JP3719394B2 - 光ディスク媒体、光ディスク記録/再生装置及び方法 - Google Patents

光ディスク媒体、光ディスク記録/再生装置及び方法 Download PDF

Info

Publication number
JP3719394B2
JP3719394B2 JP2001126305A JP2001126305A JP3719394B2 JP 3719394 B2 JP3719394 B2 JP 3719394B2 JP 2001126305 A JP2001126305 A JP 2001126305A JP 2001126305 A JP2001126305 A JP 2001126305A JP 3719394 B2 JP3719394 B2 JP 3719394B2
Authority
JP
Japan
Prior art keywords
signal
digital information
optical disk
optical
optical disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001126305A
Other languages
English (en)
Other versions
JP2002319146A (ja
Inventor
誠司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001126305A priority Critical patent/JP3719394B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Priority to EP02720471A priority patent/EP1394780B1/en
Priority to US10/297,928 priority patent/US7095700B2/en
Priority to PCT/JP2002/003826 priority patent/WO2002089122A1/ja
Priority to CNB2005100781168A priority patent/CN100369123C/zh
Priority to KR1020027017166A priority patent/KR100880188B1/ko
Priority to CNB02801376XA priority patent/CN1245712C/zh
Publication of JP2002319146A publication Critical patent/JP2002319146A/ja
Application granted granted Critical
Publication of JP3719394B2 publication Critical patent/JP3719394B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • G11B7/24088Pits for storing more than two values, i.e. multi-valued recording for data or prepits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1488Digital recording or reproducing using self-clocking codes characterised by the use of three levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1496Digital recording or reproducing using self-clocking codes characterised by the use of more than three levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばコンパクトディスク(CD)またはディジタルビデオディスク(DVD)等のような光ディスク媒体、または光ディスク媒体に対するディジタル情報の記録や再生を行なう光ディスク記録/再生装置及び方法に関する。
【0002】
【従来の技術】
CDやDVDに代表される従来の光ディスクでは、光学的に検出可能なピットやマークを媒体に形成することにより情報を記録し、これらのピットまたはマークを光学的手段により検出することにより情報を再生している。
そして、従来の光ディスクにおいて記録されたピットやマークは、光ピックアップにより電気信号として読み出され、その波形が判定回路により1または0の2値情報に判定された後、出力される。
すなわち、光ピックアップからは「アイパターン」と呼ばれる繰り返し波形が検出され、この波形を所定の閾値と比較することにより、2値の情報として復号し、元のディジタル情報に復元している。
【0003】
また、このような従来からの再生方法においては、再生に用いるレーザ光線の波長と対物レンズの開口数(NA)により、検出できる信号の細かさ(空間周波数)の上限が定まる。
すなわち、記録された信号がより細かくなるに従い、再生信号の振幅が低下し、やがて上限の空間周波数に達すると、全く検出できなくなってしまう。このような空間周波数特性の変化は、一般にMTF(Modulation Transfer Function)と呼ばれる。
一例として、DVDで使用される光ピックアップのMTF特性を図11に示す。なお、図11の縦軸は再生信号の振幅(ゲイン)を示し、横軸は空間周波数を示している。
この図11より明らかなように、DVDでは、およそ1mmあたり1700本程度の空間周波数までを検出することができる。
【0004】
【発明が解決しようとする課題】
ところで、従来の光ディスク記録方法においては、上述のようなMTFの上限値により光ディスク上に記録できる細かさが制限される。この結果として光ディスクの記録密度が定まってしまうものであった。
そのため、これまで提案されている光ディスクの高密度記録は、このようなMTFの限界を高めるものが多かった。すなわち、レーザの波長をより短くする、あるいはNAを高くするものである。
【0005】
これらの結果、MTFの限界周波数をより高くすることができるので、記録密度を高めることができる。
しかし、レーザの波長は400nm程度が限界であり、これ以上波長を短くすると、プラスティックの基板を光が透過しなくなってしまう。
また、NAを高めると、光ディスク表面と対物レンズの間隔を短くすることが必要となり、ディスク表面にゴミがついていた場合などにデータの読み取りが不確実になるという問題がある。
【0006】
また、情報を1か0かという2値で記録するのではなく、多値の情報として記録する多値記録も提案されている。
例えば特開昭61−94244号公報においては、光照射により穴を形成する記録層を有する記録媒体上の同一個所に情報内容によりビーム数を変えて照射し、異なる深さの穴を形成し、多値の情報を記録することにより、記録容量の増量を可能にする。
すなわち、この発明においては、同一個所で照射するビームスポツトの回数を変えることで、穴の深さを段階的に変化させることにより、多値記録を実現するものである。
【0007】
また、特開平2−31329号公報に開示された情報記録装置は、光ビームのパワーを複数段階に変調し、相変化記録媒体を複数段階に相変化させ、情報を多段階の多値信号として記録する。
また、特開平4−38088号公報においては、金属錯体における配位環境を変化させることにより、多値情報を記録する。この発明においては、代表的な例として8面体配位を使った場合に最大6通りの変化を使って最大6つまでの多値記録が可能であるとしている。
【0008】
しかしながら、以上述べたような多値記録(多段階記録)を適用した場合には、媒体の信号対雑音比(SNR)を高めなければならないという問題がある。
また、多値記録においては記録信号の直流成分の除去ができないため、再生信号のレベルが全体的に上昇、あるいは下降した場合に、本来とは異なる別の情報に復号されてしまい、エラーレートが大幅に悪化するという問題点も知られている。
【0009】
ところで、図11に示したMTFでは横軸を周波数としている。そして、電気信号を扱う場合に用いる周波数は必ず正の値を取るものである。
しかし、光学的な分解能に関しては、正の空間周波数と負の空間周波数が存在する。すなわち図12に示すように、正の空間周波数領域だけでなく、実際には負の空間周波数領域が存在している。このような正負の空間周波数領域を光の回折として説明すると、ディスクの回転に対して前向きに回折する光と、後ろ向きに回折する光に相当している。
【0010】
そこで、本発明の目的は、図11に示したMTFを正の周波数領域と負の周波数領域に分離して使うことにより、有効利用できる周波数帯域を実質的に2倍に増大させることができ、記録密度を高めることができる光ディスク媒体、光ディスク記録/再生装置及び方法を提供することにある。
すなわち、本発明では、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、また、現在使っている光ピックアップおよび光ディスク製造技術を殆ど変えることなく、高密度化することが可能となり、また多値記録を行った場合に比較して、より低いSNRで高い密度の記録を可能とするものである。
【0011】
【課題を解決するための手段】
本発明による光ディスク媒体は、前記目的を達成するため、ディジタル情報が同心円状またはスパイラル状のトラックを形成するように記録された光ディスク媒体であって、前記ディジタル情報は前記トラックの進行方向に対して前向きに反射または回折する光線と前記トラックの進行方向に対して後ろ向きに反射または回折する光線について、それぞれ独立した信号として記録されていることを特徴とする。
したがって、この光ディスク媒体によれば、有効な周波数領域を拡大して従来よりも高密度の記録が可能であり、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、高い記録密度の媒体を実現することが可能となる。
【0012】
また本発明による光ディスク再生装置は、同心円状またはスパイラル状のトラックが形成された光ディスク媒体に光学的手段によりレーザ光線を集光させて再生用光スポットとして照射し、前記再生用光スポットが前記光ディスク媒体により反射または回折された前記レーザ光線を検出することにより前記光ディスク媒体上に記録されたディジタル情報を読み出す光ディスク再生装置において、前記トラックの進行方向に対して前向きに反射または回折された光線から前記ディジタル情報の一部を復号する第1の復号手段と、前記トラックの進行方向に対して後ろ向きに反射または回折された光線から前記ディジタル情報の一部を復号する第2の復号手段とを備えたことを特徴とする。
したがって、この光ディスク再生装置によれば、有効な周波数領域を正負に拡大して高密度の記録を行ったディスクを再生可能であり、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、高密度記録された媒体の再生を実現することが可能となる。
【0013】
また本発明による光ディスク再生方法は、同心円状またはスパイラル状のトラックが形成された光ディスク媒体に光学的手段によりレーザ光線を集光させて再生用光スポットとして照射し、前記再生用光スポットが前記光ディスク媒体により反射または回折された前記レーザ光線を検出することにより前記光ディスク媒体上に記録されたディジタル情報を読み出す光ディスク再生方法において、前記トラックの進行方向に対して前向きに反射または回折された光線から前記ディジタル情報の一部を復号し、前記トラックの進行方向に対して後ろ向きに反射または回折された光線から前記ディジタル情報の別の部分を復号することを特徴とする。
したがって、この光ディスク再生方法によれば、有効な周波数領域を正負に拡大して高密度の記録を行ったディスクを再生可能であり、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、高密度記録された媒体の再生を実現することが可能となる。
【0014】
また本発明による光ディスク記録装置は、円盤状の光ディスク媒体に光学的手段によりレーザ光線を集光させて照射し、同心円状またはスパイラル状のトラックにディジタル情報を記録する光ディスク記録装置において、前記ディジタル情報を正の周波数成分と負の周波数成分に分離した複素変調信号を作成する複素変調手段と、前記複素変調信号に基づいて前記レーザ光線を変調するレーザ変調手段とを備えたことを特徴とする。
したがって、この光ディスク記録装置によれば、正負の周波数領域を独立に使うことにより、実質的に周波数領域を拡大し、高密度の記録再生可能な光ディスクを供給することが可能である。これにより、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、従来よりもはるかに高い記録密度を実現することが可能となる。
【0015】
また本発明による光ディスク記録方法は、円盤状の光ディスク媒体に光学的手段によりレーザ光線を集光させて照射し、同心円状またはスパイラル状のトラックにディジタル情報を記録する光ディスク記録方法において、前記ディジタル情報を少なくとも2つに分割し、前記分割されたディジタル情報のそれぞれに応じて正の周波数成分と負の周波数成分を変化させることにより複素変調信号を作成し、前記複素変調信号に基づいて前記レーザ光線を変調することにより、前記光ディスク媒体に前記ディジタル情報を記録することを特徴とする。
したがって、この光ディスク記録方法によれば、正負の周波数領域を独立に使うことにより、実質的に周波数領域を拡大し、高密度の記録再生可能な光ディスクを供給することが可能である。これにより、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、従来よりもはるかに高い記録密度を実現することが可能となる。
【0016】
【発明の実施の形態】
以下、本発明による光ディスク媒体、光ディスク記録/再生装置及び方法の実施の形態例について説明する。
なお、以下に説明する実施の形態は、本発明の好適な具体例であり、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において、特に本発明を限定する旨の記載がない限り、これらの態様に限定されないものとする。
図1は、本発明の実施の形態に係る光ディスク記録装置1を示すブロック図である。
この光ディスク記録装置1は、ディスク原盤17を露光して情報源10Aより出力されるディジタルデータSAを記録するとともに、同時に、情報源10Bより出力されるディジタルデータSBも同一のディスク原盤17に記録するものである。
このときディジタルデータSAは主にプラスの周波数領域を使って記録され、ディジタルデータSBは主にマイナスの周波数領域を使って記録される。
このように本実施の形態では、従来では区別していなかったプラスとマイナスの周波数領域を独立して使うことにより、従来よりも高い記録密度を実現するものである。
【0017】
光ディスクの製造工程では、このようにして情報源10A及び10Bからの情報が記録されたディスク原盤17を現像する。次に、現像されたディスク原盤17を電鋳処理することにより、マザーディスクを作成し、このマザーディスクよりスタンパを作成する。
さらに光ディスクの製造工程では、このようにして作成したスタンパよりディスク状基板を作成し、このディスク状基板に反射膜、保護膜を形成して図2に示す光ディスク媒体(以下、単に光ディスクという)2を作成する。
【0018】
次に、この光ディスク記録装置1の各構成要素について説明する。
この光ディスク記録装置1において、スピンドルモータ18は、ディスク原盤17を回転駆動し、底部に保持したFG信号発生回路より、所定の回転角毎に信号レベルが立ち上がるFG信号を出力する。
スピンドルサーボ回路19は、ディスク原盤17の露光位置に応じて、このFG信号の周波数が所定の周波数になるようにスピンドルモータ18を駆動し、これにより、ディスク原盤17を所定の回転数になるように回転駆動する。
【0019】
記録用レーザ15は、ガスレーザ等により構成され、ディスク原盤露光用のレーザビームL0を射出する。光変調器14Aは、電気音響光学素子などで構成されるAOM(Accousto Optic Modulator)であり、レーザビームL0を同期パターン発生回路13から出力される同期信号SYに応じてオンオフすることにより、同期パターンを埋め込む。
このようにして同期パターンが挿入されたレーザ光線L1は、光変調器14Bに入力される。光変調器14Bも光変調器14Aと同様にAOMで構成され、強度変調信号SZに応じてレーザビームL1の強度を変調し、レーザビームL2として出力する。
【0020】
このようにして得られたレーザ光L2は、ミラー24により光路が折り曲げられてディスク原盤17に向けて進行し、対物レンズ25によってディスク原盤17の上に集光される。
これらミラー24及び対物レンズ25は、図示しないスレッド機構により、ディスク原盤17の回転に同期してディスク原盤17の外周方向に順次移動し、これによりレーザビームL2による露光位置を順次ディスク原盤17の外周方向に変位させる。
【0021】
以上のような構成により、この光ディスク記録装置1では、ディスク原盤17を回転駆動した状態で、ミラー24及び対物レンズ25の移動により、らせん状にピット列及びグルーブを形成する。ピット列としては同期信号SYが記録される。また、グルーブとしては強度変調信号SZに応じたレーザパワーの露光が行われる。
この結果、ディスク原盤17上にはグルーブ(溝)が記録され、グルーブの深さがレーザ光L2の強度に応じて変位される。また、周期的にピット列として同期パターンが挿入されている。
【0022】
図2は、このようにして作成された本実施の形態による光ディスク2の様子を模式的に示す説明図である。
図2(A)は、光ディスク2の全体を示し、その信号記録面には、スパイラル状または同心円状にトラックが形成されている。図2(B)は、各トラックのうちの2トラック分の一部を拡大して示している。
この図2(B)に示すように、本例の光ディスク2においては、同期信号SYにより、同期パターンがピット列211、212、213、221、222、223として記録されている。これらのピット列は、同期検出やアドレス情報の読み取り、後述するクロック再生などに用いられる。
【0023】
トラック210に記録されているディジタルデータSAおよびディジタルデータSBは、グルーブ214の深さ変化として記録されている。
同様にして、トラック220に記録されているディジタルデータSAおよびディジタルデータSBは、グルーブ224の深さ変化として記録されている。
この様子を説明するために、図2(C)においてはトラック220の断面形状を模式的に示している。この図2(C)に示すように、トラック220のグルーブ224の領域においては、同じ幅のグルーブが形成され、その深さがg(x)に応じて変化することにより、ディジタルデータSAおよびディジタルデータSBの両方が記録されている。
グルーブ深さg(x)は、ディスク原盤17上に照射されるレーザ強度に応じて変化する。すなわち、グルーブ深さg(x)は、強度変調信号SZに応じて変化している。
以上述べてきたように、本実施の形態においては変調信号がグルーブの深さ変位として記録されるので、従来のマスタリングやスタンピングの装置をほとんどそのまま使って高密度の記録を実現することができる。
【0024】
また、図1において、誤り訂正符号発生回路11Aは、情報源10Aより出力されるディジタルデータSAを受け、誤り訂正符号を付加した後、インターリーブ処理して8ビットのディジタル信号SCとして出力する。
同様に誤り訂正符号発生回路11Bは、情報源10Bより出力されるディジタルデータSBを受け、誤り訂正符号を付加した後、インターリーブ処理して8ビットのディジタル信号SDとして出力する。
このようにして、重畳記録する2つの情報源に誤り訂正符号を付加することにより、万が一、ディスク上に欠陥があった場合でも、正しい情報を読み取ることが可能となる。
【0025】
タイミングジェネレータ12は、FG信号に同期して光ディスク記録装置1全体のタイミングをコントロールする様々な時間基準信号を発生し、装置の各部に供給する。
なお、これらの全てを図示するのは煩雑となるので、図1においては、BCLKとSLCT信号だけを示している。
BCLK信号は、ビット数変換回路5A及び5Bからディジタル信号が出力される毎に論理0から1に変化するクロック信号である。
そして、このBCLK信号の変化を知ることにより、複素変調回路4に新しいデータが入力されたことを知ることができる。
【0026】
また、SLCT信号はディスク原盤17の回転に同期して所定の時間のデータがディスク原盤17上に記録される度に論理0から1に変化する信号である。
SLCT信号の変化に従って、周期的に同期パターン発生回路13から得られる同期信号SYが光変調器14Aによりレーザ光L0をオン・オフ変調し、レーザ光L1として出力する。
同期パターン発生回路13では、再生時に必用となる同期用のパターン、及びアドレス情報やアクセスのために必用なサーボ情報などを発生する。
このような同期パターンがディスク原盤17の回転に同期して周期的に挿入される。この結果、生成されたディスクから容易な方法で再生信号の同期が得ることが可能となり、またアドレス情報などを用いて目的のトラックの情報を取得することが可能となる。
【0027】
ビット数変換回路5Aは、誤り訂正符号発生回路11Aより供給される8ビットのディジタルデータSCの単位ビット数を変換し、2ビットデータb3、b2として複素変調回路4に供給する。
ビット数変換回路5Bは、ビット数変換回路5Aと全く同様に構成され、誤り訂正符号発生回路11Bから得られた8ビット単位のディジタル情報SDを、2ビット単位のビットデータb0、b1に変換して出力する。
【0028】
複素変調回路4は、ビットデータb0、b1、……、b3に従って複素変調信号SXを作成する。
この複素変調信号SXは、実部の信号(SXr)と虚部の信号(SXi)から構成される。しかし、このような複素数の情報を直接光ディスク上に記録することはできない。
そこで、本例においては、ベクトル量子化回路7が複素変調信号SXから位相情報を抜き取り、虚部を持たない強度変調信号SZに変換する。
そして、この強度変調信号SZに応じて光変調器14Bがレーザ光L1の強度を変調し、レーザ光L2としてディスク原盤17に記録を行うように構成されている。
すなわち、このレーザ光L2の変化に応じて形成されるグルーブの深さg(x)が変化することにより、ディジタルデータSAおよびディジタルデータSBを記録する。
【0029】
図3は、複素変調回路4の構成を示すブロック図である。
同図において、所定の時間間隔Tにおいて、複素変調回路4に入力されたディジタル信号b0、b1、……、b3は、2値化回路40A〜40Bに入力され、信号レベルが(+1、−1)の2値信号に変換される。次に、ローパスフィルタ45A〜45Dが適用されることにより、所定の周波数帯域Fbに帯域制限された帯域制限2値波信号(Vx、Vy、Wx、Wy)を得ることができる。
ここで、ローパスフィルタ45A〜45Dの特性は、符号間干渉を付加しないように選ばれる。このようなローパスフィルタの特性としては、たとえばRaised Cosin特性などが知られている。
このような帯域制限2値波信号(Vx、Vy、Wx、Wy)のスペクトルを図4(A)に模式的に示した。この図4(A)から明らかなように、帯域制限2値波信号(Vx、Vy、Wx、Wy)は、周波数領域(−Fb〜+Fb)の間に入るように帯域制限されている。
【0030】
図3において、キャリア発生回路42は水晶発振回路等で構成され、周波数f0のキャリア信号を発生し、+45°位相シフト回路43B、及び−45°位相シフト回路43Aに供給する。
+45°位相シフト回路43Bから得られるキャリア信号S1、及び−45°位相シフト回路43Aから得られるキャリア信号S0は、以下の式(1)(2)によって表せるような信号となる。
S1=A・cos(2π・f0・t) ……(1)
S0=A・sin(2π・f0・t) ……(2)
なお、ここでAは定数を、tは時間を表している。
また、キャリア発生回路42の発振周波数f0は、以下の式(3)を満足するように設定される。
f0>Fb ……(3)
【0031】
+45°位相シフト回路43Bから得られるキャリア信号S1、及び−45°位相シフト回路43Aから得られるキャリア信号S0は、乗算回路44A〜44Hに入力される。
乗算回路44A〜44Hはそれぞれ、キャリア信号S1、S0と帯域制限2値波信号(Vx、Vy、Wx、Wy)との積の演算を行って出力する。
また、極性反転回路48Aおよび48Bは、位相シフト回路43Aの出力を極性反転して乗算回路44Bおよび44Gに供給する。
また、乗算回路44A〜44Hの出力は、加算回路47A〜47Fにより加算される。
以上の結果、加算回路47Aの出力(Vi)および47Bの出力(Vr)は、以下の式(4)(5)のような信号となる。
Vi=−A・Vx・sin(2π・f0・t)+A・Vy・cos(2π・f0・t) ……(4)
Vr= A・Vx・cos(2π・f0・t)+A・Vy・sin(2π・f0・t) ……(5)
【0032】
ここで、この2つの信号(Vr、Vi)を実部と虚部に持つ複素数Vを考え、式(4)(5)を複素表現すると以下の式(6)のように書き換えることができる。
V=A・Vx・Exp(−j・2π・f0・t)+A・jVy・Exp(−j・2π・f0・t) ……(6)
ただし、jは虚数を表す。
この式(6)により、複素信号VはVx、Vyの周波数成分をマイナスf0だけ周波数シフトした結果得られる信号であることがわかる。
このような複素信号Vのスペクトルを、図4(B)に模式的に示した。この図4(B)からわかるように、複素信号Vはマイナス側の周波数領域だけに存在する信号である。
【0033】
同様にして、加算回路47Cの出力(Wr)および47Dの出力(Wi)は、以下の式(7)(8)のような信号となる。
Wi= A・Wx・sin(2π・f0・t)+A・Wy・cos(2π・f0・t) ……(7)
Wr= A・Wx・cos(2π・f0・t)−A・Wy・sin(2π・f0・t) ……(8)
【0034】
ここで、この2つの信号(Wr、Wi)をそれぞれ実部と虚部に持つ複素数Wを考え、式(7)(8)を複素表現すると、以下の式(9)のように書き換えることができる。
W=A・Wx・Exp(+j・2π・f0・t)+A・jWy・Exp(+j・2π・f0・t) ……(9)
この式(9)により、複素信号WはWx、Wyの周波数成分をプラスf0だけ周波数シフトした結果得られる信号であることがわかる。このような複素信号Wのスペクトルを、図4(C)に模式的に示した。この図4(C)からわかるように複素信号Wは、プラス側の周波数領域だけに存在する信号である。
【0035】
次に、加算回路47Eは、加算回路47Cの出力(Wr)と、加算回路47Bの出力(Vr)とを加算して出力する。すなわち、加算回路47Eは、複素信号Wと複素信号Vの実部同士を加算してSXrとして出力する。
同様にして加算回路47Fは、加算回路47Dの出力(Wi)と、加算回路47Aの出力(Vi)とを加算して出力する。すなわち、加算回路47Fは、複素信号Wと複素信号Vの虚部信号同士を加算してSXiとして出力する。
そこで、この(SXr、SXi)を、それぞれ実部と虚部に持つ複素変調信号SXを考えると、複素変調信号SXは以下の式(10)で表されるような信号となる。
SX=W+V ……(10)
【0036】
このような複素変調信号SXのスペクトルを図4(D)に模式的に示した。この図4(D)からわかるように、複素変調信号SXは、プラス側とマイナス側の両方の周波数成分を持っている。また、プラス側の周波数領域には2ビットディジタル信号(b3、b2)が記録されていて、マイナスの周波数領域には(b1、b0)が記録されている。
このように周波数領域をプラス側とマイナス側で使い分けることにより、本実施の形態では、従来よりも高い記録密度を実現するものである。
しかし、このような複素変調信号SXは、そのままでは光ディスク上に記録することができない。そこで本例においては、ベクトル量子化回路7を用いて複素変調信号SXを簡略化して強度変調信号SZに変換した後、光ディスク原盤17上に記録する。
【0037】
図5は、ベクトル量子化回路7の最も簡単な構成例を示すブロック図である。同図において、複素変調信号SXの要素(SXr、SXi)は、それぞれ8ビットADコンバータ71および72に入力される。
8ビットADコンバータ71は、入力された信号を8ビットのディジタル値に変換し、リードオンリメモリ(ROM)73のアドレス情報として出力する。リードオンリメモリ73内部には、あらかじめ以下の式(11)で示すような演算データが記録されている。
SZ=128・arctan (SXi / SXr)÷π+128 ……(11)
ここで、arctan は逆正接関数である。
【0038】
すなわち、式(11)の演算は、複素変調信号SXの角度成分を検出して256段階の整数として出力するものである。このようにして複素変調信号SXを角度成分だけに簡略化してしまうことにより、本例の光ディスクを再生するとノイズが若干増加して観測される。しかし、記録された情報を復元するのには問題ないレベルに押さえることができる。
また、ベクトル量子化に関しては、既に様々なアルゴリズムが開発されている。このようなアルゴリズムを適用することにより、さらにノイズを低下することができれば再生がさらに安定になり、より望ましい。
また、256段階の量子化が多すぎる場合には、理論的には3段階まで減らすことも可能である。
【0039】
次に、リードオンリメモリ73から得られた8ビットのディジタル信号は、DAコンバータ74によりアナログの電圧に変換され、強度変調信号SZとして光変調器14Bに供給される。
このようにしてベクトル量子化回路7から得られた強度変調信号SZは、図1において光変調器14Bによってレーザ光線L2の強度変化として置き換わり、ディスク原盤17に刻まれたグルーブの深さg(x)として記録される。
【0040】
このとき、グルーブ深さg(x)と強度変調信号SZの間には、以下の式(12)に示す関係が保たれるようにレーザパワーが制御される。
g(x)=K・SZ ……(12)
ここで、Kの値は以下の式(13)に示すように定められる。
K=λ÷(n・256) ……(13)
ここで、λは読み取りに使うレーザの波長、nはできあがった光ディスクの屈折率である。
これらの式(12)、(13)を満足することにより、複素変調信号SXの位相角度に対応した位相変化が読み取りに用いるレーザ光に対して与えられる。
【0041】
以上により、ディジタルデータSAおよびディジタルデータSBの両方が、ディスク原盤17上のグルーブ深さ変化として記録される。また、ディジタルデータSAはマイナスの周波数領域に記録され、ディジタルデータSBはプラスの周波数領域に記録される。
このようにして露光記録が行われたデイスク原盤17は、現像が行われてグルーブの部分が凹のパターンとして現れる。さらに電鋳処理することによってマザーディスクを作成する。
このマザーデイスクを用いてスタンパが作成され、このスタンパを基にして、射出成形を繰り返すことにより、大量複製された光ディスク2を得ることができる。
【0042】
図6は、本実施の形態に係る光ディスク再生装置の構成を示すブロック図である。
以下、この図6を参照して、上述した2種類のディジタル情報がグルーブの深さ変化として記録された光ディスク2を再生する光ディスク再生装置3について説明する。
図6において、光ディスク2は、スピンドルモータ131によって回転される。このスピンドルモータ131は、サーボ回路135により所定の回転数で回転するように制御が行われている。
また、光ピックアップ107も、サーボ回路135によってフォーカス・トラッキングなど所定の動作をするように制御される。
【0043】
光ピックアップ107から照射されたレーザ光線は、光ピックアップ107内部の回折格子により3つのスポット(スポット321〜323)に分割されて光ディスク2を照射し、再び光ピックアップ107に戻る。この様子を図7に模式的に示す。
光ディスク2により反射された光線の一部分は、光ピックアップ107内部の複数のディテクタにより検出信号A〜Hとして出力される。検出信号A〜Hは、マトリックス演算回路133に入力される。
マトリックス演算回路133は、オペレーショナル・アンプリファイヤなどで構成され、検出信号A〜HからHF信号、トラックエラー信号TK、フォーカスエラー信号FS、プラス周波数信号PHF、マイナス周波数信号NHFなどの信号を演算する。
【0044】
図7では、トラッキングが作動した場合の3つの光スポット(スポット321〜323)と、光ディスク2に記録されたグルーブ2Aとの相対関係を示している。中央のスポット321に関しては、ファーフィールドに配置された4分割ディテクタ(A、B、C、D)が割り当てられていて、スポット321から得られた光線は4分割されてそれぞれのディテクタにより検出される。
また、スポット322に関しては、2分割ディテクタにより、信号EとFが検出され、同様にしてスポット323に関しても2分割ディテクタにより信号GとHが検出されるようになされている。
【0045】
スポット322から得られたE信号とF信号、そしてスポット323から得られたG信号とH信号は、マトリックス演算回路133に入力される。マトリックス演算回路133では、これら4つの信号(E、F、G、H)に対して以下の式(14)の演算を行うことによりトラックエラー信号TKを得る。
TK信号=(E−F)+(H−G) ……(14)
さらに、マトリックス演算回路133では、スポット321を検出した4分割ディテクタからの4つの出力(A、B、C、D)に対して、以下の式(15)(16)(17)(18)の演算を行なう。
HF信号=A+B+C+D ……(15)
FS信号=A−B+C−D ……(16)
PHF信号=A+D ……(17)
NHF信号=B+C ……(18)
【0046】
ここで、FS信号はフォーカスエラー信号であり、光ピックアップ107の内部に設けられた対物レンズの焦点合わせに用いられる。従って、FS信号はサーボ回路135に供給され、光ピックアップ107内部の対物レンズにより照射された光線が常に光ディスク2の上で焦点を結ぶように制御が行なわれる。
また、HF信号はピットとして記録された情報を保持しているので、アドレス復号回路138に供給されて、同期信号SYとして周期的に埋め込まれたアドレス情報などを検出するのに用いられる。
また、このHF信号はPLL回路134にも供給される。PLL回路134はフェーズロックループ回路で構成され、同期信号SYとして周期的に埋め込まれた信号からキャリア信号f0等のタイミング情報を復元し、復号回路106A及び106Bに供給する。
【0047】
また、プラス周波数信号PHFは、主にグルーブの進行方向に対して前向きに回折した信号である。このような信号は、4分割ディテクタのうちAとDのセグメントから得られる信号の和として得ることができる。
このような信号の周波数特性を求めた場合の一例を図8に示す。なお、この図8において、縦軸は再生信号の振幅(ゲイン)を示し、横軸は空間周波数を示している。
この図8において、プラス周波数信号PHFは、主にプラスの周波数領域に記録された信号を反映していることがわかる。
このようなプラス周波数信号PHF信号は、ピックアップによる周波数特性を無視すると、ほぼ次の式(19)で表せるような信号である。
Figure 0003719394
【0048】
また、マイナス周波数信号NHFは、グルーブの進行方向に対して後ろ向きに回折した信号である。このような信号は、4分割ディテクタのうちBとCのセグメントの和として得ることができる。
マイナス周波数信号NHFの周波数特性を求めた一例を図9に示す。なお、この図9において、縦軸は再生信号の振幅(ゲイン)を示し、横軸は空間周波数を示している。
この図9から明らかなように、マイナス周波数信号NHFは主にマイナスの周波数領域に記録された信号を反映している。
このようなマイナス周波数信号NHF信号は、ピックアップによる周波数特性を無視すると、ほぼ次の式(20)で表せるような信号である。
Figure 0003719394
【0049】
そして、プラス周波数信号PHFは、復号回路106Aに供給される。また、マイナス周波数信号NHFは、復号回路106Bに供給される。これら復号回路106A、106Bより後段の動作は基本的に同一であるので、以下の説明では復号回路106Aに関連する部分についてのみ説明し、復号回路106B及びその出力に対する信号処理の部分は同一の符号を付して説明は省略する。
復号回路106Aは、プラス周波数信号PHFに基づいて記録された2ビット情報(b2、b3)を復号し、ビット数変換回路108Aに供給する。
ビット数変換回路108Aは、復号回路106Aからの2ビット幅のデータを4つ蓄積した後に、8ビット幅に変換して出力する。
ビット数変換回路108Aからの出力SFはECC回路137Aに供給される。ECC回路137Aは、記録時の符号化において付加されたECC(Error Correcting Code )に基づいて、復号回路106Aから出力される誤りを訂正する。このような誤りは、例えぱ光ディスク2上のディフェクト等に起因して生じるものである。
【0050】
このようにしてECC回路137Aの出力から得られる信号は、記録装置から出力されたディジタルデータSAと等しくなっている。従って、例えば本再生装置をコンパクトディスクプレイヤと同じような用途に適用する場合においては、ECC回路137Aの出力にDAコンバータとスピーカを接続することにより、スピーカから音楽信号が再生される。
なお、本発明では、プラス側の周波数領域とマイナス側の周波数領域にそれぞれ記録された異なる情報を再生することも可能である。
【0051】
図10は、復号回路106Aの内部構成を示すブロック図である。
同図においてキャリア信号f0は、バンドパスフィルタ172に接続され、周波数f0近傍の周波数成分だけが抽出され、不要な高調波成分が除去される。
また、プラス周波数信号PHFは、イコライザ171に入力される。イコライザ171は、主に光ピックアップ107の周波数特性を補正して出力する。イコライザ171を用いることにより、光ピックアップ107により発生する符号間干渉をほぼ完全に除去することができる。
イコライザ171により補正が行われたプラス周波数信号PHFと、バンドパスフィルタ172を通過したキャリア信号f0は、乗算回路173により乗算される。この結果、プラス周波数信号PHF信号のスペクトラムは周波数原点付近に移動する。
【0052】
次に乗算回路173の出力はヒルベルト変換器174に入力される。このヒルベルト変換器174はFIRフィルタなどで構成され、入力された信号の周波数成分から実部と虚部を分離してそれぞれUxとUyとして出力する。
この結果得られるUxは、図1において説明した帯域制限2値波信号Vxにほぼ等しくなっている。また、Uyは、帯域制限2値波信号Vyにほぼ等しくなっている。
従って、UxとUyを所定の周期Tでサンプリングして所定のスレッシュホールドレベルと比較することにより、光ディスク2に記録された2値情報を復元することができる。
【0053】
また、ヒルベルト変換器174の出力Ux及びUyは、それぞれ2値復号回路175及び176に接続される。2値復号回路175及び176は、入力された信号を所定のスレッシュホールドレベルと比較することにより、1ビットの情報を出力する。
2値復号回路175及び176は、このようにして得られた判定結果を基にして、記録された2ビット情報(b2、b3)を復号して出力する。
このようにして復号された情報は、ビット数変換回路108Aによりビット数の単位を8ビットに揃えて8ビット幅のデータSFとして出力される。ビット数変換回路108Aの出力SFは、ECC回路137Aによりディスク上のディフェクトや欠陥などの影響が除去され、出力される。
ECC回路137Aより得られる出力信号は、光ディスク記録装置1において記録したディジタルデータSAと同一のものが得られる
【0054】
なお、以上の例においては、同期信号などはピット列として記録されるものとして説明したが、本発明はこれに限定されるものでなく、同期信号やアドレス情報などの情報をグルーブ深さの変位、あるいはグルーブのウォブルとして記録することも可能である。
また、グルーブの代わりに例えば相変化(PC)や、光磁気(MO)などの光ディスクのようにマークを用いて同様な記録を行うことも考えられる。この場合においては、マークにより光の位相変化が与えられるように記録が行われる。
【0055】
【発明の効果】
以上説明したように本発明の光ディスク媒体では、ディジタル情報がトラックの進行方向に対して前向きに反射または回折する光線と前記トラックの進行方向に対して後ろ向きに反射または回折する光線について、それぞれ独立した信号として記録されていることを特徴とする。
したがって、この光ディスク媒体によれば、有効な周波数領域を拡大して従来よりも高密度の記録が可能であり、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、高い記録密度の媒体を実現することが可能となる。
【0056】
また本発明による光ディスク再生装置では、光ディスク媒体のトラックの進行方向に対して前向きに反射または回折された光線からディジタル情報の一部を復号する第1の復号手段と、トラックの進行方向に対して後ろ向きに反射または回折された光線からディジタル情報の一部を復号する第2の復号手段とを備えたことを特徴とする。
したがって、この光ディスク再生装置によれば、有効な周波数領域を正負に拡大して高密度の記録を行ったディスクを再生可能であり、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、高密度記録された媒体の再生を実現することが可能となる。
【0057】
また本発明による光ディスク再生方法では、光ディスク媒体のトラックの進行方向に対して前向きに反射または回折された光線から前記ディジタル情報の一部を復号し、トラックの進行方向に対して後ろ向きに反射または回折された光線からディジタル情報の別の部分を復号することを特徴とする。
したがって、この光ディスク再生方法によれば、有効な周波数領域を正負に拡大して高密度の記録を行ったディスクを再生可能であり、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、高密度記録された媒体の再生を実現することが可能となる。
【0058】
また本発明による光ディスク記録装置では、光ディスク媒体に記録するディジタル情報を正の周波数成分と負の周波数成分に分離した複素変調信号を作成する複素変調手段と、前記複素変調信号に基づいて前記レーザ光線を変調するレーザ変調手段とを備えたことを特徴とする。
したがって、この光ディスク記録装置によれば、正負の周波数領域を独立に使うことにより、実質的に周波数領域を拡大し、高密度の記録再生可能な光ディスクを供給することが可能である。これにより、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、従来よりもはるかに高い記録密度を実現することが可能となる。
【0059】
また本発明による光ディスク記録方法では、光ディスク媒体に記録するディジタル情報を少なくとも2つに分割し、この分割されたディジタル情報のそれぞれに応じて正の周波数成分と負の周波数成分を変化させることにより複素変調信号を作成し、この複素変調信号に基づいて前記レーザ光線を変調することにより、光ディスク媒体にディジタル情報を記録することを特徴とする。
したがって、この光ディスク記録方法によれば、正負の周波数領域を独立に使うことにより、実質的に周波数領域を拡大し、高密度の記録再生可能な光ディスクを供給することが可能である。これにより、対物レンズのNAを高めたり、波長を短くしたりする必要がなく、従来よりもはるかに高い記録密度を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る光ディスクを作成する光ディスク記録装置の全体構成を示すブロック図である。
【図2】本発明の実施の形態に係る光ディスクおよびその信号記録面の様子を模式的に示す説明図である。
【図3】図1に示す光ディスク記録装置における複素変調回路の構成例を示すブロック図である。
【図4】図3に示す複素変調回路の信号スペクトルを模式的に示す説明図である。
【図5】図1に示す光ディスク記録装置におけるベクトル量子化回路の簡単な構成例を示すブロック図である。
【図6】本発明の実施の形態に係る光ディスクを再生する光ディスク再生装置の全体構成例を示すブロック図である。
【図7】図6に示す光ディスク再生装置の光ピックアップによる光スポットと、光ディスク上に記録されたグルーブ及びディテクタの相対関係を示す説明図である。
【図8】図7に示すディテクタのうちディテクタAとDの出力を加算して得られるプラス周波数信号PHF信号の周波数特性を示す説明図である。
【図9】図7に示すディテクタのうちディテクタBとCの出力を加算して得られるマイナス周波数信号NHF信号の周波数特性を示す説明図である。
【図10】図6に示す光ディスク再生装置における復号回路の構成例を示すブロック図である。
【図11】従来の光ディスクにおける空間周波数特性(MTF)の一例を示す説明図である。
【図12】光学的な空間周波数特性(MTF)の一例を示す説明図である。
【符号の説明】
1……光ディスク記録装置、2……光ディスク、3……光ディスク再生装置、4……複素変調回路、5A、5B、108A、108B……ビット数変換回路、7……ベクトル量子化回路、10A、10B……情報源、14A、14B……光変調器、15……レーザ光源、106A、106B……復号回路、107……光ピックアップ。

Claims (9)

  1. ディジタル情報が同心円状またはスパイラル状のトラックを形成するように記録された光ディスク媒体であって、
    前記ディジタル情報は前記トラックの進行方向に対して前向きに反射または回折する光線と前記トラックの進行方向に対して後ろ向きに反射または回折する光線について、それぞれ独立した信号として記録されている、
    ことを特徴とする光ディスク媒体。
  2. 前記トラックには線状の凸凹よりなるグルーブが形成され、前記ディジタル情報は前記グルーブの深さが変化することにより記録されていることを特徴とする請求項1記載の光ディスク媒体。
  3. 前記グルーブの深さが少なくとも3段階以上に変調されていることを特徴とする請求項2記載の光ディスク媒体。
  4. 同心円状またはスパイラル状のトラックが形成された光ディスク媒体に光学的手段によりレーザ光線を集光させて再生用光スポットとして照射し、前記再生用光スポットが前記光ディスク媒体により反射または回折された前記レーザ光線を検出することにより前記光ディスク媒体上に記録されたディジタル情報を読み出す光ディスク再生装置において、
    前記トラックの進行方向に対して前向きに反射または回折された光線から前記ディジタル情報の一部を復号する第1の復号手段と、
    前記トラックの進行方向に対して後ろ向きに反射または回折された光線から前記ディジタル情報の一部を復号する第2の復号手段と、
    を備えたことを特徴とする光ディスク再生装置。
  5. 同心円状またはスパイラル状のトラックが形成された光ディスク媒体に光学的手段によりレーザ光線を集光させて再生用光スポットとして照射し、前記再生用光スポットが前記光ディスク媒体により反射または回折された前記レーザ光線を検出することにより前記光ディスク媒体上に記録されたディジタル情報を読み出す光ディスク再生方法において、
    前記トラックの進行方向に対して前向きに反射または回折された光線から前記ディジタル情報の一部を復号し、
    前記トラックの進行方向に対して後ろ向きに反射または回折された光線から前記ディジタル情報の別の部分を復号する、
    ことを特徴とする光ディスク再生方法。
  6. 円盤状の光ディスク媒体に光学的手段によりレーザ光線を集光させて照射し、同心円状またはスパイラル状のトラックにディジタル情報を記録する光ディスク記録装置において、
    前記ディジタル情報を正の周波数成分と負の周波数成分に分離した複素変調信号を作成する複素変調手段と、
    前記複素変調信号に基づいて前記レーザ光線を変調するレーザ変調手段と、
    を備えたことを特徴とする光ディスク記録装置。
  7. 前記複素変調手段は、前記ディジタル情報を第一のディジタル情報と第二のディジタル情報に分割するビット分割手段と、
    前記第一のディジタル情報を用いて所定の帯域に制限した第一の帯域制限信号を作成する第一の変調手段と、
    前記第二のディジタル情報を用いて所定の帯域に制限した第二の帯域制限信号を作成する第二の変調手段と、
    所定の周波数f1を基にして前記第一の帯域制限信号にEXP(j2πf1t)を乗算する複素乗算手段と、
    所定の周波数f1を基にして前記第二の帯域制限信号にEXP(−j2πf1t)を乗算する複素乗算手段とを含み、
    前記2つの複素乗算手段の出力を加算することにより、前記複素変調信号を作成するように構成された、
    ことを特徴とする請求項6記載の光ディスク記録装置。
  8. 前記変調手段は、前記複素変調信号を段階的なレベル変化信号に変換する量子化手段と、前記段階的なレベルの信号に応じて前記レーザ光線の出力を変化させる光変調手段とを含んで構成されることを特徴とする請求項6記載の光ディスク記録装置。
  9. 円盤状の光ディスク媒体に光学的手段によりレーザ光線を集光させて照射し、同心円状またはスパイラル状のトラックにディジタル情報を記録する光ディスク記録方法において、
    前記ディジタル情報を少なくとも2つに分割し、
    前記分割されたディジタル情報のそれぞれに応じて正の周波数成分と負の周波数成分を変化させることにより複素変調信号を作成し、
    前記複素変調信号に基づいて前記レーザ光線を変調することにより、前記光ディスク媒体に前記ディジタル情報を記録する、
    ことを特徴とする光ディスク記録方法。
JP2001126305A 2001-04-24 2001-04-24 光ディスク媒体、光ディスク記録/再生装置及び方法 Expired - Lifetime JP3719394B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001126305A JP3719394B2 (ja) 2001-04-24 2001-04-24 光ディスク媒体、光ディスク記録/再生装置及び方法
US10/297,928 US7095700B2 (en) 2001-04-24 2002-04-17 Optical disc medium, optical disc recording/reproducing apparatus and method
PCT/JP2002/003826 WO2002089122A1 (fr) 2001-04-24 2002-04-17 Support sous forme de disque optique, appareil et procede d'enregistrement / reproduction de disque optique
CNB2005100781168A CN100369123C (zh) 2001-04-24 2002-04-17 光盘媒体以及光盘记录/重放设备和方法
EP02720471A EP1394780B1 (en) 2001-04-24 2002-04-17 Optical disc medium, optical disc recording/reproducing apparatus and method
KR1020027017166A KR100880188B1 (ko) 2001-04-24 2002-04-17 광 디스크 매체, 광 디스크 기록/재생 장치 및 방법
CNB02801376XA CN1245712C (zh) 2001-04-24 2002-04-17 光盘媒体以及光盘记录/重放设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126305A JP3719394B2 (ja) 2001-04-24 2001-04-24 光ディスク媒体、光ディスク記録/再生装置及び方法

Publications (2)

Publication Number Publication Date
JP2002319146A JP2002319146A (ja) 2002-10-31
JP3719394B2 true JP3719394B2 (ja) 2005-11-24

Family

ID=18975365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126305A Expired - Lifetime JP3719394B2 (ja) 2001-04-24 2001-04-24 光ディスク媒体、光ディスク記録/再生装置及び方法

Country Status (6)

Country Link
US (1) US7095700B2 (ja)
EP (1) EP1394780B1 (ja)
JP (1) JP3719394B2 (ja)
KR (1) KR100880188B1 (ja)
CN (2) CN1245712C (ja)
WO (1) WO2002089122A1 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674070A (en) * 1984-08-11 1987-06-16 Victor Company Of Japan, Ltd. Optical type disc with V-shaped groove and optical type reproducing apparatus therefor
US5491678A (en) * 1990-05-25 1996-02-13 Hitachi, Ltd. Method and apparatus for recording/reproducing information data in a two-dimensional format
JPH07141757A (ja) * 1993-11-19 1995-06-02 Pioneer Electron Corp 情報記録方法及び情報記録再生装置
JPH07182657A (ja) * 1993-12-24 1995-07-21 Hitachi Ltd 光情報記録再生方法
JPH08212598A (ja) 1995-02-01 1996-08-20 Pioneer Electron Corp 光ディスク及び光ディスク再生装置
US5646396A (en) * 1995-05-19 1997-07-08 Richard; Jenkin A. Optical position system
US5910940A (en) 1996-10-08 1999-06-08 Polaroid Corporation Storage medium having a layer of micro-optical lenses each lens generating an evanescent field
JP2000123364A (ja) * 1998-10-12 2000-04-28 Teruhiko Ichihara 光ディスク記録再生構造、構成
JP3488124B2 (ja) * 1999-03-17 2004-01-19 富士通株式会社 光情報記憶媒体
JP3868178B2 (ja) * 1999-06-30 2007-01-17 シャープ株式会社 光記録媒体、光記録情報の再生方法並びに再生装置
JP4578656B2 (ja) * 1999-09-16 2010-11-10 三星電子株式会社 光記録再生機器用エラー信号検出装置

Also Published As

Publication number Publication date
EP1394780A1 (en) 2004-03-03
EP1394780B1 (en) 2011-06-08
US7095700B2 (en) 2006-08-22
CN1245712C (zh) 2006-03-15
CN1722247A (zh) 2006-01-18
CN1462430A (zh) 2003-12-17
CN100369123C (zh) 2008-02-13
KR100880188B1 (ko) 2009-01-28
EP1394780A4 (en) 2005-11-16
US20040081068A1 (en) 2004-04-29
KR20040002381A (ko) 2004-01-07
WO2002089122A1 (fr) 2002-11-07
JP2002319146A (ja) 2002-10-31

Similar Documents

Publication Publication Date Title
US7903522B2 (en) Mastering device, disc manufacturing method, disc-shaped recording medium, disc reproduction device, and disc reproduction method
JP2927163B2 (ja) 情報信号記録方法及び情報信号記録装置
KR100895736B1 (ko) 디스크 매체에 어드레스 정보를 기록하는 기록 장치, 기록 방법, 기록 매체, 디스크 매체의 어드레스를 재생하는 재생장치, 재생 방법, 기록 매체 및 디스크 매체
JP2001256731A (ja) 情報記録媒体、情報再生装置、情報再生方法、情報記録装置及び情報記録方法
JP3719394B2 (ja) 光ディスク媒体、光ディスク記録/再生装置及び方法
JPH08235593A (ja) 光記録媒体並びにその記録・再生方法及び装置
JP4411798B2 (ja) 記録再生装置および方法、記録媒体、並びにプログラム
JP2003123264A (ja) 光ディスク媒体、光ディスク記録再生装置及び方法
JP5041086B2 (ja) 記録装置、再生装置、およびディスク媒体
JP3636180B2 (ja) 情報信号記録方法
JP3636172B2 (ja) 情報信号記録方法
JP3636170B2 (ja) 情報信号記録方法
JP3636168B2 (ja) 情報信号記録方法
JP3636178B2 (ja) 情報信号記録方法
JP3636176B2 (ja) 情報信号記録方法
JP3636174B2 (ja) 情報信号記録方法
JP2000195106A (ja) 光ディスク、光ディスク製造装置、光ディスク製造方法、光ディスク記録再生装置及び光ディスク記録再生方法
JP2000348350A (ja) 光ディスク装置、光ディスクの再生方法及び光ディスク
JP2005056573A (ja) 情報信号記録方法
JP2001256647A (ja) 情報記録装置、情報記録媒体及び情報再生装置
JP2002197671A (ja) 光記録媒体、光記録媒体の記録方法及び記録装置、光記録媒体の再生方法及び再生装置
JPH11345430A (ja) 光情報記録媒体記録方法及び記録装置
JP2005174465A (ja) マスタリング装置、ディスク製造方法、ディスク状記録媒体、ディスク再生装置、ディスク再生方法
JPH0845110A (ja) 光メモリ及び光メモリ再生装置
JPH11250575A (ja) 情報信号記録方法、情報信号記録装置及び情報信号記録媒体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7