑ (2) Fe. The reaction of (2) occurs even when the pH is low regardless of the acid concentration, but when the concentration of sulfuric acid is high, the precipitated Cr is redissolved, so the reaction of (1) must proceed until the pH rises. Substantially no progress. Therefore, it is desirable that the deoxidation rate in the first step be close to 1 or 2 in PH value, but increasing the deoxidation rate requires an increase in the membrane area of the dialysis device, which leads to an increase in equipment costs. , PH1 or less. Almost all of the Cr in the deoxidation solution is deposited by the substitution reduction reaction with metallic iron or mill scale, but the Cr concentration cannot be determined simply by PH based on the above reaction mechanism, but the lower limit of PH is 4 for the time being. Use as a guide. In the Cr-free treatment liquid, metallic iron or mill scale and
Since precipitates such as Cr are contained, these are filtered off, and H 2 SO 4 is added to the filtrate to adjust the pH to 2 or less. This is because if the treatment liquid is left as it is, dissolved Fe 2+
This is to prevent the precipitation of Fe (OH) 3 because it is easily oxidized to form Fe 3+ . The pH adjustment liquid can be cooled to 10 ° C or below as it is or concentrated to produce FeSO 4.
4 By cooling to 20% or higher, preferably 30% or higher, and then cooling to 20 ° C or lower, high-purity iron sulfate crystals can be precipitated and recovered, but if it is desired to increase the amount of crystal precipitation, the temperature should be 10 ° C or lower. Cool it down. On the other hand, most of the free-H 2 SO 4 in the waste sulfuric acid migrates to the recovered liquid side, but Fe, Cr, etc. are slightly (3% of the concentration in the stock solution).
Since it contains only ~ 4%), there is an advantage that it can be reused for pickling by adding supplemental sulfuric acid to this and adjusting the concentration. Also, the residual Cr concentration in the third step is 20 ppm for PH4 and 1 ppm for PH5.
Cr content of FeSO 4 · 7H 2 in O was separated from the solution crystallized析分is 1ppm
Fe crystallized and separated from the Cr removal solution with a residual Cr concentration of 1 ppm
Cr content of SO 4 · 7H 2 in O becomes 0.1ppm or less.
以下、本発明の実施例について述べる。 液組成:free−H2SO491g/,Fe90g/,Cr6g/の廃硫
酸260/hを拡散透析装置(徳山ソーダ株式会社製,TSD
−50−550型)に通液する。一方、これに見合う量の水2
60/hを通水することにより液組成:free−H2SO422.4g/
,Fe70g/,Cr4.7g/の脱酸液324/hが得られた。同
時に液組成:free−H2SO483.2g/,Fe3.5g/,Cr0.2g/
の回収酸200を得た。脱酸液には金属鉄130kgを加え、
液温を85℃に加熱しなからポンプ循環する。5時間後PH
が4にて反応を中止した後、直ちにフィルタープレスに
て加圧濾過し316kgの濾液が得られた。第1鉄の酸化防
止のためConc−H2SO4250gを添加した。濾液中の残留Cr
は20ppmであった。 次いでこの液を2等分し、その内の一部158kgを0℃
まで冷却した後、析出した結晶を遠心分離し23kgのFeSO
4・7H2Oを回収した。結晶中のCr含有量は0.9ppmであっ
た。 前記濾液の残部158kgをFeSO4濃度30%まで濃縮した
上、これを20℃まで冷却した後、析出した結晶を遠心分
離し31kgのFeSO4・7H2Oを回収した。結晶中のCr含有量
は1.5ppmであった。 一方、回収酸には、Conc−H2SO460kg及びH2O45kgを加
えることにより、液組成:H2SO424%,Fe0.2%,Cr0.01%
の調整硫酸液315kgが得られ、これを再び酸洗用に循環
使用した。 実施例で判るように、本発明の方法によれば、ステン
レス鋼硫酸酸洗廃液中に6000ppm含まれていたCrが、PH
=4の脱Cr液では20ppmにまで低下し、その脱Cr率は99.
7%である。 ちなみに、前記特開昭63−295442号公報に開示されて
いる方法と比較すると、同公報における実施例4では、
PH=4.2の場合、脱Cr率は42.3%、PH=6.2の場合であっ
ても、脱Cr率は94.3%であり、本願発明の方法によれば
極めて有効に脱Crされることが判る。Examples of the present invention will be described below. Liquid composition: Free-H 2 SO 4 91 g /, Fe 90 g /, Cr 6 g / waste sulfuric acid 260 / h by diffusion dialysis device (Tokuyama Soda Co., Ltd., TSD
-50-550 type). On the other hand, an appropriate amount of water 2
Liquid composition by passing 60 / h: free-H 2 SO 4 22.4 g /
A deoxidizing solution of Fe70g /, Cr4.7g / 324 / h was obtained. At the same time, liquid composition: free-H 2 SO 4 83.2g /, Fe3.5g /, Cr0.2g /
The recovered acid 200 was obtained. 130 kg of metallic iron is added to the deoxidizing solution,
Do not heat the liquid temperature to 85 ° C, and circulate with the pump. PH after 5 hours
After the reaction was stopped at 4, the pressure was immediately filtered with a filter press to obtain 316 kg of filtrate. The Conc-H 2 SO 4 250g prevent oxidation of the ferrous added. Residual Cr in the filtrate
Was 20 ppm. Next, this liquid is divided into two equal parts, and 158 kg of a part of the liquid is divided into 0 ° C.
After cooling down to 23 kg of FeSO
4 · 7H 2 O was recovered. The Cr content in the crystal was 0.9 ppm. The remaining 158 kg of the filtrate was concentrated to a FeSO 4 concentration of 30%, cooled to 20 ° C., and the precipitated crystals were centrifuged to recover 31 kg of FeSO 4 .7H 2 O. The Cr content in the crystal was 1.5 ppm. On the other hand, by adding Conc-H 2 SO 4 60 kg and H 2 O 45 kg to the recovered acid, liquid composition: H 2 SO 4 24%, Fe 0.2%, Cr 0.01%
315 kg of the adjusted sulfuric acid solution was obtained, and this was reused for pickling again. As can be seen from the examples, according to the method of the present invention, Cr contained in the stainless steel sulfuric acid pickling waste liquid at 6000 ppm is PH,
= 4 in the Cr removal solution = 4, the Cr removal rate is 99.
7%. By the way, in comparison with the method disclosed in the above-mentioned Japanese Patent Laid-Open No. 63-295442, in Example 4 of the same,
In the case of PH = 4.2, the Cr removal rate is 42.3%, and even in the case of PH = 6.2, the Cr removal rate is 94.3%, which shows that the method of the present invention provides extremely effective Cr removal.
本発明の方法によれば次のような効果がある。 (1) 従来、石灰中和法により処理され廃棄処分され
ていたステンレス鋼の硫酸酸洗廃液よりフェライト用、
顔料用として有用でありメリットの高くCr含有量の低い
高純度硫酸鉄が得られる。 (2) 新酸とほぼ同純度の硫酸が回収され酸洗工程に
て再利用することができ、資源の有効利用上、また公害
防止上、極めて有用である。 (3) 従来技術に較べ、非常に高い脱Cr率が得られ
る。The method of the present invention has the following effects. (1) For the ferrite from the sulfuric acid pickling waste liquid of stainless steel, which has been conventionally treated and disposed of by the lime neutralization method,
High-purity iron sulfate, which is useful as a pigment and has a high merit and a low Cr content, can be obtained. (2) Sulfuric acid having almost the same purity as the new acid can be recovered and reused in the pickling step, which is extremely useful for effective use of resources and prevention of pollution. (3) A very high Cr removal rate can be obtained as compared with the conventional technology.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 泰生 大阪府大阪市北区末広町3番3号 大同ケ ミカルエンジニアリング株式会社内 (72)発明者 辰馬 清 大阪府大阪市北区末広町3番3号 大同ケ ミカルエンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Yasuo Morimoto, 3-3 Suehiro-cho, Kita-ku, Osaka City, Osaka Prefecture Daido Chemical Engineering Co., Ltd. (72) Kiyo Tatsuma, 3 Suehiro-cho, Kita-ku, Osaka-shi, Osaka No. 3 Daido Chemical Engineering Co., Ltd.
Claims (2)
されるCr濃度の高い廃硫酸を、拡散透析装置にて処理
し、free−H2SO4を除去すると共に、脱酸液を得る第一
工程と、 該脱酸液に金属鉄又はミルスケールを投入し、これを50
〜100℃に加熱し更に機械的手段により固液間の接触作
用を促進せしめることにより、Crを析出させる第二工程
と、 第二工程にて処理した液を濾過して析出したCrの不純物
を除去した後濾液に硫酸を添加してPHを2以下に調整す
る第三工程と、 第三工程にて得たPH調整脱Cr液を冷却し硫酸鉄結晶を析
出せしめこれを母液と分離する第四工程とからなる、ス
テンレス鋼の硫酸酸洗廃液より高純度硫酸鉄を回収する
方法。1. A waste sulfuric acid having a high Cr concentration, which is discharged when pickling stainless steel with sulfuric acid, is treated with a diffusion dialysis device to remove free-H 2 SO 4 and to remove a deoxidizing solution. In the first step of obtaining and adding metallic iron or mill scale to the deoxidation liquid,
By heating to ~ 100 ℃ and further promoting the contact action between solid and liquid by mechanical means, the second step of precipitating Cr and the liquid treated in the second step are filtered to remove the impurities of precipitated Cr. After the removal, the third step of adding sulfuric acid to the filtrate to adjust the pH to 2 or less, and cooling the pH-adjusted Cr-free solution obtained in the third step to precipitate iron sulfate crystals and separate this from the mother liquor A method of recovering high-purity iron sulfate from a sulfuric acid pickling waste liquid of stainless steel, which comprises four steps.
FeSO4濃度を20%以上にした後、これを冷却し硫酸鉄結
晶を析出せしめ、これを母液と分離する第四工程とから
なる、請求項1記載のステンレス鋼の硫酸酸洗廃液より
高純度硫酸鉄を回収する方法。2. Concentrating the pH-adjusted Cr-free solution after the third step
The purity higher than that of the sulfuric acid pickling waste liquid of stainless steel according to claim 1, comprising a fourth step of cooling the FeSO 4 concentration to 20% or more, precipitating iron sulfate crystals, and separating this from the mother liquor. A method of recovering iron sulfate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20477689A JPH085676B2 (en) | 1989-08-09 | 1989-08-09 | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel |
AU14754/92A AU636532B2 (en) | 1989-08-09 | 1992-04-09 | Remote monitoring system for containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20477689A JPH085676B2 (en) | 1989-08-09 | 1989-08-09 | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0369515A JPH0369515A (en) | 1991-03-25 |
JPH085676B2 true JPH085676B2 (en) | 1996-01-24 |
Family
ID=16496161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20477689A Expired - Lifetime JPH085676B2 (en) | 1989-08-09 | 1989-08-09 | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH085676B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102358648A (en) * | 2011-09-20 | 2012-02-22 | 卢玉柱 | Technology for recycling of sludge obtained after neutralizing treatment of steel and iron pickling wastewater and recycling ferroferric oxide |
CN104961214A (en) * | 2015-06-26 | 2015-10-07 | 开平市开物化工建材有限公司 | Preparing device for polymeric aluminum ferric sulfate |
CN104961216A (en) * | 2015-06-26 | 2015-10-07 | 开平市开物化工建材有限公司 | Solidified polymeric aluminum ferric sulfate preparation device based on low-pressure boiling |
CN113003545A (en) * | 2021-02-23 | 2021-06-22 | 佛山市景嘉机电设备有限公司 | Method for recycling and treating iron-containing mixed acid waste liquid in steel industry |
CN113755852B (en) * | 2021-09-13 | 2022-10-18 | 浙江金洲管道科技股份有限公司 | Treatment system and method for reducing acid consumption and reducing emission of red mud in steel acid pickling and rust removing process |
-
1989
- 1989-08-09 JP JP20477689A patent/JPH085676B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0369515A (en) | 1991-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4332687A (en) | Removal of complexed heavy metals from waste effluents | |
TW438725B (en) | Method of treating waste water to remove harmful ion by coagulating sedimentation | |
RU1813111C (en) | Process for extracting gallium from industrial solution of sodium aluminate in bayer process | |
JP4216626B2 (en) | Method for recovering nickel sulfate from nickel-containing waste liquid sludge | |
JP4216657B2 (en) | Method for recovering nickel sulfate from nickel-containing waste liquid sludge | |
CN111170499A (en) | Method for recovering nickel sulfate from nickel electroplating waste liquid | |
JPH085676B2 (en) | A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel | |
JP3739845B2 (en) | Treatment method of ferric chloride waste liquid | |
JPH01153532A (en) | Purification of ferrous ion-containing solution | |
JP4231934B2 (en) | How to remove selenium in wastewater | |
US5968229A (en) | Purification of metal containing solutions | |
CA1279197C (en) | Cobalt recovery method | |
JP3549560B2 (en) | Method for recovering valuable metals and calcium fluoride from waste solution of pickling process | |
CN110668550B (en) | Gold concentrate non-cyanide beneficiation tailing liquid recycling treatment method | |
JP3188573B2 (en) | Purification method of iron chloride solution | |
JP3632226B2 (en) | Method for treating metal-containing wastewater | |
JPS6035200B2 (en) | Hard water slow softening method | |
JPS5846355B2 (en) | Treatment method for fluorine-containing ammonia waste liquid | |
JP2543795B2 (en) | Recovery method of silver sulfate | |
JPS589820B2 (en) | Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores | |
JPH0975954A (en) | Method of removing seleno sulfate ion in selenium-containing waste solution | |
JPS61261447A (en) | Method for recovering high-purity zinc sulfate from zinc-containing dust | |
KR0119001B1 (en) | Process for iron chloride utilizing the ferrite iron oxide | |
JPS6235837B2 (en) | ||
JP4505952B2 (en) | Manufacturing method of high purity ferric chloride aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080124 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20100124 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20100124 |