JP3713498B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP3713498B2
JP3713498B2 JP2003092263A JP2003092263A JP3713498B2 JP 3713498 B2 JP3713498 B2 JP 3713498B2 JP 2003092263 A JP2003092263 A JP 2003092263A JP 2003092263 A JP2003092263 A JP 2003092263A JP 3713498 B2 JP3713498 B2 JP 3713498B2
Authority
JP
Japan
Prior art keywords
insulating film
trench
gate insulating
semiconductor layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003092263A
Other languages
English (en)
Other versions
JP2004303802A (ja
Inventor
昇 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003092263A priority Critical patent/JP3713498B2/ja
Priority to US10/714,868 priority patent/US7049657B2/en
Priority to CNA2004100088625A priority patent/CN1534795A/zh
Publication of JP2004303802A publication Critical patent/JP2004303802A/ja
Application granted granted Critical
Publication of JP3713498B2 publication Critical patent/JP3713498B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法に関し、特に、トレンチゲート(trench gate)型の構造を有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
トレンチゲート型のMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などの半導体装置は、電力スイッチングを始めとする各種の分野に利用されている。一例を挙げると、小型のトレンチゲート型MOSFETは、パソコンの内部において電源電圧(例えば、17ボルト)を、CPUや各種ディスクドライブなどの電源レベル(例えば、1.7ボルト)に降圧させるために、動作周波数500kHz程度の高速スイッチング素子として用いられている。
【0003】
近年の省エネルギー化などの要請から、これらの半導体装置に対しても、高効率化が要求されている。このためには、素子の導通損失の低減すなわち「オン抵抗(Ron)」の低減が有効である。このために、セルの微細化によるオン抵抗の低減が図られてきた。特に、素子構造に「トレンチゲート構造」を採用することで、チャネル幅を稼ぎ、大幅な高密度化が実現できるようになる。
【0004】
図11は、本発明者が本発明に至る過程で検討した半導体装置を表す模式図である。
すなわち、同図は、トレンチゲート型のnチャネル型MOSFETのゲート付近の断面構造を表す。n型基板7の上には、n型エピタキシャル領域6とp型ベース領域5がこの順に積層され、その表面からエピタキシャル層6に至るトレンチが形成されている。トレンチの中には、ゲート絶縁膜(ゲート酸化膜)3と埋め込みゲート電極1とからなる埋め込みゲートが設けられている。埋め込みゲートの上には層間絶縁膜4が適宜設けられ、またトレンチの上部周辺にはn型ソース領域2Aと、p型ソース領域2Bがそれぞれ形成されている。また、基板7の裏面側には、ドレイン電極8が適宜設けられている。
【0005】
このMOSFETは、ゲート電極1に所定のバイアス電圧を印加することにより、埋め込みトレンチの周囲にチャネル領域を形成して、ソース領域2Aとドレイン領域との間を「オン」状態とするスイッチング動作をさせることができる。
【0006】
さて、このような半導体装置において、動作効率を改善するためには、「オン抵抗」の低減とともに、スイッチング損失(Qsw)を低減する必要がある。スイッチング損失を低減させるためには、素子の「寄生容量」を低減させて動作速度を上げることが重要である。
【0007】
例えば、複数のスイッチング素子を組み合わせてインバータ制御などを行う場合、素子の動作速度が遅いと、整流アームの貫通電流を防ぐために、アームを構成するスイッチング素子の全てを「オフ」となる「デッドタイム」を長く設定する必要があり、損失が生ずる。これに対して、スイッチング素子の寄生容量を低下させて動作速度が速くなれば、「デッドタイム」を短縮することができ、損失を減らすことができる。
【0008】
図11に例示した半導体装置の寄生容量は、いくつかの成分に分けることができる。
まず、ドレイン・ゲート間容量(Cgd)を挙げることができる。これは、エピタキシャル領域6とゲート酸化膜3とが接する部分において生ずる。次に、ドレイン・ソース間容量(Cds)を挙げることができる。これは、エピタキシャル領域6とベース領域5とが接するpn接合部において生ずる。また、ゲート・ソース間容量(Cgs)を挙げることができる。これは、ゲート酸化膜3とソース領域2A及び、ゲート酸化膜3とベース領域5とが接する部分において生ずる。
【0009】
これらの容量成分は、いずれも半導体装置のスイッチング動作に損失を与えるため、容量を低下させる必要がある。そして、これら容量成分の中でも、特にドレイン・ゲート間容量(Cgd)を低下させることが容量の低減のために効果的である。
【0010】
これら寄生容量を低下させる方法としては、接触部の面積を小さくする方法や、各半導体領域のキャリア濃度を下げることにより空乏化を促進させる方法なども考えられる。しかし、これらの方法による場合、半導体装置の「オン抵抗」と、「寄生容量」あるいは「耐圧」とがトレードオフの関係となり、総合的な性能の改良が困難になるという問題があった。
【0011】
これに対して、特許文献1及び2には、トレンチの底部においてゲート酸化膜の厚みを厚くすることによりCgdを低下させることが可能な構造が開示されている。
【0012】
【特許文献1】
特開2002−299619号公報
【特許文献2】
特許第2917922号公報
【0013】
【発明が解決しようとする課題】
しかし、これら特許文献に開示された構造においては、オン抵抗(Ron)の低減とスイッチング損失(Qsw)の低減とを両立させることが困難であるという問題があった。
【0014】
図12は、特許文献1及び2に開示されている構造のトレンチ底部を模式的に表した断面図である。すなわち、同図(a)は、特許文献1に開示された構造、同図(b)は、特許文献2に開示された構造を表す。
【0015】
図12(a)に表した構造の場合、ゲート酸化膜3は、膜厚が薄いゲート酸化膜3aと膜厚が厚いゲート酸化膜3bとを有する。そして、p型ベース領域5とエピタキシャル領域6との境界B1は、ゲート酸化膜3の薄いゲート酸化膜3aと厚いゲート酸化膜3bとの境界B2よりも下側にずれている。つまり、厚いゲート酸化膜3bは、p型ベース領域5とn型エピタキシャル領域6との境界B1よりも上側、すなわちp型ベース領域5に張り出している。p型ベース領域5に隣接するゲート酸化膜3の厚みが厚くなると、ゲート電圧によるチャネル領域の形成が不十分となり、オン抵抗(Ron)が上昇する。図12(a)に表した構造の場合、チャネル領域のうちで領域5aの部分においてこのような問題が生ずる。
【0016】
一方、図12(b)に表した構造の場合は、逆に、境界B1は、境界B2よりも上側にずれている。つまり、ゲート酸化膜3の薄いゲート酸化膜3aがn型エピタキシャル層に張り出している。すると、このオーバーラップ部6aにおいては、ドレイン・ゲート間容量(Cgd)が増大するため、スイッチング損失(Qsw)が増加するという問題が生ずる。
【0017】
このように、境界B1とB2との間に「ずれ」が生ずると、オン抵抗の増大またはスイッチング損失(Qsw)の増加が生ずる。
つまり、理想的には、図13に表した如く、ゲート酸化膜3の薄いゲート酸化膜3aと厚いゲート酸化膜3bとの境界は、ベース領域5とエピタキシャル領域6との境界と一致させることが望ましい。
【0018】
しかし、このような理想的な構造を安定的に製造することは、現実的には非常に困難である。何故ならば、p型ベース領域5は、エピタキシャル層の表面からp型不純物を拡散させることにより形成されるため、その形成深さには、ある程度の「ばらつき」が生ずる。一方、トレンチの深さについても、RIE(reactive ion etching)などのエッチングに際して、そのプロセス時間によって制御するため、ある程度の「ばらつき」が生じてしまうことは避けられない。
【0019】
そのため、トレンチの上端(または、ベース領域5の表面)を基準にとっても、またはトレンチの底を基準にとっても、図13のような境界B1とB2との理想的な位置関係を再現性良く実現することは困難である。
【0020】
以上詳述したように、従来の技術によれば、トレンチゲート型の半導体装置において、低いオン抵抗(Ron)とスイッチング損失(Qsw)とを両立させた構造を安定的に得ることは困難であった。
【0021】
本発明は、かかる課題の認識に基づいてなされたものであり、その目的は、オン抵抗とスイッチング損失の低減を両立でき、しかも安定的に量産が可能なトレンチゲート型の半導体装置及びその製造方法を提供することにある。
【0022】
【課題を解決するための手段】
上記目的を達成するために、本発明の一態様によれば、
第1導電型の第1の半導体層と、前記第1の半導体層の上に設けられた第2導電型の第2の半導体層と、前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、前記第1の半導体層の上面よりも下方で前記トレンチの内壁面に設けられた厚いゲート絶縁膜と、前記厚いゲート絶縁膜の上側で前記トレンチの内壁面に設けられた薄いゲート絶縁膜と、前記ゲート絶縁膜を介して前記トレンチ内を充填するゲート電極と、前記トレンチに隣接して選択的に前記第2の半導体層の下から前記第1の半導体層側へ突出するように設けられ、前記ゲート絶縁膜に接する部分における下端が、前記厚いゲート絶縁膜と前記薄いゲート絶縁膜との境界と略同一レベルである第2導電型の半導体領域と、を備えたことを特徴とする半導体装置が提供される。
【0023】
また、本発明の他の一態様によれば、
第1導電型の第1の半導体層と、前記第1の半導体層の上に設けられた第2導電型の第2の半導体層と、前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、前記第1の半導体層の上面よりも下方で前記トレンチの内壁面に設けられた厚いゲート絶縁膜と、前記厚いゲート絶縁膜の上側で前記トレンチの内壁面に設けられた薄いゲート絶縁膜と、前記ゲート絶縁膜を介して前記トレンチ内を充填するゲート電極と、前記トレンチに隣接して前記第1の半導体層における前記第2の半導体層側の一部を選択的に第2導電型に反転させることにより形成され、前記ゲート絶縁膜に接する部分における下端が、前記厚いゲート絶縁膜と前記薄いゲート絶縁膜との境界と略同一レベルである第2導電型の半導体領域と、を備えたことを特徴とする半導体装置が提供される。
【0024】
また、本発明の他の一態様によれば、
第1導電型の第1の半導体層と、その上に設けられた第2導電型の第2の半導体層と、前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、前記第1の半導体層の上面よりも下方で前記トレンチの内壁に設けられた厚いゲート絶縁膜と、を形成する工程と、前記厚いゲート絶縁膜よりも上側で前記トレンチの内壁に薄いゲート絶縁膜を形成する工程と、前記第1の半導体層のうちの前記厚いゲート絶縁膜よりも上側で前記トレンチに隣接した部分に第2導電型の不純物を導入することにより、前記ゲート絶縁膜に接する部分における下端が、前記厚いゲート絶縁膜と前記薄いゲート絶縁膜との境界と略同一レベルである第2導電型の半導体領域を形成する工程と、前記ゲート絶縁膜を介して前記トレンチ内をゲート電極により充填する工程と、を備えたことを特徴とする半導体装置の製造方法が提供される。
また、本発明の他の一態様によれば、
第第1導電型の第1の半導体層と、その上に設けられた第2導電型の第2の半導体層と、前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、前記第1の半導体層の上面よりも下方で前記トレンチの内壁に設けられた厚いゲート絶縁膜と、を形成する工程と、前記第1の半導体層のうちの前記厚いゲート絶縁膜よりも上側で前記トレンチに隣接した部分に第2導電型の不純物を導入することにより第2導電型の半導体領域を形成する工程と、前記厚いゲート絶縁膜よりも上側で前記トレンチの内壁に薄いゲート絶縁膜を形成する工程と、前記ゲート絶縁膜を介して前記トレンチ内をゲート電極により充填する工程と、を備え、前記厚いゲート絶縁膜をマスクとして前記トレンチから前記第1の半導体層に前記第2導電型の不純物を導入することにより前記第2導電型の半導体領域を形成することを特徴とする半導体装置の製造方法が提供される。
【0025】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
【0026】
(第1の実施の形態)
図1は、本発明の第1の実施の形態にかかる半導体装置の断面構造を例示する模式図である。すなわち、同図は、トレンチゲート型のnチャネル型MOSFETのゲート付近の要部断面構造を表す。
また、図2は、この半導体装置の電極構造を例示する透視平面図である。
【0027】
すなわち、n型基板7の上には、n型エピタキシャル領域6とp型ベース領域5がこの順に積層され、その表面からエピタキシャル層6に至るトレンチが形成されている。トレンチの中には、ゲート酸化膜3と埋め込みゲート電極1とからなる埋め込みゲートが設けられている。埋め込みゲートの上には層間絶縁膜4が適宜設けられ、またトレンチの上部周辺にはn型ソース領域2Aと、p型ソース領域2Bがそれぞれ形成されている。また、基板7の裏面側には、ドレイン電極8が適宜設けられている。
【0028】
図2を参照しつつ、このMOSFETの平面構造について説明すると、図1において互いに並行して形成された複数の埋め込みゲート電極1は、これら埋め込みゲート電極1と略直交して形成されたゲート電極部GEで連結され、さらにゲート電極部GEに対するゲートコンタクトGCにより、図示しないゲート配線に接続されている。また、図示しない層間絶縁膜を介したソースコンタクトSCにより、ソース領域2A、2Bに図示しないソース配線が接続される。これらゲート配線とソース配線とは、図示しない層間絶縁膜により絶縁されている。
【0029】
本実施形態においては、ゲート酸化膜3は、厚みが薄いゲート酸化膜3aと厚いゲート酸化膜3bとを有する。そして、これらの境界付近に隣接して半導体層中に選択的にp型化領域9が設けられている。
【0030】
図3は、p型化領域9の付近を拡大した要部断面図である。p型ベース領域5とn型エピタキシャル領域6との境界B1は、p型化領域9の領域外においては、ゲート酸化膜3の薄いゲート酸化膜3aと厚いゲート酸化膜3bとの境界B2よりも、距離dだけ上側にずれている。そして、p型化領域9は、これらの段差をつなげるように略傾斜状に形成され、p型ベース領域5の一部として作用する。つまり、p型ベース領域5と同様に、ゲート電圧の印加によってp型化領域9にもチャネルを形成することができる。
【0031】
本実施形態によれば、まず、ゲート酸化膜3に厚いゲート酸化膜3bを設けることにより、ゲート電極1とエピタキシャル領域6との間の寄生容量を低下させることができる。つまり、ドレイン・ゲート間容量(Cgd)を低下させることにより、スイッチング損失(Qsw)を低減できる。例えば、ゲート酸化膜3を厚膜化しない場合に比べて、ドレイン・ゲート間容量をおよそ40パーセント程度、低減することも可能である。
【0032】
また、本実施形態においては、厚いゲート酸化膜3bは、トレンチの幅の半分よりも小なる厚みを有する。このため、トレンチの底部には、厚いゲート酸化膜3bに囲まれた凹部が形成され、ゲート電極1が、この凹部にも充填されている。このように、厚いゲート酸化膜3bの内側にもゲート電極1を充填することにより、いわゆる「蓄積層効果」が得られる。すなわち、エピタキシャル領域6に隣接して形成されたトレンチに形成された厚い酸化膜3bを介してゲート電極1が存在すると、ゲート電極1に正のバイアスを印加した時に、エピタキシャル領域6の電子キャリアがトレンチの側壁の近傍に蓄積する。このため、図13に例示した如くトレンチ底部に平坦な厚い酸化膜を形成した構造と比べて、オン抵抗(Ron)の増大を抑制できるという効果が得られる。
【0033】
またさらに、p型化領域9を設けることにより、図12(a)及び(b)に関して前述したような、境界B1とB2との「ずれ」を解消できる。つまり、p型化領域9を設けることによって、境界B1を下方に傾斜させゲート酸化膜3の近くで境界B2とほぼ一致させることができる。
【0034】
このようにして境界B1とB2とを略一致させれば、ゲート酸化膜3の薄いゲート酸化膜3aがエピタキシャル領域6のほうに過度に張り出すこともなく、その逆に、ゲート酸化膜3の厚いゲート酸化膜3bがp型領域5のほうに過度に張り出すこともなくなる。その結果として、オン抵抗(Ron)の増大を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減することができる。
【0035】
このp型化領域9は、後に詳述するように、トレンチの内側からn型エピタキシャル領域6の一部にp型不純物を導入するか、または、ベース領域5の表面側からn型エピタキシャル領域6の一部にp型不純物を打ち込むことにより形成することができる。そして、特に、トレンチの内側から不純物を導入した場合、ゲート酸化膜3の厚みの分布に応じて、セルフアライン(自己整合)的に形成することも可能となる。
【0036】
ここで、各領域のキャリア濃度について説明すると、p型ベース領域5の濃度は、概ね1017〜1018/cmであり、n型エピタキシャル領域6の濃度は概ね1016/cmのオーダーである。これらに対して、p型化領域9の濃度は、これらの中間的な濃度とすることが望ましい。つまり、p型化領域9のキャリア濃度は、概ね1017/cm程度とすることができる。p型化領域9のキャリア濃度をこの程度に設定すると、エピタキシャル領域6にp型不純物を導入することによる導電型の反転を容易に起こすことができる。また同時に、p型ベース領域5のキャリア濃度を過度に上げすぎる心配もなくなる。
【0037】
次に、本実施形態の半導体装置の製造方法について説明する。
【0038】
図4は、本実施形態の半導体装置の第1の製造方法の要部を表す工程断面図である。
まず、同図(a)に表したように、n−型エピタキシャル領域6を有する半導体基板7の表面にp型不純物を拡散させてp型ベース領域5を形成し、さらにSiO2からなるマスクM1を被着パターニングする。そして、このマスクM1の開口部をエッチングして、エピタキシャル領域6まで突き抜ける第1のトレンチTを形成する。トレンチTの深さは例えば1マイクロメータで、その幅(図4における左右方向の幅)は例えば500ナノメータ程度とすることができる。
【0039】
次に、マスクM1を除去した後、図4(b)に表したように、トレンチTの内壁に厚い酸化膜3bを形成する。酸化膜3bの厚みは、例えば、200ナノメータ程度とすることができる。その後、レジストRを充填し、ウェーハ表面からアッシングなどの方法によりレジストRを後退させる。そして、図示したように、レジストRの上面がp型ベース領域5よりも下側になるように調節する。
【0040】
次に、図4(c)に表したように、レジストRをマスクとして用い、酸化膜3bをエッチングする。つまり、レジストRとほぼ同じ深さまで酸化膜3bを選択的に除去する。さらに、レジストR及び選択的にトレンチ底部に残した酸化膜3bをマスクとして用い、トレンチTの側面にp型不純物を導入することによりp型化領域9を形成する。p型不純物の導入方法としては、例えば、気相拡散法や、斜め方向からのイオン注入法を用いることができる。またこの際に、p型不純物の導入量としては、前述したようにn−型エピタキシャル領域6の導電型がp型に反転し、且つ、p型ベース領域5のキャリア濃度があまり上昇しない範囲とすることが望ましい。具体的には、p型化領域9のキャリア濃度が、n−型エピタキシャル領域6よりも高く、p型ベース領域5よりも低い濃度となるようにp型不純物を導入することが望ましい。
【0041】
その後、図4(d)に表したように、レジストRを除去してトレンチTの上側に薄いゲート酸化膜3aを形成し、残余の空間にゲート電極1を充填する。薄いゲート酸化膜3aの厚みは、例えば、50ナノメータ程度とすることができる。また、ゲート電極1としては、例えば、ポリ(多結晶)シリコンを用いることができる。
【0042】
さらに、p型ベース領域5の表面に、n型ソース領域2を形成し、図示しない層間絶縁膜やドレイン電極などを形成すると、本実施形態の半導体装置の要部が完成する。
【0043】
以上説明した本実施形態の製造方法によれば、図4(c)に関して前述したように、厚い酸化膜3bをマスクとしてトレンチ内壁面にp型不純物を導入することにより、p型化領域9をセルフアライン的に形成することができる。このようにして得られた構造においては、図3に例示したように、p型化領域9(p型ベース領域5の一部として作用する)とn型エピタキシャル領域6との境界B1と、ゲート酸化膜3aと3bとの境界B2と、を略一致させることができる。その結果として、オン抵抗(Ron)の増加を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減することができる。
【0044】
なお、本実施形態においては、図4(b)に関して前述したように、レジストRの上面をp型ベース領域5よりも下になるように形成することが望ましい。この場合に、両者の位置関係は精密に制御する必要はない。本実施形態においては、p型化領域9をセルフアライン的に形成できるからである。
【0045】
レジストRの上面と、p型ベース領域5との位置関係を左右するプロセス要因としては、例えば、ベース領域5の拡散深さやトレンチTのエッチング深さ、レジストRを後退させる際のエッチング量などの「ばらつき」を挙げることができる。
【0046】
しかし、本発明者の検討の結果によれば、例えば、レジストRの上面が、p型ベース領域5よりも200ナノメータ程度低くなるようにプロセス条件を設定しておけば、これらプロセス条件に「ばらつき」が生じた場合でも、常にレジストRの上面をベース領域5よりも下側に形成することができた。そして、p型化領域9をセルフアライン的に形成することにより、本実施形態の半導体装置を極めて安定的に量産することが可能となる。
【0047】
次に、本実施形態の半導体装置の製造方法の変型例について説明する。
【0048】
図5は、本実施形態の半導体装置の第2の製造方法の要部を表す工程断面図である。
同図(a)及び(b)は、図4(a)及び(b)に関して前述した工程と同様であるので説明を省略する。
【0049】
これら工程の後、本具体例においては、図5(c)に表したように、レジストRをマスクとして厚い酸化膜3bをエッチングする。
【0050】
しかる後に、図5(d)に表したように、レジストRを除去してトレンチTの上側に薄いゲート酸化膜3aを形成し、残余の空間にゲート電極1を充填する。そして、p型ベース領域5の表面にマスクM2を形成し、その開口を介してp型不純物を導入することにより、p型化領域9を形成する。この場合には、p型不純物をウェーハ表面から深く導入する必要があるので、高エネルギのイオン注入法などを用いることが望ましい。
【0051】
しかる後に、マスクM2を除去し、p型ベース領域5の表面に、n型ソース領域2を形成し、図示しない層間絶縁膜やドレイン電極などを形成すると、本実施形態の半導体装置の要部が完成する。
【0052】
以上説明した本実施形態の第2の製造方法によれば、ウェーハ表面からp型不純物を導入することによってp型化領域9を形成し、オン抵抗(Ron)の増加を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減することが可能である。
【0053】
次に、本実施形態の半導体装置の製造方法のさらなる変型例について説明する。
【0054】
図6は、本実施形態の半導体装置の第3の製造方法の要部を表す工程断面図である。
【0055】
本変型例においては、まず図6(a)に表したように、基板1の上にn−型エピタキシャル領域6を形成し、第1のトレンチT1を開口する。そして、トレンチT1の内壁に厚い酸化膜3bを、トレンチT1の幅の半分よりも小なる厚みで形成する。
【0056】
しかる後に、図6(b)に表したように、p型ベース領域5をエピタキシャル成長させる。そして、第1のトレンチT1の上に、これに連続するように第2のトレンチT2を開口する。そしてさらに、第2のトレンチT2の底に露出している厚い酸化膜3bをエッチングし、その上面を後退させる。このエッチング・プロセスにより、酸化膜3bの上面をp型ベース領域5よりも下側に後退させることができる。
【0057】
次に、図6(c)に表したように、トレンチT1、T2の内壁にp型不純物を導入する。この工程は、図4(c)に関して前述したものと同様に実施することができる。
【0058】
そして図6(d)に表したように、トレンチT1、T2の内壁に薄いゲート酸化膜3aを形成し、残余の空間にゲート電極1を充填する。薄いゲート酸化膜3aの厚みは、例えば、50ナノメータ程度とすることができる。また、ゲート電極1としては、例えば、ポリ(多結晶)シリコンを用いることができる。
【0059】
さらに、p型ベース領域5の表面に、n型ソース領域2を形成し、図示しない層間絶縁膜やドレイン電極などを形成すると、本実施形態の半導体装置の要部が完成する。
【0060】
以上説明した本実施形態の第3の製造方法によれば、厚い酸化膜3bの上面を図6(b)に関して前述したように、後退させることにより、p型ベース領域5よりも下側に確実に形成することができる。しかる後に、p型化領域9をセルフアライン的に形成することによって、オン抵抗(Ron)の増加を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減することができる。
【0061】
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。
【0062】
図7は、本発明の第2の実施の形態にかかる半導体装置の断面構造を例示する模式図である。同図については、図1乃至図6に関して前述したものと同様の要素には同一の符号を付して詳細な説明は省略する。
【0063】
本実施形態においては、ゲート酸化膜3のうちの厚いゲート酸化膜3bは、トレンチの底部を略平坦に埋め尽くすように形成されている。つまり、図1に関して前述した第1の実施の形態の構造と比較した場合、厚いゲート酸化膜3bの膜厚をさらに厚く形成し、このゲート酸化膜3bがトレンチの幅の半分よりも大なる厚みを有するように形成する。このようにすると、図7に表したように、厚いゲート酸化膜3bは、トレンチの底部を略平坦に埋め尽くすように形成される。
【0064】
このようにしても、ゲート電極1とエピタキシャル領域6との間の寄生容量を低下させることができる。つまり、ドレイン・ゲート間容量(Cgd)を低下させることにより、スイッチング損失(Qsw)を低減できる。例えば、ゲート酸化膜3を厚膜化しない場合に比べて、ドレイン・ゲート間容量をおよそ40パーセント以上も低減することができる。
【0065】
また、本実施形態においても、p型化領域9を設けることにより、図12(a)及び(b)に関して前述したような、境界B1とB2との「ずれ」を解消できる。つまり、p型化領域9を設けることによって、境界B1を下方に傾斜させゲート酸化膜3の近くで境界B2とほぼ一致させることができる。
【0066】
このようにして境界B1とB2とを略一致させることにより、オン抵抗(Ron)の増大を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減することができる。そして、後に詳述するように、このp型化領域9も、セルフアライン的に形成することができる。
【0067】
以下、本実施形態の半導体装置の製造方法について説明する。
【0068】
図8は、本実施形態の半導体装置の第1の製造方法を表す工程断面図である。
【0069】
本具体例においてはまず、図8(a)に表したように、基板7の上にn−型エピタキシャル領域6、p型ベース領域5を形成する。そして、p型ベース領域5を貫通してエピタキシャル領域6に至るトレンチTを形成する。さらに、トレンチTの両側壁に、窒化シリコン(SiNx)からなる被覆層Cを形成する。
【0070】
次に、図8(b)に表したように、被覆層Cにより覆われていないベース領域5の表面とトレンチTの底部を酸化させ、厚い酸化膜3bを形成する。酸化膜3bの形成方法としては、いわゆる熱酸化法でもよく、あるいは酸素の中性粒子の注入法によっても厚い酸化膜3bを形成することが可能である。また、この工程においては、トレンチTの深さをエピタキシャル領域6に至るように適宜調節すれば、厚い酸化膜3bの上面をp型ベース領域5よりも下側に設けることは容易である。
【0071】
しかる後に、図8(c)に表したように、被覆層Cを除去し、トレンチTの側壁にp型不純物を導入してp型化領域9を形成する。この際も、厚い酸化膜3bがマスクとして作用し、p型化領域9をセルフアライン的に形成することができる。
【0072】
この後、図8(d)に表したように、トレンチTの側壁に薄い酸化膜3aを形成し、残余の空間をゲート電極1により埋め込む。さらに、p型ベース領域5の表面の厚い酸化膜3bを除去しn型ソース領域2などを適宜形成することにより、本実施形態の半導体装置の要部が完成する。
【0073】
以上説明したように、本実施形態の製造方法によれば、トレンチの底部を略平坦に埋め尽くす厚い酸化膜3bを形成することが容易である。そして、p型化領域9を、セルフアライン的に形成することにより、オン抵抗(Ron)の増大を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減させた半導体装置を安定的に量産することができる。
【0074】
次に、本実施形態の半導体装置の製造方法の変型例について説明する。
【0075】
図9は、本実施形態の半導体装置の第2の製造方法の要部を表す工程断面図である。
【0076】
本変型例においては、まず図9(a)に表したように、基板1の上にn−型エピタキシャル領域6を形成し、第1のトレンチT1を開口する。そして、トレンチT1の内部に厚い酸化膜3bをトレンチT1の幅の半分よりも大なる厚みで形成し充填する。
【0077】
しかる後に、図9(b)に表したように、p型ベース領域5をエピタキシャル成長させる。そして、第1のトレンチT1の上に、これに連続するように第2のトレンチT2を開口する。そしてさらに、第2のトレンチT2の底に露出している厚い酸化膜3bをエッチングし、その上面を後退させる。このエッチング・プロセスにより、酸化膜3bの上面をp型ベース領域5よりも下側に後退させることができる。
【0078】
次に、図9(c)に表したように、トレンチT1、T2の内壁にp型不純物を導入する。この工程は、図4(c)に関して前述したものと同様に実施することができる。
【0079】
そして図9(d)に表したように、トレンチT1、T2の内壁に薄いゲート酸化膜3aを形成し、残余の空間にゲート電極1を充填する。さらに、p型ベース領域5の表面に、n型ソース領域2を形成し、図示しない層間絶縁膜やドレイン電極などを形成すると、本実施形態の半導体装置の要部が完成する。
【0080】
以上説明した本実施形態の第2の製造方法においては、厚い酸化膜3bの上面を図9(b)に関して前述したように、後退させることにより、p型ベース領域5よりも下側に確実に形成することができる。しかる後に、p型化領域9をセルフアライン的に形成することによって、オン抵抗(Ron)の増加を抑制しつつ、ドレイン・ゲート間容量(Cgd)を確実に低下させ、スイッチング損失(Qsw)を低減することができる。
【0081】
以上、具体例を参照しつつ本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
【0082】
例えば、本発明は、いわゆる「トレンチ型ゲート」を有する各種の半導体装置に適用して同様の作用効果が得られ、これらも本発明の範囲に包含される。
【0083】
また、以上説明した半導体装置の各要素の材料、導電型、キャリア濃度、不純物、厚み、配置関係などに関して当業者が適宜設計変更を加えたものも、本発明の特徴を有する限りにおいて本発明の範囲に包含される。
【0084】
さらにまた、製造方法についても同様である。すなわち、p型化領域9をセルフアライン的に形成するプロセスとして、例えば、図4(c)には、トレンチの内壁に半導体層を露出させて行う具体例を例示したが本発明はこれには限定されない。
【0085】
図10は、p型化領域9をセルフアライン的に形成する他の方法を表す要部断面図である。すなわち、薄い酸化膜3aと厚い酸化膜3bとを形成した後に、これらの上からp型不純物を導入する。ここでは、例えば、薄い酸化膜3aとして、厚みが50ナノメータ程度の酸化シリコン、厚い酸化膜3bとして厚みが200ナノメータ程度の酸化シリコンを用いることができる。このように、両者の厚みがある程度異なる場合には、p型不純物IMが、薄い酸化膜3aを透過しても、厚い酸化膜3bは殆ど透過しないように導入することが容易である。つまり、厚い酸化膜3bはp型不純物IMに対するマスクとして作用する。
【0086】
この場合、図10においてハッチにより表した領域にp型不純物が導入され、クロスハッチにより表した部分がp型化領域9となる。その結果として、p型化領域9をセルフアライン的に形成することができる。
【0087】
その他、上述した半導体装置とその製造方法の構成については、当業者が公知の範囲から適宜選択したものも、本発明の要旨を含む限り本発明の範囲に包含される。
【0088】
【発明の効果】
以上詳述したように、本発明によれば、オン抵抗とスイッチング損失の低減を両立でき、しかも安定的に量産が可能なトレンチゲート型の半導体装置及びその製造方法を提供することができ、産業上のメリットは多大である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかる半導体装置の断面構造を例示する模式図である。
【図2】図1の半導体装置の電極構造を例示する透視平面図である。
【図3】p型化領域9の付近を拡大した要部断面図である。
【図4】第1実施形態の半導体装置の第1の製造方法の要部を表す工程断面図である。
【図5】第1実施形態の半導体装置の第2の製造方法の要部を表す工程断面図である。
【図6】第1実施形態の半導体装置の第3の製造方法の要部を表す工程断面図である。
【図7】本発明の第2の実施の形態にかかる半導体装置の断面構造を例示する模式図である。
【図8】第2実施形態の半導体装置の第1の製造方法を表す工程断面図である。
【図9】第2実施形態の半導体装置の第2の製造方法の要部を表す工程断面図である。
【図10】p型化領域9をセルフアライン的に形成する他の方法を表す要部断面図である。
【図11】本発明者が本発明に至る過程で検討した半導体装置を表す模式図である。
【図12】特許文献1及び2に開示されている構造のトレンチ底部を模式的に表した断面図である。
【図13】ゲート酸化膜3の薄いゲート酸化膜3aと厚いゲート酸化膜3bとの境界を、ベース領域5とエピタキシャル領域6との境界と一致させた構造を表す断面図である。
【符号の説明】
1 ゲート電極
2A n型ソース領域
2B p型ソース領域
3 ゲート酸化膜
3a 薄いゲート酸化膜
3b 厚いゲート酸化膜
4 層間絶縁膜
5 p型ベース領域
6 n型エピタキシャル領域
6a オーバーラップ部
7 n型基板
8 ドレイン電極
9 p型化領域
B1、B2 境界
C 被覆層
IM p型不純物
M1、M2 マスク
R レジスト
T、T1、T2 トレンチ

Claims (10)

  1. 第1導電型の第1の半導体層と、
    前記第1の半導体層の上に設けられた第2導電型の第2の半導体層と、
    前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、
    前記第1の半導体層の上面よりも下方で前記トレンチの内壁面に設けられた厚いゲート絶縁膜と、
    前記厚いゲート絶縁膜の上側で前記トレンチの内壁面に設けられた薄いゲート絶縁膜と、
    前記ゲート絶縁膜を介して前記トレンチ内を充填するゲート電極と、
    前記トレンチに隣接して選択的に前記第2の半導体層の下から前記第1の半導体層側へ突出するように設けられ、前記ゲート絶縁膜に接する部分における下端が、前記厚いゲート絶縁膜と前記薄いゲート絶縁膜との境界と略同一レベルである第2導電型の半導体領域と、
    を備えたことを特徴とする半導体装置。
  2. 第1導電型の第1の半導体層と、
    前記第1の半導体層の上に設けられた第2導電型の第2の半導体層と、
    前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、
    前記第1の半導体層の上面よりも下方で前記トレンチの内壁面に設けられた厚いゲート絶縁膜と、
    前記厚いゲート絶縁膜の上側で前記トレンチの内壁面に設けられた薄いゲート絶縁膜と、
    前記ゲート絶縁膜を介して前記トレンチ内を充填するゲート電極と、
    前記トレンチに隣接して前記第1の半導体層における前記第2の半導体層側の一部を選択的に第2導電型に反転させることにより形成され、前記ゲート絶縁膜に接する部分における下端が、前記厚いゲート絶縁膜と前記薄いゲート絶縁膜との境界と略同一レベルである第2導電型の半導体領域と、
    を備えたことを特徴とする半導体装置。
  3. 前記第2導電型の半導体領域のキャリア濃度は、前記第1の半導体層のキャリア濃度よりも高く、前記第2の半導体層のキャリア濃度よりも低いことを特徴とする請求項1または2に記載の半導体装置。
  4. 前記厚いゲート絶縁膜は、前記トレンチの幅の半分よりも小なる厚みを有し、
    前記トレンチの底部には、前記厚いゲート絶縁膜に囲まれた凹部が形成され、
    前記ゲート電極は、前記凹部にも充填されてなることを特徴とする請求項1〜3のいずれか1つに記載の半導体装置。
  5. 前記厚いゲート絶縁膜は、前記トレンチの幅の半分よりも大なる厚みを有し、
    前記トレンチの底部は、前記厚いゲート絶縁膜により略平坦に埋め込まれてなることを特徴とする請求項1〜3のいずれか1つに記載の半導体装置。
  6. 前記第2導電型の半導体領域は、前記厚いゲート絶縁膜とセルフアライン的に形成されてなることを特徴とする請求項1〜5のいずれか1つに記載の半導体装置。
  7. 前記ゲート電極に印加する電圧に応じて、前記第2の半導体層及び前記第2導電型の半導体領域のうちの前記ゲート絶縁膜に隣接した部分にチャネルが形成可能とされたことを特徴とする請求項1〜6のいずれか1つに記載の半導体装置。
  8. 第1導電型の第1の半導体層と、その上に設けられた第2導電型の第2の半導体層と、前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、前記第1の半導体層の上面よりも下方で前記トレンチの内壁に設けられた厚いゲート絶縁膜と、を形成する工程と、
    前記厚いゲート絶縁膜よりも上側で前記トレンチの内壁に薄いゲート絶縁膜を形成する工程と、
    前記第1の半導体層のうちの前記厚いゲート絶縁膜よりも上側で前記トレンチに隣接した部分に第2導電型の不純物を導入することにより、前記ゲート絶縁膜に接する部分における下端が、前記厚いゲート絶縁膜と前記薄いゲート絶縁膜との境界と略同一レベルである第2導電型の半導体領域を形成する工程と、
    前記ゲート絶縁膜を介して前記トレンチ内をゲート電極により充填する工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  9. 第1導電型の第1の半導体層と、その上に設けられた第2導電型の第2の半導体層と、前記第2の半導体層を貫通して前記第1の半導体層に至るトレンチと、前記第1の半導体層の上面よりも下方で前記トレンチの内壁に設けられた厚いゲート絶縁膜と、を形成する工程と、
    前記第1の半導体層のうちの前記厚いゲート絶縁膜よりも上側で前記トレンチに隣接した部分に第2導電型の不純物を導入することにより第2導電型の半導体領域を形成する工程と、
    前記厚いゲート絶縁膜よりも上側で前記トレンチの内壁に薄いゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜を介して前記トレンチ内をゲート電極により充填する工程と、
    を備え、
    前記厚いゲート絶縁膜をマスクとして前記トレンチから前記第1の半導体層に前記第2導電型の不純物を導入することにより前記第2導電型の半導体領域を形成することを特徴とする半導体装置の製造方法。
  10. 前記第2の半導体層の上から前記第2導電型の不純物を打ち込むことにより前記第2導電型の半導体領域を形成することを特徴とする請求項8記載の半導体装置の製造方法。
JP2003092263A 2003-03-28 2003-03-28 半導体装置及びその製造方法 Expired - Fee Related JP3713498B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003092263A JP3713498B2 (ja) 2003-03-28 2003-03-28 半導体装置及びその製造方法
US10/714,868 US7049657B2 (en) 2003-03-28 2003-11-18 Semiconductor device having a trench-gate structure
CNA2004100088625A CN1534795A (zh) 2003-03-28 2004-03-24 半导体器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092263A JP3713498B2 (ja) 2003-03-28 2003-03-28 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004303802A JP2004303802A (ja) 2004-10-28
JP3713498B2 true JP3713498B2 (ja) 2005-11-09

Family

ID=32985350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092263A Expired - Fee Related JP3713498B2 (ja) 2003-03-28 2003-03-28 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US7049657B2 (ja)
JP (1) JP3713498B2 (ja)
CN (1) CN1534795A (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340626A (ja) * 2004-05-28 2005-12-08 Toshiba Corp 半導体装置
JP2006066611A (ja) * 2004-08-26 2006-03-09 Toshiba Corp 半導体装置
JP4059510B2 (ja) * 2004-10-22 2008-03-12 株式会社東芝 半導体装置及びその製造方法
US7566622B2 (en) * 2005-07-06 2009-07-28 International Rectifier Corporation Early contact, high cell density process
JP2007311574A (ja) * 2006-05-18 2007-11-29 Nec Electronics Corp 半導体装置及びその製造方法
KR100824205B1 (ko) * 2006-12-26 2008-04-21 매그나칩 반도체 유한회사 Dmos 트랜지스터 및 그 제조방법
WO2009057015A1 (en) * 2007-10-29 2009-05-07 Nxp B.V. Trench gate mosfet and method of manufacturing the same
KR100970282B1 (ko) * 2007-11-19 2010-07-15 매그나칩 반도체 유한회사 트렌치 mosfet 및 그 제조방법
US8159021B2 (en) * 2008-02-20 2012-04-17 Force-Mos Technology Corporation Trench MOSFET with double epitaxial structure
JP5483693B2 (ja) * 2009-12-17 2014-05-07 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US20120028425A1 (en) * 2010-08-02 2012-02-02 Hamilton Lu Methods for fabricating trench metal oxide semiconductor field effect transistors
JP5729331B2 (ja) * 2011-04-12 2015-06-03 株式会社デンソー 半導体装置の製造方法及び半導体装置
JP5817816B2 (ja) * 2011-04-12 2015-11-18 株式会社デンソー 半導体装置の製造方法
WO2013013698A1 (en) * 2011-07-22 2013-01-31 X-Fab Semiconductor Foundries Ag A semiconductor device
JP5358653B2 (ja) * 2011-11-15 2013-12-04 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー トレンチゲート型トランジスタの製造方法
CN103378146B (zh) * 2012-04-12 2016-05-18 上海北车永电电子科技有限公司 沟槽型金属氧化物半导体场效应管的制作方法
JP6131689B2 (ja) 2013-04-16 2017-05-24 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP2014207403A (ja) 2013-04-16 2014-10-30 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP6229511B2 (ja) * 2014-01-27 2017-11-15 トヨタ自動車株式会社 半導体装置
JP6720569B2 (ja) 2015-02-25 2020-07-08 株式会社デンソー 半導体装置
CN106206718A (zh) * 2015-05-05 2016-12-07 北大方正集团有限公司 功率器件及其制作方法
US10636877B2 (en) * 2016-10-17 2020-04-28 Fuji Electric Co., Ltd. Semiconductor device
CN107706101A (zh) * 2017-09-29 2018-02-16 上海华虹宏力半导体制造有限公司 沟槽栅的制造方法
JP7005453B2 (ja) * 2018-08-08 2022-01-21 株式会社東芝 半導体装置
JP7417499B2 (ja) * 2020-09-14 2024-01-18 株式会社東芝 半導体装置の製造方法及び半導体装置
CN114512403B (zh) * 2020-11-16 2023-06-23 苏州东微半导体股份有限公司 半导体器件的制造方法
CN113594255A (zh) * 2021-08-04 2021-11-02 济南市半导体元件实验所 沟槽型mosfet器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262453B1 (en) * 1998-04-24 2001-07-17 Magepower Semiconductor Corp. Double gate-oxide for reducing gate-drain capacitance in trenched DMOS with high-dopant concentration buried-region under trenched gate

Also Published As

Publication number Publication date
US20040188756A1 (en) 2004-09-30
JP2004303802A (ja) 2004-10-28
CN1534795A (zh) 2004-10-06
US7049657B2 (en) 2006-05-23

Similar Documents

Publication Publication Date Title
JP3713498B2 (ja) 半導体装置及びその製造方法
JP3954493B2 (ja) パワーmosfet及び自己整合本体注入工程を用いたパワーmosfetの製造方法。
US8237195B2 (en) Power MOSFET having a strained channel in a semiconductor heterostructure on metal substrate
JP4184270B2 (ja) トレンチゲートmosfetにおける端部終端
JP3395473B2 (ja) 横型トレンチmisfetおよびその製造方法
TWI447813B (zh) 絕緣柵雙極電晶體裝置用於提升裝置性能的新型上部結構
US7227225B2 (en) Semiconductor device having a vertical MOS trench gate structure
US7091573B2 (en) Power transistor
US7576388B1 (en) Trench-gate LDMOS structures
US7033891B2 (en) Trench gate laterally diffused MOSFET devices and methods for making such devices
US8866215B2 (en) Semiconductor component having a transition region
US7989293B2 (en) Trench device structure and fabrication
US20020056871A1 (en) MOS-gated device having a buried gate and process for forming same
JP2004500716A (ja) トレンチゲート電極を有する二重拡散金属酸化膜半導体トランジスタ及びその製造方法
JP2010505270A (ja) 窪んだフィールドプレートを備えたパワーmosfet
JP2013503491A (ja) スーパージャンクショントレンチパワーmosfetデバイス
US7268392B2 (en) Trench gate semiconductor device with a reduction in switching loss
KR100762545B1 (ko) Lmosfet 및 그 제조 방법
WO2006134810A1 (ja) 半導体デバイス
US8575688B2 (en) Trench device structure and fabrication
US8088662B2 (en) Fabrication method of trenched metal-oxide-semiconductor device
KR100290913B1 (ko) 고전압 소자 및 그 제조방법
KR100734143B1 (ko) 디모스 트랜지스터 및 그 제조방법
US20060160320A1 (en) Method of fabricating a semiconductor device
JP2002094061A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees