JP3724255B2 - Gate drive circuit for voltage driven semiconductor device - Google Patents

Gate drive circuit for voltage driven semiconductor device Download PDF

Info

Publication number
JP3724255B2
JP3724255B2 JP12989399A JP12989399A JP3724255B2 JP 3724255 B2 JP3724255 B2 JP 3724255B2 JP 12989399 A JP12989399 A JP 12989399A JP 12989399 A JP12989399 A JP 12989399A JP 3724255 B2 JP3724255 B2 JP 3724255B2
Authority
JP
Japan
Prior art keywords
voltage
driven semiconductor
circuit
semiconductor element
overvoltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12989399A
Other languages
Japanese (ja)
Other versions
JP2000262068A (en
Inventor
宏二 丸山
憲司 高坂
邦夫 松原
清明 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP12989399A priority Critical patent/JP3724255B2/en
Publication of JP2000262068A publication Critical patent/JP2000262068A/en
Application granted granted Critical
Publication of JP3724255B2 publication Critical patent/JP3724255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電力変換装置における電圧駆動型半導体素子のゲート駆動回路、特に電力変換回路を高電圧化するために各アームに電圧駆動型半導体素子を直列接続して構成された電力変換装置における、電圧駆動型半導体素子のゲート駆動回路に関する。
【0002】
【従来の技術】
図8に、電力変換装置で高電圧化を図るために、IGBT(絶縁ゲートバイポーラトランジスタ)を各アームに直列接続した場合の従来例で、IGBTを直列接続したインバータ1相分の回路を示す。
【0003】
図示のように、この回路はIGBTQ1,Q2(上アーム)とQ3,Q4(上アーム)、直流電源Ed、スナバコンデンサCs1,Cs2、スナバダイオードDs1,Ds2、スナバ抵抗Rs1,Rs2、および各IGBT対応の充放電スナバ回路(RCDスナバ回路)などから構成される。
【0004】
GDU1〜GDU4はQ1〜Q4のゲート駆動回路で、具体的には例えば図9に示すように、IGBTをオン,オフさせるためのトランジスタTR1,TR2およびインターフェイス回路IFなどから構成される。
【0005】
図10に図8,9の動作波形図を示す。
図10はQ1がターンオフしてから、時間Δt時間だけ遅れてQ2がターンオフ動作を開始した場合を示している。すなわち、IGBTを直列接続して運転する場合、図10に示すように、素子特性のばらつき等により、IGBTのターンオフタイミングに違いが生じると、各IGBTの電圧分担にアンバランスが発生する。これは、Q1が早くオフしてしまうと、Q2はオンしているために、Q1だけに電圧が印加されてしまうためである。このようなわけで電圧アンバランスが発生するが、その対策として、各IGBT対応に充放電スナバ回路(図8ではRCDスナバ回路)を付加することによって、Q1(先にオフしたIGBT)の電圧変化率(dv/dt)を低減させ、Q2(遅れてオフするIGBT)がオフするまでの期間(Δt)にQ1に印加される電圧を抑制する。
【0006】
【発明が解決しようとする課題】
IGBTを直列接続して用いる場合、上述のように、各IGBTに充放電スナバ回路を付加することにより、ターンオフタイミングがずれた場合の電圧アンバランスによる過電圧印加やそれによる素子破壊を防ぐことができるが、許容し得る時間差を増加させようとすると、付加するスナバのコンデンサ容量を大きくしなければならず、そうすると発生損失が増大するために抵抗Rの形状が大きくなり、装置自体も大きくなるなどの問題がある。
したがって、この発明の課題はスナバ回路のコンデンサ容量を大きくすることなく、IGBTの高速な保護と再オン時の損失低減を図ることにある。
【0007】
【課題を解決するための手段】
このような課題を解決するために、請求項1の発明では、各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置に対し、その電圧駆動型半導体素子のスイッチングを制御する制御装置と、この制御装置からの信号に基づき前記各電圧駆動型半導体素子をオン,オフ駆動する駆動回路と、前記電圧駆動型半導体素子に印加される電圧を検出し過電圧かどうかを判断する過電圧判別回路と、前記電圧駆動型半導体素子のターンオフ時に再び電圧駆動型半導体素子をオンさせる再オン回路とを設け、
前記各直列接続された電圧駆動型半導体素子のターンオフタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生したときは、過電圧を検出し、過電圧が印加された電圧駆動型半導体素子を再オンさせることにより、電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止するようにしている。
【0008】
上記請求項1の発明においては、再オン時のゲート電圧を、前記電圧駆動型半導体素子のしきい値付近の値の電圧レベルに設定することにより、再オン時の発生損失を低減することができ(請求項2の発明)、または、前記各電圧駆動型半導体素子のターンオフ時のゲート電圧を、しきい値電圧と逆バイアス電圧との間の任意の電圧に一定時間クランプするクランプ回路を付加し、再オンまでの時間を高速化することができる(請求項3の発明)。
【0009】
また請求項4の発明では、各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置に対し、その電圧駆動型半導体素子のスイッチングを制御する制御装置と、この制御装置からのオン,オフ信号に基づき前記各電圧駆動型半導体素子をオン,オフ駆動する駆動回路と、前記電圧駆動型半導体素子に印加される電圧を検出し過電圧かどうかを判断する過電圧判別回路と、前記電圧駆動型半導体素子のターンオフ時に再び電圧駆動型半導体素子を活性領域内でオンさせる再オン回路と、この再オン回路の動作を停止させる再オン停止回路と、電圧駆動型半導体素子のゲート電圧を放電させるリセット回路と、前記制御装置からのオン信号による電圧駆動型半導体素子のオン動作を一定時間遅らせるタイマー回路とを設け、
前記制御装置からオフ信号が発せられたときに前記各直列接続された電圧駆動型半導体素子のターンオフタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生したときは、過電圧を検出し、過電圧が印加された電圧駆動型半導体素子を活性領域内で再オンさせて、該電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止している期間中に
前記制御装置からオン信号が発せられたときには、前記再オン停止回路とリセット回路とを同時に動作させて前記電圧駆動型半導体素子のゲート電圧を放電させた後に、前記電圧駆動型半導体素子をオン動作を開始させることにより、前記各直列接続された電圧駆動型半導体素子のターンオンタイミングの差による各電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止するようにしている。
【0010】
さらに請求項5の発明では、各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置に対し、その電圧駆動型半導体素子のスイッチングを制御する制御装置と、この制御装置からのオン,オフ信号に基づき前記各電圧駆動型半導体素子をオン,オフ駆動する駆動回路と、前記電圧駆動型半導体素子に印加される電圧を検出し過電圧かどうかを判断する過電圧判別回路と、前記電圧駆動型半導体素子のターンオフ時に再び電圧駆動型半導体素子を活性領域内でオンさせる再オン回路と、この再オン回路の動作を監視する再オン動作監視回路と、前記再オン回路が動作したときには次のターンオフタイミングを所定の時間遅らせるタイミング調整回路とを設け、
前記制御装置からオフ信号が発せられたときに前記各直列接続された電圧駆動型半導体素子のターンオフタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生したときは、過電圧を検出し、過電圧が印加された電圧駆動型半導体素子を活性領域内で再オンさせ、この再オン動作後、該制御装置から次のオフ信号が発せられたときには、このオフ信号にもとづくターンオフタイミングを所定の時間遅らせることにより、前記各直列接続された電圧駆動型半導体素子それぞれの電圧分担を均一化させて、各電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止するようにしている。
【0011】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図で、図8と同じく上,下アームにIGBTを2直列接続した例である。すなわち、外見上は各IGBTのRCDスナバ回路がRCスナバ回路になった程度であるが、ゲート駆動装置GDUが図2に示すように、図9に示すゲート駆動回路に対して過電圧判別回路OVと再オン回路ROとを付加した点で異なっている。過電圧判別回路OVは、検出抵抗Rdによって検出された電圧が過電圧かどうかを判別するものであり、再オン回路ROは、IGBTのターンオフ時にこれを再オンさせるものである。
【0012】
図1,図2の動作について図3を参照して説明する。
いま、Q1が先にターンオフすると、Q1のコレクタ・エミッタ間電圧VCEが上昇を始め、検出抵抗Rdによって検出される電圧が過電圧検知レベルに達すると、過電圧判別回路OVにて過電圧と判断される。これにより再オン回路ROが動作するので、Q1をターンオン(再オン)させる。Q1が再オンすると、Q1のコレクタ・エミッタ間電圧VCEが下降して行くので、Q2がターンオフするまでの時間Δtの間、Q1に過電圧が印加されるのを防止することができる。
【0013】
図4はこの発明の第2の実施の形態を説明するための説明図である。
これは、再オン回路ROにおける再オン時のゲート電圧VGEを、電圧駆動型半導体素子のしきい値付近の電圧とするものである。図4の実線がこの場合のゲート電圧VGEを示し、再オンレベルが高い点線の場合と比べて、再オン終了後に逆バイアス電圧に戻すまでの時間が低減できるため、再オン期間中のコレクタ電流の増加を低減することができる。また、図5の再オン動作時のIGBT動作軌跡に示すように、再オン時のゲート電圧VGEを電圧駆動型半導体素子のしきい値付近の電圧とすることで、素子の活性領域内で再オン動作をすることになるので、流し得るコレクタ電流がゲート電圧で制限され、再オン動作時の電流を低減できる。図5において、この発明のようにしたときの再オン電圧値VGE1 、再オン電圧値が高い場合をVGE2 としたときのそれぞれの電流制限値をIC1,IC2とすると、IC1<IC2となり、流し得るコレクタ電流が低減されることが分かる。その結果、損失の増加を阻止することができる。
【0014】
図6はこの発明の第3の実施の形態を示す構成図で、図2に示すものに対し、さらにゲート電圧クランプ回路GCを付加して構成される。図7にこのようなゲート電圧クランプ回路GCがある場合と無い場合の動作波形を比較して示す。すなわち、IGBTのコレクタ・エミッタ間電圧VCEが過電圧検知レベルに達してから、再オン回路ROが働いてゲート電圧がしきい値になり、IGBTが再オン動作を開始するまでの時間は、ゲート電圧クランプ回路GCがある場合はT3、ない場合はT4で、T3<T4となり、IGBT再オン動作の高速化を図ることができる。これにより、電圧変化率(dv/dt)の高い素子の過電圧印加による素子破壊を防ぐことができる。
【0015】
図2に示した構成で、この電力変換装置がパルス幅変調(PWM)制御によりIGBTをオン,オフさせる場合に、前記制御装置からオフ信号が発せられ、前述の如く一方のIGBTのコレクタ・エミッタ間電圧VCEが過電圧検知レベルに達してから、再オン回路ROが働いてゲート電圧がしきい値付近となり、このIGBTが活性領域内で再オンし、他方のIGBTのゲート電圧は逆バイアスN15の状態で、前記制御装置からオン信号が発せられるときには、双方のIGBTのターンオンタイミングがずれ、その結果、他方のIGBTに過電圧が印加され素子破壊を招く恐れがあった。
【0016】
図11は上述の問題点を解決するこの発明の第4の実施の形態を示す構成図で、図2に示すものに対し、さらに再オン停止回路RFとリセット回路GRとタイマー回路OTとを付加して構成される。図12にこれらの回路が付加されたときの動作波形を示す。
【0017】
図1,図11の動作について図12を参照して説明する。
いま、直列接続された電圧駆動形半導体素子Q1のゲート電圧VGEがQ1のしきい値付近の値に制御され、これに対して電圧駆動形半導体素子Q2のゲート電圧VGEは通常のオフ状態である逆バイアスN15になっている状態で、前記制御装置からオン信号が発せられると、タイマー回路OTによりIGBTのターンオン動作を一定の時間Δt2だけ遅らせ、このΔt2の間に、再オン停止回路RFにより再オン回路ROの動作を停止させつつ、リセット回路GRによりIGBTのゲート電圧を逆バイアスN15までさげる。
【0018】
従って、前記Δt2経過直前では双方のIGBTのゲート電圧は共に逆バイアスN15の状態にあり、該Δt2経過後からIGBTのターンオン動作を開始することにより、Q1,Q2間のターンオンタイミングの差がより小さくでき、過電圧印加とそれによる素子破壊を防止することができる。
【0019】
また、図2に示した構成で、この電力変換装置がパルス幅変調(PWM)制御によりIGBTをオン,オフさせる場合に、前記制御装置からオフ信号が発せられ、前述の如く一方のIGBTのコレクタ・エミッタ間電圧VCEが過電圧検知レベルに達してから、再オン回路ROが働いてゲート電圧がしきい値付近となり、このIGBTが活性領域内で再オンさせる。しかしながら、この再オン動作を前述のオフ信号に基づくターンオフ動作毎に繰り返すと、当該するIGBTの損失が増大するという難点があった。
【0020】
図13は上述の問題点を解決するこの発明の第5の実施の形態を示す構成図で、図2に示すものに対し、さらに再オン動作監視回路CKとタイミング調整回路TCとを付加して構成される。図14にこれらの回路が付加されたときの動作波形を示す。
【0021】
図1,図13の動作について図14を参照して説明する。
いま、直列接続された電圧駆動型半導体素子Q1,Q2のターンオフタイミング差Δt3によりQ1のコレクタ・エミッタ電圧間電圧VCEが過電圧検出レベルに到達すると、再オン回路ROによりQ1のゲート電圧VGEがQ1のしきい値付近の値に制御される。このとき、再オン動作監視回路CKにより再オン回路ROが動作したことをタイミング調整回路TCに伝達され、タイミング調整回路TCでは、前記制御装置からの次のオフ信号にもとづくターンオフタイミングを所定の時間遅らせるように制御し、その結果、Q1,Q2のターンオフタイミング差Δt4(<Δt3)となり、Q1,Q2それぞれのコレクタ・エミッタ電圧間電圧VCEがより等しくなり、上述の再オン動作が繰り返すことを防止でき、したがって、Q1の損失も軽減される。
なお、以上では電圧駆動形半導体素子としてIGBTについて説明したが、この発明はこれ以外の素子についても適用できるのは勿論である。
【0022】
【発明の効果】
この発明によれば、各アームに電圧駆動型半導体素子が直列接続されて構成される電力変換装置で、各素子のターンオフタイミング差による電圧アンバランスが発生した場合、過電圧が印加された素子を再オンさせることで、素子破壊を防止できる利点が得られる。また、再オンの素子のゲート電圧を素子のしきい値付近の電圧レベルとすることで、再オン時の発生損失を低減することができる。さらに、素子のターンオフ時の電圧を、素子のしきい値電圧と逆バイアス電圧との間の任意の電圧に一定期間クランプさせる回路を付加することで、素子を再オンさせるまでの時間の高速化を図ることが可能となる。
【0023】
さらに、再オン停止回路とリセット回路とタイマー回路とを付加すること、または、再オン動作監視回路とタイミング調整回路とを負荷することにより、PWM制御される電力変換装置に好適なゲート駆動回路になる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す全体構成図
【図2】この発明によるゲート駆動装置を示す構成図
【図3】図1,2の動作説明図
【図4】この発明の第2の実施の形態を説明するための説明図
【図5】再オン動作時のIGBT軌跡の説明図
【図6】この発明の第3の実施の形態を示す構成図
【図7】図6の動作説明図
【図8】電力変換装置の従来例を示す構成図
【図9】図8で用いられるゲート駆動装置の従来例を示す構成図
【図10】図8,9の動作を説明するための波形図
【図11】この発明の第4の実施の形態を示す構成図
【図12】図11の動作を説明するための波形図
【図13】この発明の第5の実施の形態を示す構成図
【図14】図13の動作を説明するための波形図
【符号の説明】
Q…絶縁ゲートバイポーラトランジスタ(IGBT)、GDU…ゲート駆動装置、Ed…直流電源、R…抵抗、C…コンデンサ、D…ダイオード、TR…トランジスタ、IF…インターフェイス回路、OV…過電圧判別回路、RO…再オン回路、GC…ゲート電圧クランプ回路、RF…再オン停止回路、GR…リセット回路、OT…タイマー回路、CK…再オン動作監視回路、TC…タイミング調整回路。
[0001]
BACKGROUND OF THE INVENTION
This invention relates to a gate drive circuit for a voltage-driven semiconductor element in a power conversion device, particularly a power conversion device configured by connecting voltage-driven semiconductor elements in series to each arm in order to increase the voltage of the power conversion circuit. The present invention relates to a gate drive circuit for a voltage-driven semiconductor element.
[0002]
[Prior art]
FIG. 8 shows a circuit for one phase of an inverter in which IGBTs are connected in series in a conventional example in which IGBTs (insulated gate bipolar transistors) are connected in series to each arm in order to increase the voltage in the power converter.
[0003]
As shown in the figure, this circuit corresponds to IGBTs Q1, Q2 (upper arm) and Q3, Q4 (upper arm), DC power supply Ed, snubber capacitors Cs1, Cs2, snubber diodes Ds1, Ds2, snubber resistors Rs1, Rs2, and each IGBT. Charge / discharge snubber circuit (RCD snubber circuit).
[0004]
GDU1 to GDU4 are Q1 to Q4 gate drive circuits, and specifically include transistors TR1 and TR2 for turning on and off the IGBT and an interface circuit IF as shown in FIG.
[0005]
FIG. 10 shows operation waveform diagrams of FIGS.
FIG. 10 shows a case where Q2 starts the turn-off operation with a delay of time Δt after Q1 turns off. That is, when operating with IGBTs connected in series, as shown in FIG. 10, if there is a difference in the turn-off timing of the IGBTs due to variations in element characteristics or the like, an imbalance occurs in the voltage sharing of each IGBT. This is because if Q1 is turned off early, voltage is applied only to Q1 because Q2 is on. For this reason, voltage imbalance occurs. As a countermeasure, a charge / discharge snubber circuit (RCD snubber circuit in FIG. 8) is added to each IGBT to change the voltage of Q1 (the IGBT turned off first). The rate (dv / dt) is reduced, and the voltage applied to Q1 is suppressed during the period (Δt) until Q2 (IGBT turned off late) is turned off.
[0006]
[Problems to be solved by the invention]
When using IGBTs connected in series, as described above, by adding a charge / discharge snubber circuit to each IGBT, it is possible to prevent overvoltage application due to voltage imbalance when the turn-off timing is shifted and element destruction due to this. However, if the allowable time difference is to be increased, the capacitor capacity of the added snubber must be increased, and as a result, the generated loss increases, so that the shape of the resistor R increases and the device itself increases. There's a problem.
Therefore, an object of the present invention is to achieve high-speed protection of the IGBT and reduction of loss during re-on without increasing the capacitance of the snubber circuit.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, according to the first aspect of the present invention, a control device that controls switching of a voltage-driven semiconductor element in a power conversion device in which a voltage-driven semiconductor element is connected in series to each arm. A drive circuit for turning on and off each of the voltage-driven semiconductor elements based on a signal from the control device, and an overvoltage determination circuit for detecting whether or not the voltage applied to the voltage-driven semiconductor element is overvoltage And a re-on circuit for turning on the voltage-driven semiconductor element again when the voltage-driven semiconductor element is turned off,
When an imbalance occurs in the voltage applied to each voltage-driven semiconductor element due to a difference in turn-off timing between the voltage-driven semiconductor elements connected in series, the voltage-driven semiconductor to which an overvoltage is applied is detected. By turning the element on again, application of overvoltage to the voltage-driven semiconductor element and element destruction based thereon are prevented.
[0008]
According to the first aspect of the present invention, by setting the gate voltage at the time of re-on to a voltage level near the threshold value of the voltage-driven semiconductor element, it is possible to reduce the loss generated at the time of re-on A clamp circuit that clamps the gate voltage at the turn-off time of each of the voltage-driven semiconductor elements to an arbitrary voltage between the threshold voltage and the reverse bias voltage for a certain time is added. Thus, the time until re-on can be increased (the invention of claim 3).
[0009]
According to a fourth aspect of the present invention, there is provided a control device for controlling the switching of the voltage-driven semiconductor element for a power conversion device in which a voltage-driven semiconductor element is connected in series to each arm; A drive circuit that drives each of the voltage-driven semiconductor elements on and off based on an off signal; an overvoltage determination circuit that detects whether a voltage applied to the voltage-driven semiconductor element is overvoltage; and the voltage-driven type A re-on circuit that turns on the voltage-driven semiconductor element again in the active region when the semiconductor element is turned off, a re-on stop circuit that stops the operation of the re-on circuit, and a reset that discharges the gate voltage of the voltage-driven semiconductor element A circuit, and a timer circuit that delays the ON operation of the voltage-driven semiconductor element by an ON signal from the control device for a certain time,
When an imbalance occurs in the applied voltage of each voltage-driven semiconductor element due to a difference in turn-off timing of each of the voltage-driven semiconductor elements connected in series when an off signal is issued from the control device, an overvoltage is generated. From the control device during the period of detecting and turning on the voltage-driven semiconductor element to which the overvoltage is applied in the active region to prevent the application of the overvoltage to the voltage-driven semiconductor element and the element destruction based thereon When an on signal is generated, the re-on stop circuit and the reset circuit are simultaneously operated to discharge the gate voltage of the voltage-driven semiconductor element, and then the voltage-driven semiconductor element is started to be turned on. By applying an overvoltage to each voltage-driven semiconductor element due to a difference in turn-on timing of each of the series-connected voltage-driven semiconductor elements And so as to prevent the device destruction based on it.
[0010]
Furthermore, in the invention of claim 5, for a power conversion device in which a voltage-driven semiconductor element is connected in series to each arm, a control device that controls switching of the voltage-driven semiconductor element, A drive circuit that drives each of the voltage-driven semiconductor elements on and off based on an off signal; an overvoltage determination circuit that detects whether a voltage applied to the voltage-driven semiconductor element is overvoltage; and the voltage-driven type A re-on circuit that turns on the voltage-driven semiconductor element again in the active region when the semiconductor element is turned off, a re-on operation monitoring circuit that monitors the operation of the re-on circuit, and the next turn-off when the re-on circuit operates A timing adjustment circuit for delaying the timing by a predetermined time;
When an imbalance occurs in the applied voltage of each voltage-driven semiconductor element due to a difference in turn-off timing of each of the voltage-driven semiconductor elements connected in series when an off signal is issued from the control device, an overvoltage is generated. The voltage-driven semiconductor element to which the overvoltage is applied is turned on again in the active region, and when the next off signal is issued from the control device after the re-on operation, the turn-off timing based on the off signal is set. By delaying for a predetermined time, the voltage sharing of each of the voltage-driven semiconductor elements connected in series is made uniform, and overvoltage application to each voltage-driven semiconductor element and element destruction based thereon are prevented. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention, which is an example in which two IGBTs are connected in series to the upper and lower arms as in FIG. In other words, the RCD snubber circuit of each IGBT is apparently an RC snubber circuit. However, as shown in FIG. 2, the gate driving device GDU has an overvoltage discrimination circuit OV with respect to the gate driving circuit shown in FIG. The difference is that a re-ON circuit RO is added. The overvoltage discriminating circuit OV discriminates whether or not the voltage detected by the detection resistor Rd is an overvoltage, and the re-on circuit RO re-turns on the IGBT when it is turned off.
[0012]
The operation of FIGS. 1 and 2 will be described with reference to FIG.
Now, when Q1 is turned off earlier, Q1 begin to rise collector-emitter voltage V CE of the voltage detected by the detection resistor Rd has reached the overvoltage detection level, it is determined that the overvoltage at overvoltage determining circuit OV . As a result, the re-on circuit RO operates, so that Q1 is turned on (re-on). When Q1 is turned on again, the collector-emitter voltage V CE of Q1 decreases, so that it is possible to prevent an overvoltage from being applied to Q1 during the time Δt until Q2 is turned off.
[0013]
FIG. 4 is an explanatory diagram for explaining a second embodiment of the present invention.
This is to set the gate voltage V GE at the time of re-on in the re-on circuit RO to a voltage near the threshold value of the voltage-driven semiconductor element. The solid line in FIG. 4 shows the gate voltage V GE in this case. Compared to the dotted line with a high re-on level, the time until the reverse bias voltage is restored after re-on can be reduced. An increase in current can be reduced. Further, as shown in the IGBT operation locus at the time of the re-on operation in FIG. 5, the gate voltage V GE at the time of the re-on is set to a voltage in the vicinity of the threshold value of the voltage-driven semiconductor element, so that in the active region of the element. Since the re-on operation is performed, the collector current that can flow is limited by the gate voltage, and the current during the re-on operation can be reduced. In FIG. 5, assuming that the current limit values are I C1 and I C2 when the re-on voltage value V GE1 and V GE2 when the re-on voltage value is high in the case of the present invention, respectively, I C1 < It can be seen that I C2 and the collector current that can flow is reduced. As a result, an increase in loss can be prevented.
[0014]
FIG. 6 is a block diagram showing a third embodiment of the present invention, which is configured by adding a gate voltage clamp circuit GC to that shown in FIG. FIG. 7 shows a comparison of operation waveforms with and without such a gate voltage clamp circuit GC. That is, the time from when the IGBT collector-emitter voltage V CE reaches the overvoltage detection level to when the re-ON circuit RO is activated and the gate voltage becomes a threshold value and the IGBT starts the re-ON operation is the gate time. T3 when the voltage clamp circuit GC is present and T4 when it is not present, and T3 <T4, so that the IGBT re-on operation can be speeded up. Thereby, element destruction due to overvoltage application of an element having a high voltage change rate (dv / dt) can be prevented.
[0015]
In the configuration shown in FIG. 2, when the power conversion device turns on / off the IGBT by pulse width modulation (PWM) control, an off signal is generated from the control device, and the collector / emitter of one IGBT as described above. After the inter-voltage V CE reaches the overvoltage detection level, the re-ON circuit RO operates and the gate voltage becomes near the threshold value. This IGBT is turned on again in the active region, and the gate voltage of the other IGBT is the reverse bias N15. In this state, when an ON signal is issued from the control device, the turn-on timings of both IGBTs are shifted. As a result, an overvoltage is applied to the other IGBT, which may cause element destruction.
[0016]
FIG. 11 is a block diagram showing a fourth embodiment of the present invention that solves the above-mentioned problems. A re-on stop circuit RF, a reset circuit GR, and a timer circuit OT are further added to that shown in FIG. Configured. FIG. 12 shows operation waveforms when these circuits are added.
[0017]
1 and 11 will be described with reference to FIG.
Now, the gate voltage V GE of the voltage-driven semiconductor element Q1 connected in series is controlled to a value near the threshold value of Q1, whereas the gate voltage V GE of the voltage-driven semiconductor element Q2 is in a normal OFF state. When the ON signal is issued from the control device in the state of the reverse bias N15, the timer circuit OT delays the IGBT turn-on operation by a fixed time Δt2, and during this Δt2, the re-on stop circuit RF By stopping the operation of the re-ON circuit RO, the gate voltage of the IGBT is reduced to the reverse bias N15 by the reset circuit GR.
[0018]
Therefore, the gate voltages of both IGBTs are in the reverse bias N15 state immediately before the lapse of Δt2, and the turn-on timing difference between Q1 and Q2 is smaller by starting the IGBT turn-on operation after the lapse of Δt2. In addition, it is possible to prevent application of overvoltage and element breakdown due to it.
[0019]
Further, in the configuration shown in FIG. 2, when the power conversion device turns on / off the IGBT by pulse width modulation (PWM) control, an off signal is generated from the control device, and as described above, the collector of one IGBT After the emitter-to-emitter voltage V CE reaches the overvoltage detection level, the re-on circuit RO operates to make the gate voltage near the threshold value, and this IGBT is turned on again in the active region. However, if this re-on operation is repeated for each turn-off operation based on the aforementioned off signal, there is a problem that the loss of the IGBT concerned increases.
[0020]
FIG. 13 is a block diagram showing a fifth embodiment of the present invention for solving the above-mentioned problems. A re-ON operation monitoring circuit CK and a timing adjustment circuit TC are further added to that shown in FIG. Composed. FIG. 14 shows operation waveforms when these circuits are added.
[0021]
The operation of FIGS. 1 and 13 will be described with reference to FIG.
Now, when the collector-emitter voltage across the voltage V CE of the turn-off timing difference Δt3 by Q1 of the series-connected voltage-driven semiconductor elements Q1, Q2 reaches the overvoltage detection level, the gate voltage V GE of Q1 by re-on circuit RO is It is controlled to a value near the threshold value of Q1. At this time, the operation of the re-ON circuit RO is transmitted to the timing adjustment circuit TC by the re-ON operation monitoring circuit CK, and the timing adjustment circuit TC sets the turn-off timing based on the next OFF signal from the control device for a predetermined time. As a result, the turn-off timing difference Δt 4 (<Δt 3) between Q 1 and Q 2 becomes equal, the collector-emitter voltage V CE of Q 1 and Q 2 becomes more equal, and the above-described re-on operation is repeated. Can be prevented, and therefore the loss of Q1 is also reduced.
In the above description, the IGBT is described as the voltage-driven semiconductor element. However, the present invention is naturally applicable to other elements.
[0022]
【The invention's effect】
According to the present invention, in a power converter configured by connecting voltage-driven semiconductor elements in series to each arm, when a voltage imbalance occurs due to a difference in turn-off timing of each element, the element to which the overvoltage is applied is regenerated. By turning it on, the advantage of preventing element destruction can be obtained. In addition, by setting the gate voltage of the re-on element to a voltage level in the vicinity of the threshold value of the element, it is possible to reduce generation loss at the time of re-on. Furthermore, by adding a circuit that clamps the voltage at the time of device turn-off to an arbitrary voltage between the threshold voltage of the device and the reverse bias voltage for a certain period of time, the time until the device is turned on again is increased. Can be achieved.
[0023]
Furthermore, by adding a re-on stop circuit, a reset circuit, and a timer circuit, or by loading a re-on operation monitoring circuit and a timing adjustment circuit, a gate drive circuit suitable for a power converter that is PWM-controlled Become.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a first embodiment of the present invention. FIG. 2 is a configuration diagram showing a gate driving device according to the present invention. FIG. 3 is an operation explanatory diagram of FIGS. FIG. 5 is an explanatory diagram for explaining an IGBT trajectory during a re-on operation. FIG. 6 is a block diagram showing a third embodiment of the present invention. FIG. 8 is a block diagram showing a conventional example of a power converter. FIG. 9 is a block diagram showing a conventional example of a gate driving device used in FIG. 8. FIG. 10 is a block diagram showing the operations of FIGS. FIG. 11 is a block diagram showing a fourth embodiment of the present invention. FIG. 12 is a waveform diagram for explaining the operation of FIG. 11. FIG. 13 is a fifth embodiment of the present invention. FIG. 14 is a waveform diagram for explaining the operation of FIG. 13;
Q: Insulated gate bipolar transistor (IGBT), GDU: Gate drive device, Ed: DC power supply, R ... Resistance, C ... Capacitor, D ... Diode, TR ... Transistor, IF ... Interface circuit, OV ... Overvoltage discrimination circuit, RO ... Re-on circuit, GC: gate voltage clamp circuit, RF: re-on stop circuit, GR ... reset circuit, OT ... timer circuit, CK ... re-on operation monitoring circuit, TC ... timing adjustment circuit.

Claims (5)

各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置に対し、その電圧駆動型半導体素子のスイッチングを制御する制御装置と、この制御装置からの信号に基づき前記各電圧駆動型半導体素子をオン,オフ駆動する駆動回路と、前記電圧駆動型半導体素子に印加される電圧を検出し過電圧かどうかを判断する過電圧判別回路と、前記電圧駆動型半導体素子のターンオフ時に再び電圧駆動型半導体素子をオンさせる再オン回路とを設け、
前記各直列接続された電圧駆動型半導体素子のターンオフタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生したときは、過電圧を検出し、過電圧が印加された電圧駆動型半導体素子を再オンさせることにより、電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止することを特徴とする電圧駆動型半導体素子のゲート駆動回路。
A control device that controls switching of the voltage-driven semiconductor element for a power conversion device in which a voltage-driven semiconductor element is connected in series to each arm, and each of the voltage-driven semiconductor elements based on a signal from the control device A drive circuit for driving on and off, an overvoltage discrimination circuit for detecting a voltage applied to the voltage-driven semiconductor element and determining whether or not it is an overvoltage, and a voltage-driven semiconductor element again when the voltage-driven semiconductor element is turned off And a re-on circuit to turn on,
When an imbalance occurs in the voltage applied to each voltage-driven semiconductor element due to a difference in turn-off timing between the voltage-driven semiconductor elements connected in series, the voltage-driven semiconductor to which an overvoltage is applied is detected. A gate drive circuit for a voltage-driven semiconductor element, wherein an overvoltage is applied to the voltage-driven semiconductor element and element destruction based on the overvoltage is prevented by turning on the element again.
再オン時のゲート電圧を、前記電圧駆動型半導体素子のしきい値付近の値の電圧レベルに設定することにより、再オン時の発生損失を低減することを特徴とする請求項1に記載の電圧駆動型半導体素子のゲート駆動回路。The loss generated at the time of re-on is reduced by setting the gate voltage at the time of re-on to a voltage level having a value near the threshold value of the voltage-driven semiconductor element. A gate driving circuit of a voltage driving type semiconductor element. 前記各電圧駆動型半導体素子のターンオフ時のゲート電圧を、しきい値電圧と逆バイアス電圧との間の任意の電圧に一定時間クランプするクランプ回路を付加し、再オンまでの時間を高速化したことを特徴とする請求項1に記載の電圧駆動型半導体素子のゲート駆動回路。A clamp circuit that clamps the gate voltage at the turn-off time of each voltage-driven semiconductor element to an arbitrary voltage between the threshold voltage and the reverse bias voltage for a certain period of time has been added to speed up the time until re-on. 2. The gate drive circuit for a voltage-driven semiconductor device according to claim 1, wherein: 各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置に対し、その電圧駆動型半導体素子のスイッチングを制御する制御装置と、この制御装置からのオン,オフ信号に基づき前記各電圧駆動型半導体素子をオン,オフ駆動する駆動回路と、前記電圧駆動型半導体素子に印加される電圧を検出し過電圧かどうかを判断する過電圧判別回路と、前記電圧駆動型半導体素子のターンオフ時に再び電圧駆動型半導体素子を活性領域内でオンさせる再オン回路と、この再オン回路の動作を停止させる再オン停止回路と、電圧駆動型半導体素子のゲート電圧を放電させるリセット回路と、前記制御装置からのオン信号による電圧駆動型半導体素子のオン動作を一定時間遅らせるタイマー回路とを設け、
前記制御装置からオフ信号が発せられたときに前記各直列接続された電圧駆動型半導体素子のターンオフタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生したときは、過電圧を検出し、過電圧が印加された電圧駆動型半導体素子を活性領域内で再オンさせて、該電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止している期間中に
前記制御装置からオン信号が発せられたときには、前記再オン停止回路とリセット回路とを同時に動作させて前記電圧駆動型半導体素子のゲート電圧を放電させた後に、前記電圧駆動型半導体素子をオン動作を開始させることにより、前記各直列接続された電圧駆動型半導体素子のターンオンタイミングの差による各電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止することを特徴とする電圧駆動型半導体素子のゲート駆動回路。
For a power conversion device in which voltage-driven semiconductor elements are connected in series to each arm, a control device that controls switching of the voltage-driven semiconductor elements, and each voltage drive based on an on / off signal from the control device Drive circuit for turning on and off the semiconductor device, an overvoltage determination circuit for detecting whether the voltage applied to the voltage drive semiconductor device is overvoltage, and voltage driving again when the voltage drive semiconductor device is turned off A re-on circuit for turning on the semiconductor device in the active region, a re-on stop circuit for stopping the operation of the re-on circuit, a reset circuit for discharging the gate voltage of the voltage-driven semiconductor device, and the control device A timer circuit for delaying the ON operation of the voltage-driven semiconductor element by the ON signal for a certain period of time;
When an imbalance occurs in the applied voltage of each voltage-driven semiconductor element due to a difference in turn-off timing of each of the voltage-driven semiconductor elements connected in series when an off signal is issued from the control device, an overvoltage is generated. From the control device during the period of detecting and turning on the voltage-driven semiconductor element to which the overvoltage is applied in the active region to prevent the application of the overvoltage to the voltage-driven semiconductor element and the element destruction based thereon When an on signal is generated, the re-on stop circuit and the reset circuit are simultaneously operated to discharge the gate voltage of the voltage-driven semiconductor element, and then the voltage-driven semiconductor element is started to be turned on. By applying an overvoltage to each voltage-driven semiconductor element due to a difference in turn-on timing of each of the series-connected voltage-driven semiconductor elements And the gate drive circuit of a voltage driving type semiconductor element characterized in that to prevent the device destruction based on it.
各アームに電圧駆動型半導体素子を直列接続してなる電力変換装置に対し、その電圧駆動型半導体素子のスイッチングを制御する制御装置と、この制御装置からのオン,オフ信号に基づき前記各電圧駆動型半導体素子をオン,オフ駆動する駆動回路と、前記電圧駆動型半導体素子に印加される電圧を検出し過電圧かどうかを判断する過電圧判別回路と、前記電圧駆動型半導体素子のターンオフ時に再び電圧駆動型半導体素子を活性領域内でオンさせる再オン回路と、この再オン回路の動作を監視する再オン動作監視回路と、前記再オン回路が動作したときには次のターンオフタイミングを所定の時間遅らせるタイミング調整回路とを設け、
前記制御装置からオフ信号が発せられたときに前記各直列接続された電圧駆動型半導体素子のターンオフタイミングの差により、各電圧駆動型半導体素子の印加電圧にアンバランスが発生したときは、過電圧を検出し、過電圧が印加された電圧駆動型半導体素子を活性領域内で再オンさせ、この再オン動作後、該制御装置から次のオフ信号が発せられたときには、このオフ信号にもとづくターンオフタイミングを所定の時間遅らせることにより、前記各直列接続された電圧駆動型半導体素子それぞれの電圧分担を均一化させて、各電圧駆動型半導体素子への過電圧印加およびそれにもとづく素子破壊を防止することを特徴とする電圧駆動型半導体素子のゲート駆動回路。
For a power conversion device in which voltage-driven semiconductor elements are connected in series to each arm, a control device that controls switching of the voltage-driven semiconductor elements, and each voltage drive based on an on / off signal from the control device Drive circuit for turning on and off the semiconductor device, an overvoltage determination circuit for detecting whether the voltage applied to the voltage drive semiconductor device is overvoltage, and voltage driving again when the voltage drive semiconductor device is turned off -On circuit that turns on the semiconductor device in the active region, a re-on operation monitoring circuit that monitors the operation of the re-on circuit, and a timing adjustment that delays the next turn-off timing by a predetermined time when the re-on circuit operates Circuit and
When an imbalance occurs in the applied voltage of each voltage-driven semiconductor element due to a difference in turn-off timing of each of the voltage-driven semiconductor elements connected in series when an off signal is issued from the control device, an overvoltage is generated. The voltage-driven semiconductor element to which the overvoltage is applied is turned on again in the active region, and when the next off signal is issued from the control device after the re-on operation, the turn-off timing based on the off signal is set. By delaying for a predetermined time, the voltage sharing of each of the voltage-driven semiconductor elements connected in series is made uniform, and overvoltage application to each voltage-driven semiconductor element and element destruction based thereon are prevented. A gate drive circuit for a voltage driven semiconductor device.
JP12989399A 1998-06-26 1999-05-11 Gate drive circuit for voltage driven semiconductor device Expired - Fee Related JP3724255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12989399A JP3724255B2 (en) 1998-06-26 1999-05-11 Gate drive circuit for voltage driven semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP19510998 1998-06-26
JP11-2487 1999-01-08
JP10-195109 1999-01-08
JP248799 1999-01-08
JP12989399A JP3724255B2 (en) 1998-06-26 1999-05-11 Gate drive circuit for voltage driven semiconductor device

Publications (2)

Publication Number Publication Date
JP2000262068A JP2000262068A (en) 2000-09-22
JP3724255B2 true JP3724255B2 (en) 2005-12-07

Family

ID=27275376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12989399A Expired - Fee Related JP3724255B2 (en) 1998-06-26 1999-05-11 Gate drive circuit for voltage driven semiconductor device

Country Status (1)

Country Link
JP (1) JP3724255B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488693B2 (en) * 2003-06-20 2010-06-23 東芝三菱電機産業システム株式会社 Semiconductor AC switch device
JP5036466B2 (en) * 2007-09-20 2012-09-26 東芝三菱電機産業システム株式会社 Redundant control power conversion system and its soundness confirmation method
JP6111726B2 (en) * 2013-02-19 2017-04-12 富士電機株式会社 Control method of multi-level power conversion circuit
US10432101B2 (en) 2016-08-10 2019-10-01 Mitsubishi Electric Corporation Power conversion apparatus

Also Published As

Publication number Publication date
JP2000262068A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
JP3339311B2 (en) Driver circuit for self-extinguishing semiconductor device
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP2669117B2 (en) Drive circuit for voltage-driven semiconductor devices
US7276867B2 (en) Controller arrangement with adaptive non-overlapping commutation
US6570413B1 (en) Driver circuit for switching device
JP3614519B2 (en) Method and apparatus for driving insulated gate semiconductor device
EP0215897B1 (en) Inverter shoot-through protection circuit
JP2007028711A (en) Gate driving circuit for semiconductor device
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JPH05276761A (en) Method and circuit for detecting overcurrent in power semiconductor element and inverter using the same
JP4706130B2 (en) Gate drive circuit for power semiconductor device
JP3724255B2 (en) Gate drive circuit for voltage driven semiconductor device
JP3697353B2 (en) Inverter device
JP3833688B2 (en) Inverter device
JPH10304650A (en) Gate drive circuit of voltage-driven switching device
JP3603998B2 (en) Gate driving circuit and driving method for voltage driven semiconductor device
JP3568024B2 (en) Gate drive circuit for voltage driven semiconductor device
JP2005328668A (en) Drive circuit of self arc-extinguishing semiconductor device
JP2000324801A (en) Drive circuit for voltage-controlled semiconductor device
JP4449190B2 (en) Voltage-driven semiconductor device gate drive device
JPH09233827A (en) Pwm inverter output circuit
JP3558324B2 (en) Gate drive device of voltage drive type device
JP4099703B2 (en) Gate drive circuit for voltage driven semiconductor device
JP2001231247A (en) Gate driving method
JPH0382362A (en) Gate driving circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees