JP2001231247A - Gate driving method - Google Patents

Gate driving method

Info

Publication number
JP2001231247A
JP2001231247A JP2000039529A JP2000039529A JP2001231247A JP 2001231247 A JP2001231247 A JP 2001231247A JP 2000039529 A JP2000039529 A JP 2000039529A JP 2000039529 A JP2000039529 A JP 2000039529A JP 2001231247 A JP2001231247 A JP 2001231247A
Authority
JP
Japan
Prior art keywords
voltage
driven semiconductor
constant
turn
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000039529A
Other languages
Japanese (ja)
Inventor
Koji Maruyama
宏二 丸山
Kenji Kosaka
憲司 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000039529A priority Critical patent/JP2001231247A/en
Publication of JP2001231247A publication Critical patent/JP2001231247A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the destruction of any of a plurality of voltage-drive semiconductor elements connected in series, by restraining voltage unbalancing due to a difference between timings of turning on and off the respective elements and the application of overvoltage to any of the elements. SOLUTION: When an overvoltage is applied to one voltage drive semiconductor element which has turned off previously, the timing for the next turn-off is delayed by means of the timing difference in response to a detection signal from a constant-voltage element current detection circuit which detects the current flowing through the constant-voltage element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力変換装置等
で使用する電圧駆動形半導体素子のゲート駆動回路に関
し、詳しくは、高電圧を出力するために各アームに電圧
駆動形半導体素子を直列接続させた構成を有する電力変
換装置の電圧駆動形半導体素子のゲート駆動方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gate drive circuit for a voltage-driven semiconductor device used in a power converter or the like, and more particularly, to a voltage-driven semiconductor device connected in series to each arm to output a high voltage. The present invention relates to a method of driving a gate of a voltage-driven semiconductor device of a power converter having a configuration as described above.

【0002】[0002]

【従来の技術】図3に電力変換装置の高電圧出力化を図
るために、電圧駆動形半導体素子(ここではIGBT:
絶縁ゲートバイポーラトランジスタを用いた例を示す)
を各アームに直列接続した場合の電力変換装置1相分の
回路を示す。図3において、Q1〜Q4はIGBT、E
dは直流電源、Cs1、Cs2はスナバコンデンサ、D
s1、Ds2はスナバダイオード、Rs1、Rs2はス
ナバ抵抗、GDU1〜GDU4はQ1〜Q4のゲート駆
動回路である。
2. Description of the Related Art FIG. 3 shows a voltage-driven semiconductor device (here, IGBT:
An example using an insulated gate bipolar transistor is shown)
Shows a circuit for one phase of the power conversion device when is connected in series to each arm. In FIG. 3, Q1 to Q4 are IGBT, E
d is a DC power supply, Cs1 and Cs2 are snubber capacitors, D
S1 and Ds2 are snubber diodes, Rs1 and Rs2 are snubber resistors, and GDU1 to GDU4 are gate drive circuits for Q1 to Q4.

【0003】図4は図3のQ1がターンオフしてから、
時間△tだけ遅れてQ2がターンオフ動作をした場合の
Q1、Q2それぞれのゲート−エミッタ電圧、コレクタ
−エミッタ波形を示した図である。このようにIGBT
を直列接続して駆動させる場合、素子特性のばらつき等
により、IGBTのターンオフタイミングに差が生じる
と、各IGBTの電圧分担にアンバランスが発生する。
これはQ1が早くターンオフする一方、この時点ではQ
2がまだオンしているので、Q1だけに電圧が印加され
てしまうためである。
FIG. 4 shows that after Q1 in FIG. 3 is turned off,
FIG. 9 is a diagram showing gate-emitter voltages and collector-emitter waveforms of Q1 and Q2 when Q2 turns off with a delay of time Δt. In this way, IGBT
When the IGBTs are driven in series and a difference occurs in the turn-off timing of the IGBT due to variations in element characteristics or the like, imbalance occurs in the voltage sharing of each IGBT.
This means that while Q1 turns off early,
This is because the voltage is applied only to Q1 since 2 is still on.

【0004】このような電圧印加のアンバランスを解消
するために図5に示すようなゲート駆動回路を使用する
ことがある。図5の回路において、TR1、TR2はI
GBTをオン、オフさせるためのトランジスタ、IFは
インターフェース回路、ZDはIGBTのコレクタ電圧
を所定値にクランプするコレクタ−ゲート間の定電圧素
子である。
In order to eliminate such imbalance of voltage application, a gate drive circuit as shown in FIG. 5 is sometimes used. In the circuit of FIG. 5, TR1 and TR2 are I
A transistor for turning on and off the GBT, IF is an interface circuit, and ZD is a collector-gate constant voltage element for clamping the collector voltage of the IGBT to a predetermined value.

【0005】図6は図5の動作波形図である。図5に図
示のIGBTを図3のQ1とした場合、このIGBT
(Q1)が直列接続されたIGBT(図示しないQ2)
より時間△tだけ先にターンオフすると、Q1のコレク
タ−エミッタ電圧VCEが上昇を始め、この電圧がZD
のアバランシェ電圧に達すると、ZDを介してQ1のゲ
ートに電流が流れる。この電流によりゲート−エミッタ
電圧は順バイアス方向に充電され、コレクタ−エミッタ
電圧は、ほぼZDのアバランシェ電圧値にクランプされ
る。このため、少なくてもQ1にZDのアバランシェ電
圧以上の過電圧が印加されるのを防止することができ
る。
FIG. 6 is an operation waveform diagram of FIG. When the IGBT shown in FIG. 5 is Q1 in FIG. 3, this IGBT
IGBT (Q2 not shown) with (Q1) connected in series
When the turn-off is made earlier by the time Δt, the collector-emitter voltage VCE of Q1 starts to rise, and this voltage becomes ZD
, A current flows through the gate of Q1 through ZD. With this current, the gate-emitter voltage is charged in the forward bias direction, and the collector-emitter voltage is clamped to an avalanche voltage value of approximately ZD. Therefore, it is possible to prevent application of an overvoltage equal to or higher than the avalanche voltage of ZD to Q1 at least.

【0006】[0006]

【発明が解決しようとする課題】図5に図示のゲート駆
動回路を用いれば、IGBT等の電圧駆動形半導体素子
を直列接続する場合、ターンオフタイミングがずれた時
に、電圧アンバランスによる過電圧印加と、それによる
素子破壊を防ぐことは一時的に可能である。しかし、タ
ーンオフタイミングの差が一定の状態で、この定電圧素
子の電圧クランプ動作がターンオフ動作の度に繰り返さ
れるので、電圧駆動形半導体素子および定電圧素子で生
じる損失が増大してしまうという問題があった。
When the gate drive circuit shown in FIG. 5 is used, when voltage-driven semiconductor devices such as IGBTs are connected in series, when a turn-off timing is shifted, overvoltage application due to voltage imbalance and It is possible to temporarily prevent the device from being destroyed. However, since the voltage clamp operation of the constant voltage element is repeated every time the turn-off operation is performed in a state where the difference between the turn-off timings is constant, there is a problem that the loss generated in the voltage-driven semiconductor element and the constant voltage element increases. there were.

【0007】よって、本願発明の目的は図5のように、
定電圧素子を用いて電圧駆動形半導体素子の過電圧抑制
を行いつつ、ターンオフスイッチングタイミング差を無
くし、電圧駆動形半導体素子、および定電圧素子で生じ
る損失を低減させることにある。
Accordingly, the object of the present invention is as shown in FIG.
An object of the present invention is to eliminate a turn-off switching timing difference while suppressing overvoltage of a voltage-driven semiconductor element using a constant-voltage element, and to reduce a loss generated in the voltage-driven semiconductor element and the constant-voltage element.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
のこの発明では、各アームに電圧駆動形半導体素子を直
列接続してなる電力変換装置において、前記アームの各
電圧駆動形半導体素子を同時にオン、オフするあたり、
各電圧駆動形半導体素子のコレクタ−ゲート間に定電圧
素子、さらにこの定電圧素子に流れる電流を検出する定
電圧素子電流検出回路をそれぞれ設け、ターンオフスイ
ッチングタイミングのずれにより、前記各電圧駆動形半
導体素子のうちの一方に印加された電圧が定電圧素子の
アバランシェ電圧に達し、定電圧素子に電流が流れたこ
とを検出した場合に、該一方の半導体素子の次のターン
オフスイッチングタイミングを一定時間遅らせ、直列接
続された電圧駆動形半導体素子の電圧印加を均一させる
ようにした。
In order to achieve the above object, according to the present invention, in a power converter in which a voltage-driven semiconductor element is connected in series to each arm, each voltage-driven semiconductor element of the arm is simultaneously connected. On and off,
A constant voltage element is provided between the collector and the gate of each voltage driven semiconductor element, and a constant voltage element current detection circuit for detecting a current flowing through the constant voltage element is provided. When the voltage applied to one of the elements reaches the avalanche voltage of the constant voltage element and detects that a current flows through the constant voltage element, the next turn-off switching timing of the one semiconductor element is delayed for a certain time. The voltage application to the voltage-driven semiconductor elements connected in series is made uniform.

【0009】[0009]

【発明の実施の形態】図1に本発明の実施形態を示す。
図5に示したゲート駆動回路に対して、定電圧素子の電
流検出回路CKと、CKによる電流検出時に次のターン
オフスイッチングタイミングを一定時間遅らせるタイミ
ング調整回路TCとを付加した点で相違している。
FIG. 1 shows an embodiment of the present invention.
The difference from the gate drive circuit shown in FIG. 5 is that a current detection circuit CK of a constant voltage element and a timing adjustment circuit TC for delaying the next turn-off switching timing by a certain time when a current is detected by CK are added. .

【0010】図1の動作について図2に示す。直列接続
された電圧駆動形半導体素子Q1、Q2のターンオフス
イッチングタイミングの差△t1により、Q1のコレク
タ−エミッタ電圧VCE1が定電圧素子ZD1のアバラ
ンシェ電圧に達すると、Q1のゲートにZD1を介して
電流が流れる。このとき定電圧素子の電流検出回路CK
により、定電圧素子による電圧クランプ動作が検出信号
としてタイミング調整回路に入力され、次のターンオフ
時にはスイッチングタイミングを一定時間遅らせるよう
に制御する。
FIG. 2 shows the operation of FIG. When the collector-emitter voltage VCE1 of Q1 reaches the avalanche voltage of the constant voltage element ZD1 due to the difference Δt1 between the turn-off switching timings of the voltage-driven semiconductor elements Q1 and Q2 connected in series, a current flows through the gate of Q1 via ZD1. Flows. At this time, the current detection circuit CK of the constant voltage element
Accordingly, the voltage clamp operation by the constant voltage element is input to the timing adjustment circuit as a detection signal, and the control is performed so that the switching timing is delayed by a certain time at the next turn-off.

【0011】初回のQ1、Q2のターンオフスイッチン
グタイミングの差を△t1とし、調整時間(一定値)を
△t’、次回タイミング差を△t2とすると、 △t2=△t1−△t’(<△t1) の関係が成り立つ。定電圧素子によるクランプ動作がな
くなるまで△t2は徐々に小さくなり、タイミング調整
動作が繰り返される。ここで、ターンオフスイッチング
タイミング差がクランプ動作が無くなった時点の△t
が、以降のターンオフで維持されるタイミング差とな
る。
Assuming that the difference between the turn-off switching timings of the first Q1 and Q2 is Δt1, the adjustment time (constant value) is Δt ′, and the next timing difference is Δt2, Δt2 = Δt1−Δt ′ (< Δt1) holds. Δt2 gradually decreases until the clamp operation by the constant voltage element stops, and the timing adjustment operation is repeated. Here, the turn-off switching timing difference is Δt at the time when the clamp operation is lost.
Is the timing difference maintained in the subsequent turn-off.

【0012】この結果、直列接続コレクタ−エミッタ電
圧は均一化され、電圧クランプ動作が永続的に繰り返さ
れるのを防ぐことができる。ここで、調整時間△t’が
あまり大きい量であると、調整後のタイミング差は逆転
してしまう。すなわち、次回のタイミング差△t2の符
号が逆転し、尚且つ△t2の絶対値が△t1を超えるよ
うな△t’を使用してしまうと、今度は逆にもう一方の
素子が過電圧印可され、クランプ動作を起こしてしま
う。
As a result, the series-connected collector-emitter voltages are equalized, and the voltage clamp operation can be prevented from being permanently repeated. Here, if the adjustment time Δt ′ is too large, the adjusted timing difference is reversed. That is, when the sign of the next timing difference Δt2 is reversed and Δt ′ is used such that the absolute value of Δt2 exceeds Δt1, the other element is conversely applied with an overvoltage. , Causing a clamping operation.

【0013】IGBTを直列接続させて同時にオン・オ
フをさせて電力変換を行う場合、一般的にターンオフタ
イミング差は、最大で数百nSというレベルであり、上
記のような逆転現象を防ぐには、調整時間を10〜20
nSとすることが望ましいことが分かっている。という
のは、ただ逆転現象を防ぐためなら数nS、あるいはこ
れより短い調整時間を設定すればよいことになるが、あ
まりに短くするとターンオフタイミング差が改善されて
クランプ動作が無くなるまでの時間が大きくなってしま
うからである。
In the case where power conversion is performed by connecting IGBTs in series and turning them on and off simultaneously, the turn-off timing difference is generally at a level of several hundred nS at the maximum. Adjustment time is 10-20
It has been found that nS is desirable. This is because to prevent the reversal phenomenon, it is only necessary to set an adjustment time of a few nS or shorter, but if it is too short, the turn-off timing difference is improved and the time until the clamping operation is eliminated becomes longer. It is because.

【0014】[0014]

【発明の効果】以上のように、本発明では、各アームに
電圧駆動形半導体素子を直列接続してなる電力変換装置
において、前記アームの各電圧駆動形半導体素子を同時
にオン、オフする制御を行うにあたり、ターンオフスイ
ッチングタイミングのずれにより各電圧駆動形半導体素
子のうちの一方に印加された電圧の過電圧を検出したと
きは、一方の半導体素子の次のターンオフスイッチング
タイミングを一定時間遅らせるようにしたので、半導体
素子への過電圧印加を防ぐことができ、半導体素子で生
ずる損失を低減でき、さらに過電圧印加を検出するため
の定電圧素子で生じる損失および素子劣化を防ぐことが
できる。
As described above, according to the present invention, in a power converter in which voltage-driven semiconductor elements are connected in series to each arm, control for simultaneously turning on and off each voltage-driven semiconductor element of the arm is provided. In doing so, when an overvoltage of the voltage applied to one of the voltage-driven semiconductor elements is detected due to a shift in the turn-off switching timing, the next turn-off switching timing of one of the semiconductor elements is delayed by a certain time. In addition, it is possible to prevent application of an overvoltage to the semiconductor element, to reduce a loss generated in the semiconductor element, and to prevent a loss and an element deterioration generated in a constant voltage element for detecting overvoltage application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す回路構成図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】本発明の実施例の動作波形図である。FIG. 2 is an operation waveform diagram of the embodiment of the present invention.

【図3】従来の電力変換装置の回路構成図である。FIG. 3 is a circuit configuration diagram of a conventional power converter.

【図4】図3の回路構成図の動作波形図である。FIG. 4 is an operation waveform diagram of the circuit configuration diagram of FIG. 3;

【図5】第2の従来の回路構成図である。FIG. 5 is a circuit diagram of a second conventional circuit.

【図6】図5の回路構成図の動作波形図である。FIG. 6 is an operation waveform diagram of the circuit configuration diagram of FIG. 5;

【符号の説明】[Explanation of symbols]

1、2…デバイスチップ、3、4、5…電極、6、7…
基板、8、9…ワイヤボンディング、10…誘電体、1
1…パッケージ、30…スナバコンデンサ、Cd…電解
コンデンサ、Cs…スナバコンデンサ、T1〜T6…ト
ランジスタ、D1〜D6…ダイオード、A、B…電源接
続用電極、U、V、W…負荷接続用電極、C1、C2…
トランジスタ出力容量
1, 2, device chip, 3, 4, 5, ... electrode, 6, 7, ...
Substrate, 8, 9 ... wire bonding, 10 ... dielectric, 1
DESCRIPTION OF SYMBOLS 1 ... Package, 30 ... Snubber capacitor, Cd ... Electrolytic capacitor, Cs ... Snubber capacitor, T1-T6 ... Transistor, D1-D6 ... Diode, A, B ... Power connection electrode, U, V, W ... Load connection electrode , C1, C2 ...
Transistor output capacity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】各アームに電圧駆動形半導体素子を直列接
続してなる電力変換装置において、前記アームの各電圧
駆動形半導体素子を同時にオン、オフするにあたり、 前記各電圧駆動形半導体素子のコレクタ−ゲート間に定
電圧素子、さらにこの定電圧素子に流れる電流を検出す
る定電圧素子電流検出回路をそれぞれ設け、 ターンオフスイッチングタイミングのずれにより、各電
圧駆動形半導体素子のうちの一方に印加された電圧が定
電圧素子のアバランシェ電圧に達し、定電圧素子に電流
が流れたことを検出した場合に、 該一方の半導体素子の次のターンオフスイッチングタイ
ミングを一定時間遅らせ、直列接続された電圧駆動形半
導体素子の電圧印加を均一させるようにしたことを特徴
とする電圧駆動形半導体素子用ゲート駆動方法。
1. A power converter comprising a plurality of voltage-driven semiconductor elements connected in series to each arm, wherein when simultaneously turning on and off each of the voltage-driven semiconductor elements of the arm, a collector of each of the voltage-driven semiconductor elements is provided. A constant voltage element between the gates, and a constant voltage element current detection circuit for detecting a current flowing through the constant voltage element, respectively, and a voltage applied to one of the voltage driven semiconductor elements due to a shift in turn-off switching timing. When the voltage reaches the avalanche voltage of the constant voltage element and it is detected that a current flows through the constant voltage element, the next turn-off switching timing of the one semiconductor element is delayed for a certain time, and the voltage-driven semiconductor connected in series A method of driving a gate for a voltage-driven semiconductor device, wherein voltage application to the device is made uniform.
JP2000039529A 2000-02-17 2000-02-17 Gate driving method Withdrawn JP2001231247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039529A JP2001231247A (en) 2000-02-17 2000-02-17 Gate driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039529A JP2001231247A (en) 2000-02-17 2000-02-17 Gate driving method

Publications (1)

Publication Number Publication Date
JP2001231247A true JP2001231247A (en) 2001-08-24

Family

ID=18563077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039529A Withdrawn JP2001231247A (en) 2000-02-17 2000-02-17 Gate driving method

Country Status (1)

Country Link
JP (1) JP2001231247A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064822A (en) * 2002-07-25 2004-02-26 Fuji Electric Holdings Co Ltd Driving method for voltage driving type semiconductor element
JP2007089294A (en) * 2005-09-21 2007-04-05 Fuji Electric Holdings Co Ltd Semiconductor power converter
WO2009054143A1 (en) * 2007-10-24 2009-04-30 Kabushiki Kaisha Toshiba Power converter
JP2011024382A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Gate drive circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064822A (en) * 2002-07-25 2004-02-26 Fuji Electric Holdings Co Ltd Driving method for voltage driving type semiconductor element
JP2007089294A (en) * 2005-09-21 2007-04-05 Fuji Electric Holdings Co Ltd Semiconductor power converter
WO2009054143A1 (en) * 2007-10-24 2009-04-30 Kabushiki Kaisha Toshiba Power converter
US8836311B2 (en) 2007-10-24 2014-09-16 Kabushiki Kaisha Toshiba Power converter with switching circuits
JP2011024382A (en) * 2009-07-17 2011-02-03 Fuji Electric Systems Co Ltd Gate drive circuit

Similar Documents

Publication Publication Date Title
US9954521B2 (en) Gate drive circuit for semiconductor switching devices
JP4432215B2 (en) Semiconductor switching element gate drive circuit
JP3666843B2 (en) Gate circuit of insulated gate semiconductor device
JP3614519B2 (en) Method and apparatus for driving insulated gate semiconductor device
JP3339311B2 (en) Driver circuit for self-extinguishing semiconductor device
JP2669117B2 (en) Drive circuit for voltage-driven semiconductor devices
JP6582764B2 (en) Semiconductor device driving apparatus
JP5993749B2 (en) Gate drive circuit of semiconductor device and power conversion device using the same
US11218083B2 (en) Semiconductor device and method for driving the same
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
AU2014297873A1 (en) Semiconductor device and power conversion device
JP4706130B2 (en) Gate drive circuit for power semiconductor device
JP2019110431A (en) Semiconductor device and power module
JP5298557B2 (en) Voltage-driven semiconductor device gate drive device
JP2001231247A (en) Gate driving method
JPH10337046A (en) Power conversion device
JP2001025259A (en) Pwm inverter
JP4848714B2 (en) Semiconductor power converter
JP4449190B2 (en) Voltage-driven semiconductor device gate drive device
JP2010022190A (en) Gate driving device of voltage driving type semiconductor device
JP3603998B2 (en) Gate driving circuit and driving method for voltage driven semiconductor device
US20200335969A1 (en) Power module with integrated surge voltage limiting element
JP3724255B2 (en) Gate drive circuit for voltage driven semiconductor device
JP2003189590A (en) Controller for voltage drive type semiconductor elements connected in series
JP2000139071A (en) Gate driving circuit for power converter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040823