JP3739107B2 - 誘電体多層反射膜 - Google Patents
誘電体多層反射膜 Download PDFInfo
- Publication number
- JP3739107B2 JP3739107B2 JP10247195A JP10247195A JP3739107B2 JP 3739107 B2 JP3739107 B2 JP 3739107B2 JP 10247195 A JP10247195 A JP 10247195A JP 10247195 A JP10247195 A JP 10247195A JP 3739107 B2 JP3739107 B2 JP 3739107B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- layer
- film
- reflective film
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/0825—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
- G02B5/0833—Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/647—Resistive arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
- H01S5/0281—Coatings made of semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
- H01S5/0282—Passivation layers or treatments
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【産業上の利用分野】
本発明は、半導体レーザダイオード(Laser Diode;LD)の共振器端面やその他の光学素子に付設される誘電体多層反射膜に関する。
【0002】
【従来の技術】
上述の半導体LDの共振器端面は、半導体層を劈開またはエッチングして形成されており、そのままでは反射率が低いので、反射鏡として誘電体多層反射膜が形成される。この誘電体多層反射膜は、通常、図4に示すように、低屈折率(n1)を示す誘電体薄膜と高屈折率(n2)を示す誘電体薄膜とを、各層の光学的厚さがレーザの発振波長の1/4となるように交互に積層して構成される。
【0003】
低屈折材料としては、例えば特開平6−97570号に記載されているように、アルミナ(Al2O3)や二酸化珪素(SiO2)、あるいは二弗化マグネシウム(MgF2)等が挙げられ、高屈折率材料としては、二酸化チタニウム(TiO2)や二酸化ジルコニウム(ZrO2)、セレン化亜鉛(ZnSe)、硫化亜鉛(ZnS)等が挙げられる。
【0004】
【発明が解決しようとする課題】
上述の誘電体薄膜材料のうち、MgF2は、連続的に積層されたか不連続的に積層されたかを問わず多数層が積層された場合、あるいは単一層の積層でも厚膜化された場合には、その内部応力によりクラックが生じるという欠点を有する。また、ZnSeは強い毒性を示すという問題があり、ZnSは成膜装置のチャンバ内にSを残留させるので、そのSにより他の薄膜の品質を低下させるという問題がある。
【0005】
一方、酸化物誘電体は上述のような問題がなく、光学薄膜材料としてよく用いられる有用な材料であるが、酸化物誘電体膜の表面が強い極性を有することに起因して、大気中での屈折率が経時的に変化し易いという問題がある。この極性により、酸化物誘電体膜の表面が大気中の水分から解離した水酸基を容易に吸着するので、形成直後に大気に曝された薄膜表面は親水性を有する表面水酸基で急速に覆われる。更にその後、酸化物誘電体膜と表面水酸基との水素結合により徐々に水分が吸着される。このような水分吸着に伴って、酸化物誘電体膜の見かけ上の屈折率が経時的に変化してしまう。加えて、真空蒸着法等により成膜された誘電体薄膜においては、膜厚方向に平行な空孔を多数含む多孔質構造を有するが、これはバルク誘電体と比較して表面積が大きくなるということにつながるので、上記経時変化を助長するという方向に働く。
【0006】
例えば、図5の実線のような分光特性を示すSiO2層を含む交互多層反射膜をLD端面に形成した場合、上記のような水分吸着によりSiO2層の屈折率が経時的に増大してしまう。従って、SiO2層の光学的厚さが増大することになり、図5の反射スペクトルが破線で示したように半値全幅の若干の増大と共に長波長側にシフトして、本来のピーク波長での反射率が減少することにつながる。しかも、この様な波長シフトが経時的に現れるので、変化を予め見越した対応を考えることが困難である。
【0007】
本発明は、このような従来技術の問題点を解決すべくなされたものであり、酸化物誘電体を構成材料として含むにも拘らず、特性の経時変化を生じない誘電体多層反射膜を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の誘電体多層反射膜は、半導体レーザ素子の劈開またはエッチングされた共振器端面に設けられる誘電体多層反射膜であって、最表面層がMgF2からなり、該最表面層以外の層が1種類以上の酸化物誘電体を構成材料として含み、そのことにより上記目的が達成される。
【0009】
本発明の誘電体多層反射膜において、前記最表面層以外の層を構成するための前記酸化物誘電体がSiO2、TiO2、ZrO2およびTa2O5のうちの少なくとも1種類以上からなる構成とすることができる。
【0010】
本発明の誘電体多層反射膜において、前記最表面層以外の層が、SiO2からなる層とTiO2からなる層とを交互に合計6層積層されたものからなる構成とすることができる。
【0011】
【作用】
本発明においては、SiO2、TiO2、ZrO2およびTa2O5等に代表される酸化物誘電体を構成材料として含む誘電体多層反射膜の最表面層がMgF2層からなる。MgF2誘電体は緻密な構造を有しており、多層反射膜内部への水分の侵入・吸着を抑止できるので、多層反射膜の光学特性が経時的に安定に保たれる。 MgF2は最表面層以外には含まれておらず、内部応力によるクラックが生じない程度に十分薄く形成できる。例えば、上記誘電体多層反射膜をLD端面に用いる場合、MgF2層の厚さは、誘電体多層反射膜がLDの発振波長に対してもたらす反射率を変えないように1/2波長条件を満たせばよいので十分薄くでき、あるいは光学特性の決定に寄与させる場合でも十分薄く設計できる。また、MgF2薄膜は高い機械的強度を有するので、共振器端面に硬質な保護膜を有する反射鏡を形成することができる。
【0012】
最表面層以外の層が、SiO2からなる層とTiO2からなる層とを交互に合計6層積層されたものからなる構成とすると、その成膜の作業成の向上および反射率の向上の両立を図ることが可能となる。
【0013】
【実施例】
以下、本発明の実施例について図面を参照しながら説明する。
【0014】
(実施例1)
図1は実施例1にかかる誘電体多層反射膜が形成された半導体LD103の片方の端面を示す斜視図である。この半導体LD103は、共振器1と、その両方の出射端面に形成された、交互多層膜101および最表面層102からなる誘電体多層反射膜とを有する。共振器1は、GaAs基板11上にZnSeバッファ層12が形成され、その上にZnCdSe多重量子井戸を活性層、ZnSeをガイド層、ZnSSeをクラッド層とする分離閉じ込め型ヘテロ接合(SCH)構造13が形成されている。さらにその上にZnSeコンタクト層14が形成され、その上には一部がストライプ状に除去された誘電体絶縁層15が形成されている。また、誘電体絶縁層15の上には上部電極16が形成され、基板11の下面には下部電極17が形成されている。
【0015】
この共振器1の両方の出射端面には、SiO2層およびTiO2層が交互に積層された交互多層膜101と、MgF2からなる最表面層102とからなる誘電体多層反射膜が形成されている。
【0016】
上記誘電体多層反射膜を有する半導体LD103は、以下のようにして作製することができる。まず、分子線エピタキシ(MBE)法により、GaAs基板11上にZnSeバッファ層12、ZnSSe下部クラッド層、ZnSe下部ガイド層、ZnCdSe多重量子井戸活性層、ZnSe上部ガイド層、ZnSSe上部クラッド層およびZnSeコンタクト層14を順次エピタキシャル成長させる。続いて、電子ビーム(EB)蒸着法により誘電体絶縁層15を成膜し、マスクパターニング法によりその一部をストライプ状に除去する。さらに、抵抗加熱式真空蒸着法により、誘電体絶縁層15の上に上部電極16を、基板11の下面に下部電極17を形成して、電極ストライプ型II−VI族化合物半導体LDのレーザウェハを作製する。
【0017】
次に、この状態のレーザウェハをストライプ方向と垂直な方向に劈開またはエッチングしてバー状にする。この劈開面またはエッチング面が共振器1の光出射端面となる。
【0018】
その後、EB蒸着法により、共振器1の端面にSiO2層およびTiO2層を積層して交互多層膜101を形成する。各層の厚さは共振器1の発振波長に対して1/4波長条件を満たすように設計し、交互に3層ずつ、6層積層する。このとき、誘電体薄膜の付着強度を高めるために、共振器1を保持する基板は100〜150℃に加熱する。このように加熱温度を一般的な薄膜形成時よりも低く設定しているのは、II−V族化合物半導体の結晶成長温度が低いためである。成長温度に近い温度で長時間保持することは、ドーパントの拡散その他の影響を共振器に及ぼす虞れがあり、結晶成長時を除くプロセス温度は極力低く抑えるのが望ましい。また、蒸着開始前は、両方の材料共に真空槽内を4×10-6Torrとし、蒸着中は、SiO2については蒸着速度を16オングストローム/秒に保ち、TiO2については蒸着速度を3.3オングストローム/秒に保って成膜する。また、TiO2成膜時には、酸素原子の抜けを補うために純O2ガスを導入し、圧力は1.4×10-4Torrに保つ。
【0019】
さらに、上記交互多層膜101に重ねて、MgF2からなる最表面層102を積層する。このMgF2層の厚さは共振器1の発振波長に対して1/2波長条件を満たすように設計し、1層だけ積層する。このとき、交互多層膜の作製時と同様に、共振器1を保持する基板は100〜150℃に加熱する。また、1×10-5Torrの真空雰囲気中で蒸着速度を8オングストローム/秒に保って成膜を行う。最後に、バー状のレーザウェハを分割してチップ状にする。
【0020】
上記共振器1は波長520nmの発振波長を有するので、誘電体多層反射膜におけるSiO2層(屈折率1.45)、TiO2層(屈折率2.3)、MgF2層(屈折率1.36)の各層厚は、例えば89.66nm、56.52nm、191.18nmとして成膜することができる。
【0021】
図2は、以上のようにして作製された本実施例の誘電体多層反射膜の端面反射率を波長に対して示したものである。上記共振器1の発振波長に対する活性層の屈折率は約2.7であるので、端面に交互多層膜101を設けない場合には約21%の反射率を示すのみである。しかし、本実施例のように、高反射特性をもたらす交互多層膜101を設けることにより、端面波長特性が図中の実線のようにレーザの発振波長(520nm)でピークを示し、その反射率は91%にも達する。このように端面反射率を高くすることにより反射損失が低減されるので、閾値電流密度の低減を期待することができる。
【0022】
なお、上述のように交互多層膜101を、SiO2層およびTiO2層を交互に3層ずつ合計6層積層した構成とするのは、以下の理由による。SiO2層およびTiO2層を交互に積層したものを、共振器の端面に適用する場合、2層または4層では高反射率特性が得られない。一方、6層、8層と層数を増やしてゆくにつれて、得られる端面反射率も高くなるが、あまり反射率が高くなると共振器からの光取り出しに支障を来すことになる。また、層数が増えると、作業工程が煩雑になり、成膜に要する時間も長くなってしまうからである。
【0023】
また、本実施例では、交互多層膜101を構成する2種類の誘電体材料として、蒸着により形成された時に互いに反対方向に応力を示す材料を組み合わせて用いている。一般に、多層膜全体の応力は1層毎の応力の総和として見積られるが、2種類の誘電体が交互に組み合わされて対になっている場合、多層膜全体の応力は各対の応力の総和として求められる。従って、本実施例のように2種類の誘電体材料を選択することにより、交互多層膜101全体の応力を低減させることができる。このように素子に加わる余分な応力を低減することは、LD素子特性および信頼性向上という観点から重要なことである。
【0024】
上記図2は、本実施例の半導体LD103とは、MgF2層102を形成しなかった以外は同様にして作製した比較例を、大気中に700時間放置した後の端面反射率特性を同時に示す。なお、本実施例の半導体LDは点線、比較例の半導体LDは1点鎖線にて示す。
【0025】
この図から、酸化物誘電体であるSiO2およびTiO2は、大気中の水分を容易に吸着して屈折率の経時変化を生じ易いが、MgF2からなる最表面層102を備えることにより、その特性の経時変化が効果的に抑制されていることが確認できた。また、MgF2層は最表面に形成されているだけであり、十分薄膜であるので、内部応力によるクラック等も生じず、十分緻密で機械的な強度に優れた保護膜を共振器端面に形成することができた。
【0026】
(実施例2)
図3は実施例2の誘電体多層反射膜が形成された半導体LD203の片方の端面を示す斜視図である。この半導体LD203は、共振器2と、その両方の出射端面に形成された、交互多層膜201および最表面層202からなる誘電体多層反射膜とを有する。共振器2は、GaAs基板21上にAlGaAs下部クラッド層22、AlGaAs活性層23、AlGaAs上部クラッド層24からなるダブルヘテロ(DH)構造が形成されている。上部クラッド層24の上面は一部を残してストライプ状に除去されており、その状態の基板上にGaAsブロック層25およびGaAsコンタクト層26が形成されて電流狭窄構造が形成されている。また、コンタクト層26の上には上部電極27が形成され、基板21の下面には下部電極28が形成されている。
【0027】
この共振器2の両方の出射端面には、SiO2層およびSi層が交互に積層された多層膜201と、MgF2からなる最表面層202とからなる誘電体多層反射膜が形成されている。
【0028】
上記誘電体多層反射膜が形成された半導体LD203は、以下のようにして作製することができる。まず、有機金属気相成長(MOCVD)法により、GaAs基板21上にAlGaAs下部クラッド層22、AlGaAs活性層23、AlGaAs上部クラッド層24を順次成長させてDH構造を形成する。続いて、上部クラッド層24の上面を一部ストライプ状に残すように選択エッチングし、その後、電流狭窄のためのGaAsブロック層25およびGaAsコンタクト層26を再成長する。さらに、抵抗加熱式真空蒸着法により、GaAsコンタクト層26の上に上部電極27を、基板21の下面に下部電極28を形成して、内部ストライプ構造のIII−V族化合物半導体LDのレーザウェハを作製する。
【0029】
次に、この状態のレーザウェハをストライプ方向と垂直な方向に劈開またはエッチングしてバー状にする。この劈開面またはエッチング面が共振器2の光出射端面となる。
【0030】
その後、EB蒸着法により、共振器2の端面にSiO2層およびSi層を積層して交互多層膜201を形成する。各層の厚さは共振器2の発振波長に対して1/4波長条件を満たすように設計し、交互に2層ずつ、4層積層する。このとき、誘電体薄膜の付着強度を高めるために、共振器2を保持する基板は200〜250℃に加熱する。また、蒸着開始前は、両方の材料共に真空槽内を4×10-6Torrとし、蒸着中は、SiO2については蒸着速度を16オングストローム/秒に保ち、Siについては蒸着速度を10オングストローム/秒に保って成膜する。
【0031】
さらに、上記交互多層膜201に重ねて、MgF2からなる最表面層202を積層する。このMgF2層の厚さは共振器2の発振波長に対して1/2波長条件を満たすように設計し、1層だけ積層する。この時、交互多層膜の作製時と同様に、共振器2を保持する基板は200〜250℃に加熱する。また、1×10-5Torrの真空雰囲気中で蒸着速度を8オングストローム/秒に保って成膜を行う。最後に、バー状のレーザウェハを分割してチップ状にする。
【0032】
上記共振器2は波長780nmの発振波長を有するので、誘電体多層反射膜はSiO2層(屈折率1.45)、Si層(屈折率3.6)、MgF2層(屈折率1.36)の各層厚は、例えば134.48nm、54.17nm、286.76nmとして成膜することができる。
【0033】
このようにして作製された本実施例の半導体LD203は、上記共振器2の発振波長に対する活性層の屈折率は約3.6であり、実施例1の場合よりも大きく、また、交互多層膜201に用いられている2種類の誘電体の屈折率差も実施例1の場合よりも大きいので、交互多層膜の層数を実施例1よりも少なくしても十分な高反射特性を得ることができる。この実施例では、レーザの発振波長(780nm)で反射率97%が得られた。
【0034】
また、MgF2からなる最表面層202が設けられているので、実施例1と同様に、交互多層膜201の光学特性の経時変化を抑制できることが確認できた。また、MgF2層は最表面に形成されているだけであり、十分薄膜であるので、十分緻密で機械的な強度に優れた保護膜を共振器端面に形成することができた。
【0035】
以上、実施例1および2について説明したが、本発明は上記実施例に限定されるものではない。例えば、上記実施例1および2では、誘電体薄膜の形成にEB蒸着法を用いたが、高周波スパッタ法やボート式真空蒸着法あるいはその他の成膜法を用いても問題無い。
【0036】
上記実施例1および2では、各誘電体薄膜の厚さをレーザの発振波長に対して1/4波長条件、1/2波長条件を満たすように設計したが、所望の特性が異なるときには異なる厚さの層を形成してもよい。但し、MgF2層は、内部応力によるクラックが生じない程度に十分薄く形成し、しかも酸化物誘電体層に水分が吸着されるのを防ぐのに十分な厚みにするため、例えば、100nm〜600nm程度に形成するのが望ましい。
【0037】
上記実施例1および2では、共振器を電極ストライプ構造および内部ストライプ構造としたが、横モードの制御を考慮してリッジ導波路構造やその他の構造のLDに対しても、本発明の誘電体多層反射膜を有効に適用できる。
【0038】
また、上記実施例1および2では、交互多層膜を構成する酸化物としてSiO2およびTiO2を用いたが、ZrO2やTa2O5あるいはその他の酸化物を用いてもよい。
【0039】
また、上記実施例1および2では、レーザの発振波長を決定する活性層としてZnCdSe多重量子井戸層およびAlGaAs活性層を用いたが、他の発振波長を得るために他の材料や構造の活性層を形成しても、MgF2層は赤外から紫外にまで及ぶ広い透過波長領域を有しているので、本発明の誘電体多層反射膜は何等支障なく適用できる。
【0040】
また、本発明の誘電体多層反射膜は、上記実施例1および2のような半導体LDに限られず、その他の光学素子、たとえば発光ダイオード等に対しても有効に適用することができる。
【0041】
【発明の効果】
以上の説明から明らかなように、本発明によれば、水分を吸着し易い酸化物誘電体を構成材料として含む誘電体多層反射膜の光学的特性を、経時的に安定に保つことができる。同時に、緻密で高い機械的強度を有する保護膜を有する反射鏡を共振器端面に形成することができる。従って、信頼性および安定性に優れたLDや光学素子を得ることができる。
【図面の簡単な説明】
【図1】 実施例1の半導体LDの片方の端面を示す斜視図である。
【図2】 実施例1の半導体LDおよび比較例の半導体LDの端面反射率−波長特性を示す図である。
【図3】 実施例2の半導体LDの片方の端面を示す斜視図である。
【図4】 従来の半導体LDの共振器端面に設けられた誘電体多層膜を示す模式図である。
【図5】 従来の誘電体多層反射膜の反射率−波長特性を示す図である。
【符号の説明】
1、2 共振器
11、21 基板
12 バッファ層
13 SCH構造
14、26 コンタクト層
15 誘電体絶縁層
16、27 上部電極
17、28 下部電極
22 下部クラッド層
23 活性層
24 上部クラッド層
25 ブロック層
101、201 交互多層膜
102、202 最表面層
103、203 半導体LD
Claims (5)
- 半導体レーザ素子の劈開またはエッチングされた共振器端面に設けられる誘電体多層反射膜であって、最表面層がMgF2であり、該最表面層以外の層が、第1の酸化物誘電体と、該第1の酸化物誘電体とは異なる第2の酸化物誘電体とを交互に積層してなる交互多層膜からなり、前記第2の酸化物誘電体がSiO 2 、TiO 2 、ZrO 2 およびTa 2 O 5 のうちの少なくとも1種類以上からなることを特徴とする誘電体多層反射膜。
- 前記交互多層膜の前記第1の酸化物誘電体が、SiO2、TiO2、ZrO2およびTa2O5のうちの少なくとも1種類以上からなる、請求項1に記載の誘電体多層反射膜。
- 前記最表面層の厚さが、100nm〜600nmである請求項1に記載の誘電体多層反射膜。
- 前記最表面層以外の層が、SiO2からなる層とTiO2からなる層とを交互に3層ずつ積層することによって合計6層が積層されたものである請求項1に記載の誘電体多層反射膜。
- 請求項1に記載の誘電体多層反射膜の製造方法であって、
半導体レーザ素子の劈開またはエッチングされた共振器端面に、第1の酸化物誘電体と、該第1の酸化物誘電体とは異なる第2の酸化物誘電体とを交互に成膜することによって交互多層膜を形成する工程と、
該交互多層膜に、MgF 2 からなる最表面層を積層する工程とを包含し、
前記第2の酸化物誘電体がTiO2 であり、該TiO2の成膜工程において、成膜雰囲気に純O2ガスを含むことを特徴とする誘電体多層反射膜の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10247195A JP3739107B2 (ja) | 1995-04-26 | 1995-04-26 | 誘電体多層反射膜 |
US08/639,989 US5841584A (en) | 1995-04-26 | 1996-04-26 | Dielectric multilayered reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10247195A JP3739107B2 (ja) | 1995-04-26 | 1995-04-26 | 誘電体多層反射膜 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08298351A JPH08298351A (ja) | 1996-11-12 |
JP3739107B2 true JP3739107B2 (ja) | 2006-01-25 |
Family
ID=14328372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10247195A Expired - Fee Related JP3739107B2 (ja) | 1995-04-26 | 1995-04-26 | 誘電体多層反射膜 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5841584A (ja) |
JP (1) | JP3739107B2 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2870486B2 (ja) * | 1996-06-06 | 1999-03-17 | 日本電気株式会社 | 半導体レーザ素子 |
AU2652797A (en) * | 1997-05-13 | 1998-12-08 | Mitsubishi Denki Kabushiki Kaisha | Dielectric thin film element and method for manufacturing the same |
US6011646A (en) * | 1998-02-20 | 2000-01-04 | The Regents Of The Unviersity Of California | Method to adjust multilayer film stress induced deformation of optics |
US6749427B1 (en) * | 1998-07-31 | 2004-06-15 | 3M Innovative Properties Company | Dental articles including post-formable multilayer optical films |
US6134049A (en) * | 1998-09-25 | 2000-10-17 | The Regents Of The University Of California | Method to adjust multilayer film stress induced deformation of optics |
SG85604A1 (en) * | 1998-11-06 | 2002-01-15 | Inst Materials Research & Eng | Method of selective post-growth tuning of an optical bandgap of a semi-conductor heterostructure and products produced thereof |
EP1198040A1 (en) * | 2000-09-29 | 2002-04-17 | Agere Systems Optoelectronics Guardian Corporation | Optical devices including high reflectivity coatings |
JP2002164609A (ja) * | 2000-11-28 | 2002-06-07 | Sharp Corp | 半導体レーザ素子およびその製造方法 |
MY128602A (en) * | 2001-09-03 | 2007-02-28 | Grace W R & Co | Foamed fireproofing composition and method |
US20040061232A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Multilayer substrate |
US8003513B2 (en) * | 2002-09-27 | 2011-08-23 | Medtronic Minimed, Inc. | Multilayer circuit devices and manufacturing methods using electroplated sacrificial structures |
JP4287702B2 (ja) * | 2003-06-04 | 2009-07-01 | シャープ株式会社 | 酸化物半導体発光素子 |
FR2859487B1 (fr) * | 2003-09-04 | 2006-12-15 | Essilor Int | Procede de depot d'une couche amorphe contenant majoritairement du fluor et du carbone et dispositif convenant a sa mise en oeuvre |
JP2006128475A (ja) * | 2004-10-29 | 2006-05-18 | Mitsubishi Electric Corp | 半導体レーザ |
JP4514760B2 (ja) | 2007-01-26 | 2010-07-28 | シャープ株式会社 | 半導体レーザ素子 |
JP2008244300A (ja) * | 2007-03-28 | 2008-10-09 | Mitsubishi Electric Corp | 半導体レーザ |
JP4310352B2 (ja) | 2007-06-05 | 2009-08-05 | シャープ株式会社 | 発光デバイスおよび発光デバイスの製造方法 |
US20090273840A1 (en) * | 2008-05-02 | 2009-11-05 | Mclaughlin Sheldon | Wavelength dispersing device |
JP2010226056A (ja) | 2009-03-25 | 2010-10-07 | Mitsubishi Electric Corp | 半導体レーザ装置 |
JP6624154B2 (ja) | 2017-05-11 | 2019-12-25 | 日亜化学工業株式会社 | 半導体レーザ素子及びその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4280107A (en) * | 1979-08-08 | 1981-07-21 | Xerox Corporation | Apertured and unapertured reflector structures for electroluminescent devices |
JP2629693B2 (ja) * | 1987-02-26 | 1997-07-09 | 松下電器産業株式会社 | エキシマレーザ用ミラー |
JPH04133486A (ja) * | 1990-09-26 | 1992-05-07 | Sharp Corp | 半導体レーザ装置 |
JPH0697570A (ja) * | 1992-09-14 | 1994-04-08 | Matsushita Electric Ind Co Ltd | 半導体レーザー素子端面の反射鏡およびその製造方法 |
-
1995
- 1995-04-26 JP JP10247195A patent/JP3739107B2/ja not_active Expired - Fee Related
-
1996
- 1996-04-26 US US08/639,989 patent/US5841584A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08298351A (ja) | 1996-11-12 |
US5841584A (en) | 1998-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3739107B2 (ja) | 誘電体多層反射膜 | |
KR101368058B1 (ko) | 반도체 레이저 소자 | |
KR100778909B1 (ko) | 반도체 레이저 소자 | |
JP3220977B2 (ja) | 窒化物半導体レーザ素子及び窒化物半導体レーザ素子の製造方法。 | |
JP3523700B2 (ja) | 窒化物半導体レーザ素子 | |
JPH0834337B2 (ja) | 半導体レーザ素子の製造方法 | |
JP2870486B2 (ja) | 半導体レーザ素子 | |
JP4952184B2 (ja) | 窒化物半導体レーザ素子及びその製造方法 | |
JP4946243B2 (ja) | 半導体レーザ素子、及びそれを用いた光ピックアップ装置、光学式情報再生装置 | |
US5374587A (en) | Method of manufacturing optical semiconductor element | |
JP3264163B2 (ja) | 窒化物半導体レーザ素子 | |
JPH06268327A (ja) | 半導体発光素子 | |
JP3656454B2 (ja) | 窒化物半導体レーザ素子 | |
JP2526277B2 (ja) | 半導体レ―ザ | |
JP3290646B2 (ja) | 半導体レーザ素子、その製造方法及び光ディスク装置 | |
JPH0745910A (ja) | 半導体レーザー | |
JP2000164978A (ja) | 半導体レーザ素子 | |
JPH10190139A (ja) | 半導体レーザ素子の製造方法 | |
JP3196831B2 (ja) | 半導体レーザ素子の製造方法 | |
JPH07312459A (ja) | 光半導体素子 | |
JPH09237932A (ja) | 窒化物半導体レーザ素子 | |
JPH09129983A (ja) | 半導体発光素子 | |
JPH071817B2 (ja) | 半導体レーザ | |
JP3565202B2 (ja) | 窒化物半導体レーザ素子 | |
JPH06196821A (ja) | 面発光型光半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131111 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |