JP3709552B2 - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP3709552B2
JP3709552B2 JP25015699A JP25015699A JP3709552B2 JP 3709552 B2 JP3709552 B2 JP 3709552B2 JP 25015699 A JP25015699 A JP 25015699A JP 25015699 A JP25015699 A JP 25015699A JP 3709552 B2 JP3709552 B2 JP 3709552B2
Authority
JP
Japan
Prior art keywords
plasma
hollow tube
magnetic field
processing chamber
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25015699A
Other languages
English (en)
Other versions
JP2001077092A (ja
Inventor
俊夫 増田
建人 臼井
茂 白米
主人 高橋
満 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25015699A priority Critical patent/JP3709552B2/ja
Priority to US09/651,720 priority patent/US6503364B1/en
Priority to KR1020000051595A priority patent/KR100549052B1/ko
Priority to TW089117858A priority patent/TW469535B/zh
Publication of JP2001077092A publication Critical patent/JP2001077092A/ja
Application granted granted Critical
Publication of JP3709552B2 publication Critical patent/JP3709552B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ処理装置、特に半導体製造工程における微細なパターンを形成するのに好適なプラズマ処理装置に係り、特に処理室内のプラズマの発光を計測する窓に関する。
【0002】
【従来の技術】
半導体製造工程では、エッチング,成膜,アッシングなどの微細加工プロセスで、プラズマ処理装置が広く用いられている。このうち、エッチング装置は、真空チャンバー(リアクタ)内部に導入されたプロセスガスをプラズマ発生手段によりプラズマ化し、半導体ウェハ表面で反応させて微細加工を行うとともに、揮発性の反応生成物を排気することにより所定のエッチング処理を行うものである。
【0003】
このプラズマエッチング装置においては、配線層や絶縁膜のエッチングにより生じるプラズマ発光について特定のラジカルやイオンの発光強度を計測して、たとえばエッチング処理中の発光強度の時間変化からエッチング処理の終点を検出したり、ラジカル種の発光強度のプロセスパラメータに対する依存性からラジカル組成を定量化してプロセス構築を行ったり、プラズマケミストリーの変化をモニタするといったことが行われている。
【0004】
ところが、実際に数時間から数10時間以上にわたってウェハのエッチング処理を繰り返していくと、プラズマ発光計測用の窓の内面に反応生成物やプロセスガスの一部がしだいに付着していき、計測窓の透過率が低下していく。このため,終点検出の精度が低下したり,ラジカル組成が正確にモニタできないといった問題が生じる。
【0005】
その対策として、特開平8−111403公報には、筒状の中空支持部の先端にプラズマ発光の検出窓を設置することで、検出窓内面への反応生成物の付着などを抑制して、長期間にわたってエッチングの終点を安定に判定するエッチング装置が記載されている。また特開平9−199476公報には、前記の公報と同様に円筒状の導光管を用いてその端部にプラズマ発光の検出窓を設置し、特に導光管の長さを内径の10倍以上として、さらに導光管に不活性ガスを導入して導光管内部を陽圧にすることで反応生成物の付着を抑制するエッチング装置が記されている。
【0006】
また、特開平9−330917公報には、ブロック型の形状の検出窓にいくつかの非貫通孔を設けて、その底部に対向する位置に終点検出器をもうける方法が提案されている。さらに特開平1−232725公報に記載されているように、検出窓に加熱用ヒータを設けて窓部を加熱することで反応生成物の付着を抑制する方法,あるいは、特開昭63−128632公報に記載されているように、測光用窓が取り付けられた中間円筒の周囲に設置したコイルにより磁場をかけることで反応生成物やイオンを偏向させて測光用窓への付着を防止する方法なども考案されている。
【0007】
【発明が解決しようとする課題】
しかしながら上記の方法では、発光計測窓の透過率の低下を完全に抑制することはできず、発光の検出強度がしだいに低下していくという課題があった。たとえば、前記の特開平9−330917公報の非貫通孔を用いた方法では、透過率の低下は従来技術よりも抑制されているものの、検出強度が放電10時間程度でおよそ50%以下に低下しているデータが示されている。
【0008】
前記の特開平9−199476公報においても、導光管の長さを内径の10倍以上とすることで、長さが内径の5倍以下の場合に比べて発光計測窓への反応生成物の堆積量が10分の1以下に低下することが示されているが、この場合にも堆積量がゼロになるわけではなく、時間とともに検出強度は低下する。また、この公報においては、導光管の内部に陽圧(たとえば処理圧力100 mTorrに対して101 mTorr)の不活性ガスを導入することで反応生成物が導光管内部に侵入しにくくなることが記されている。処理圧力が100 mTorr以上の場合にはガス流れは粘性流領域であり、さらに分子の平均自由行程が1 mm以下であるので、分子は管内壁に付着する前に排出されて導光管内部に侵入しにくくなる効果はある程度期待される。しかしながら、プロセスの微細化にともなって処理圧力は数Pa以下(数10 mTorr以下)の低圧力となっており、この圧力領域では流れは分子流となるのでガス流れによる排出の効果は期待できない。また分子の平均自由工程が数mm〜数10 mm程度と長くなるので、反応生成物が検出窓に到達する確率が大きくなって、計測窓への堆積量が増加すると考えられる。
【0009】
さらに、終点検出用の窓に加熱ヒータを設けて窓部を加熱する方法では、エッチング装置に別途加熱装置や安全機構などを付加する必要が生じ、また磁場により反応生成物やイオンを偏向させる方法では、磁場を発生させつコイルなどが別途必要であり、いずれも装置の複雑化やコストアップを招く結果となり、実用的ではない。磁場を用いた方法では磁場がプラズマに対する外乱要因となりうる。さらに、これらの方法では、加熱や磁場による効果が定量的に示されておらず、効果が明確ではない。
【0010】
また、上記はいずれも終点検出に関するものであり、処理中のダイナミックな強度変化が検出できればよいので、長時間にわたる透過率の漸減は信号検出の妨げにはさほどならない。しかしながら、たとえば連続放電試験中のラジカル組成の変化をモニタリングするといった場合には、計測窓の透過率が低下するとみかけの検出強度が低下してしまい、正確なモニタリングができないので、こうした外乱要因の影響を受けずにラジカルの発光強度を測定できる必要がある。
【0011】
特に、C4F8などのCF系のエッチングガスを用いてシリコン酸化膜をエッチングする場合には、エッチャントであるCFやCF2のラジカルの発光がプロセス特性にとって重要である。しかし、これらの発光はピーク波長が200 nm〜300 nmの領域にあり、この領域ではCF系の堆積膜により計測窓の透過率が大きく低下するので、発光の検出強度の低下がより顕著に現れてしまう。このため、計測窓への堆積膜の付着による透過率の低下の影響を受けずに、長期間にわたって安定してプラズマ発光を計測できる必要がある。
【0012】
本発明は、上記の課題を解決するためになされたものであり、プラズマ発光計測窓の内面への反応生成物やエッチングガスの付着・堆積を抑制し、長時間にわたって安定してプラズマ発光を計測することができるプラズマ処理装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、前記の課題について検討を重ねた結果、処理室の側壁開口部に設けた内径4 mm、長さ200 mm程度の中空管の先端にプラズマ発光の計測窓を取り付けて、中空管の入り口付近に中空管に対して磁力線が角度をなすように磁場を形成することで、例えば30度から45度程度形成することで、中空管内部へのプラズマの侵入を防止して計測窓への堆積物の付着をほぼ完全に抑止できることを知見し、この方法により、計測窓の透過率が時間とともに低下することなく、プラズマ発光を放電100時間以上の長時間にわたって安定して精度よく計測できることを実験的に確認するに至った。
【0014】
本発明は、上記の知見に基づいてなされたものであり、真空処理室内に処理ガスを供給して、有磁場方式のプラズマ発生装置によりプラズマを発生させ、当該プラズマにより試料をプラズマ処理するとともに、当該プラズマからの発光を透明材料からなる計測窓を通して計測するように構成されたプラズマ処理装置において、処理室の側壁の開口部に外側にむかって設置された中空管の先端部にプラズマ発光の計測窓を設け、プラズマ発生装置の磁場形成手段により形成される磁場が、開口部および前記中空管の入り口近傍において、中空管の軸に対して磁力線が角度をもつように形成されたことを特徴としている。後に述べるように、堆積膜の付着はプラズマによりアシストされて促進されるので、このような構成により中空管内部へのプラズマの侵入を防止して、計測窓への堆積物の付着をほぼ完全に抑止できる。また、磁場はプラズマ発生装置の磁場形成手段により形成される磁場をそのまま用いるので、中空管近傍に局所磁場を発生させる機構をもうける必要がなく、装置構成が簡略化できるとともに局所磁場発生器による磁場がプラズマに外乱を与えることがない。
【0015】
本発明の他の特徴は、前記のプラズマ発生装置において、前記の中空管の内径Dを2 mm以上10 mm以下、長さLを50 mm以上250 mm以下とすることにある。この場合、動作圧力がたとえば0.5 Paから4 Pa程度の範囲で、中空管の内径Dは分子の平均自由行程λよりも小さいかほぼ等しいオーダーであるのに対して、中空管の長さLは分子の平均自由行程λよりも十分に大きいので、分子は中空管の入り口近傍で内壁と相互作用して付着して、発光計測窓への到達確率が小さくなる。さらに磁場による中空管へのプラズマ侵入防止との相乗効果により、発光計測窓への堆積膜の付着をほぼ完全に抑止できる。
【0016】
本発明のさらに他の特徴は、前記のプラズマ発生装置において、処理室開口部あるいは中空管の入り口近傍に形成される磁場が磁束密度60ガウス以上であることにある。磁場強度がこの値以上であることで、磁場による中空管へのプラズマ侵入防止の効果が顕著にあらわれて、発光計測窓への堆積膜の付着をほぼ完全に抑止できる。
【0017】
本発明のさらに他の特徴は、前記のプラズマ発生装置において、プラズマ発生装置を有磁場UHF帯電磁波放射放電方式としたことにある。この場合、プラズマ発生装置の磁場形成手段により形成される磁場がおよそ160ガウス程度の磁束密度であり、磁力線と中空管が30度から45度の角度をもっているので、中空管へのプラズマの侵入を効率的に抑止できる。
【0018】
本発明によれば、処理室の側壁開口部にもうけた中空管の先端にプラズマ発光の計測窓を取り付けて、中空管の入り口付近に磁力線が中空管に対して角度をなすように磁場を形成することで、中空管内部へのプラズマの侵入を防止できる。堆積物の付着はプラズマにより促進されるので、計測窓付近にプラズマを拡散させないことで、計測窓への堆積物の付着をほぼ完全に抑止できる。また、中空管の内径Dを分子の平均自由行程λよりも小さいかほぼ等しいオーダーに対して、中空管の長さLは分子の平均自由行程λよりも十分に大きくとることで、分子の計測窓への到達確率が小さくなるので、磁場との相乗効果により、計測窓の透過率が時間とともに低下することなく、プラズマ発光を長時間にわたって安定して精度よく計測できる。
【0019】
【発明の実施の形態】
以下、本発明の実施例について、図面に基づいて説明する。
【0020】
図1は、本発明を、有磁場UHF帯電磁波放射放電方式のプラズマエッチング装置へ適用した実施例を示すもので、当該プラズマエッチング装置の断面模式図である。
【0021】
図1において、処理室100は、10 6 Torr程度の真空度を達成可能な真空容器であり、その上部にプラズマ発生手段としての電磁波を放射するアンテナ110を、下部にはウェハなどの試料Wを載置する下部電極130を、それぞれ備えている。アンテナ110と下部電極130は、平行して対向する形で設置される。処理室100の周囲には、たとえば電磁コイルとヨークからなる磁場形成手段101が設置されており、所定の分布と強度をもつ磁場が形成される。そして、アンテナ110から放射される電磁波と磁場形成手段101で形成される磁場との相互作用により、処理室内部に導入された処理ガスをプラズマ化して、プラズマPを発生させ、試料Wを処理する。処理室100は、真空室103に接続された真空排気系104と圧力制御手段105により真空排気と圧力調整がなされて、内部の圧力が望ましくは0.5 Pa以上4 Pa以下の所定の値に制御できる。処理室100および真空室103はアース電位となっている。処理室100の側壁102は、図示しない温度制御手段により、たとえば50 ℃程度に温調されている。
【0022】
電磁波を放射するアンテナ110は、円板状導電体111,誘電体112,誘電体リング113からなり、真空容器の一部としてのハウジング114に保持される。また、円板状導電体111のプラズマに接する側の面にはプレート115が設置される。試料のエッチング、成膜等の処理を行う処理ガスは、ガス供給手段116から所定の流量と混合比をもって供給され、円板状導電体111とプレート115に設けられた多数の孔を通して処理室100に供給される。アンテナ110には、アンテナ電源121,アンテナバイアス電源123およびマッチング回路・フィルタ系122,124,125からなるアンテナ電源系120が導入端子126を介して接続される。アンテナ電源121は、望ましくは300 MHzから900 MHzのUHF帯周波数の電力を供給して、アンテナ110からUHF帯の電磁波を放射する。アンテナバイアス電源123は、円板状導電体111を介してプレート115に、たとえば100 kHz程度あるいは数MHzから10 MHz程度の周波数のバイアスを印加して、プレート115の表面での反応を制御する。特にCF系のガスを用いた酸化膜エッチングにおいては、プレート115の材質を高純度のシリコンやカーボンなどとすることで、プレート115の表面でのFラジカルやCFxラジカルの反応を制御して、ラジカルの組成比を調整する。プレート115の下面とウェハWの距離(以下、ギャップと呼ぶ)は、30 mm以上150 mm以下、望ましくは50 mm以上120 mm以下とする。本実施例では、アンテナ電源121は、450
MHz、アンテナバイアス電源122は13.56 MHzの周波数としている。
【0023】
処理室100の下部には、アンテナ110に対向して下部電極130が設けられている。下部電極130は、静電吸着装置131により、その上面すなわち試料載置面にウェハなどの試料Wを載置保持する。試料Wの外周部には、試料台リング132が絶縁体133の上に設置されている。下部電極130には、400 kHzから13.56 MHzの範囲のバイアス電力を供給するバイアス電源134がマッチング回路・フィルタ系135を介して接続されて、試料Wに印加するバイアスを制御する。本実施例では、バイアス電源134は周波数を800 kHzとしている
次に、本実施例の要部であるプラズマ発光計測部140について説明する。プラズマ発光の計測は、処理室100の側壁102に設けられた開口部141を通して行う。開口部141には中空管142が外側にむかって取り付けられ、その先端に石英などの透明材料からなるプラズマ発光の計測窓143が取り付けられている。そして、プラズマからの発光は、ファイバホルダ144に取り付けられた光ファイバ受光部145を介して、光ファイバ146により発光計測器147に導かれる。発光計測器147は、発光計測器制御・演算手段148により制御され、さらに上位のシステム制御手段149と接続される。システム制御手段149は、制御インタフェース150を介して、装置システム全体の状態をモニタしながら、システム全体を制御する。
【0024】
光ファイバ受光部145は、中空管142、開口部141に対してほぼ同軸になるように取り付けられている。ファイバホルダ144には軸調整用の簡単なアライメント機構を取り付けてもよい。開口部141の位置は、試料Wの表面近傍でのラジカル組成などのケミストリの変化を検出できるように、試料Wの上方のたとえば5 mmから30 mm程度の位置になるように設定するのが望ましい。また、中空管142の材質は、たとえばアルマイト処理を施したアルミやステンレスなどの金属が望ましい。中空管142の内径Dは2 mm以上10 mm以下、長さLは50 mm以上250 mm以下とする。この内径および長さの値は分子の平均自由行程との関係から設定される。本実施例では処理室内の動作圧力は0.5 Pa〜4 Pa程度であり、分子の平均自由行程λはおよそ5 mmないし30 mm程度である(Ar分子、25℃の場合)ので、D/λ,L/λの値は、およそD/λ=0.1〜2,L/λ=2〜50程度となる。すなわち中空管142の内径Dは分子の平均自由行程λよりも小さいかほぼ等しいオーダーであるのに対して、中空管142の長さLは分子の平均自由行程λよりも十分に大きく設定されている。このように設定することで、分子は計測窓143の到達するよりもはるかに高い確率で中空管142の入り口近傍で内壁と相互作用して付着するので、計測窓143への到達確率は小さくなる。このようなメカニズムを効果的に発現させるには、L/Dの値はある程度の大きさを持つことが望ましく、L/D=10程度では不十分であり、L/D=25〜50程度に設定するのが好適である。さらに、本実施例においては、磁場によるプラズマ侵入防止との相乗効果により、計測窓143への堆積膜の付着をほぼ完全に抑止できるわけである。なお、中空管を長くしすぎると、発光計測器147で受光するプラズマ発光の検出強度が小さくなって信号のS/N比が低下することが考えられるが、長さLが50 mmから250 mm程度であれば、十分なS/N比をもって計測が可能である。また、本実施例では中空管が1本だけの場合を示しているが、たとえば中空管を複数本束ねたり管の内部に中空部を複数本内包するようにして、検出のS/N比を高めた構成も含まれることはいうまでもない。
【0025】
本実施例によるプラズマエッチング装置は以上のように構成されており、このプラズマエッチング装置を用いて、たとえばシリコン酸化膜のエッチングを行う場合の具体的なプロセスは次のようである。
【0026】
まず、処理の対象物であるウェハWは、図示していない試料搬入機構から処理室100に搬入された後、下部電極130の上に載置・吸着され、必要に応じて下部電極の高さが調整されて所定のギャップに設定される。ついで、処理室100内は真空排気系106により真空排気され、一方、試料Wのエッチング処理に必要なガス、たとえばC4F8とArとO2が、ガス供給手段117から、所定の流量と混合比、たとえばAr 400 sccm、C4F8 15 sccm、O2 5 sccmをもって、アンテナ110のプレート115から処理室100に供給される。同時に処理室100の内部が所定の処理圧力、例えば2 Paになるように調整される。他方、磁場形成手段101により、アンテナ電源121の周波数の450 MHzに対する電子サイクロトロン共鳴磁場強度に相当する概略160ガウスのほぼ水平な磁場がアンテナ111の下方付近に形成される。そして、アンテナ電源121によりアンテナ110からUHF帯の電磁波が放射され、磁場との相互作用により処理室100内にプラズマPが生成される。このプラズマPにより、処理ガスを解離させてイオン・ラジカルを発生させ、さらにアンテナ高周波電源122,バイアス電源141を制御して、ウェハWにエッチング等の処理を行う。そして、エッチング処理の終了にともない、電力および処理ガスの供給を停止してエッチングを終了する。この処理中のプラズマ発光を発光計測部147で計測され、発光器制御・演算手段148で発光計測結果に基づいて、たとえば終点検出などの演算処理がなされ、上位のシステム制御手段149に伝達されて装置システム全体が制御される。
【0027】
次に、本実施例におけるプラズマ処理装置において発光計測窓143への堆積物の付着を抑制する機構を、図2を用いて説明する。図2は、発光計測部140付近について拡大した図であり、この付近での磁力線の様子や堆積物の付着状況を同時に示している。図1で説明したように、処理室100の周囲には、電磁コイル101A、101A’とヨーク101Bからなる磁場形成手段101が設置されており、およそ160ガウス(アンテナ電源の周波数450 MHzに対する電子サイクロトロン共鳴磁場強度)の略水平磁場が、アンテナ111の下方付近に形成される。この場合、磁力線は図中に破線Bで示したように電磁コイル101Aからヨーク101Bの下方付近に向かうように分布しており、開口部141付近では側壁内面に対して、およそ30度から45度の角度をなしている。
【0028】
ここで、プラズマ中の電子は、図中にeで示すように、磁力線に沿ってまきつくようにらせん状のサイクロトロン運動をしながら移動する。そして、開口部141付近に移動してきた電子は開口部141あるいは中空管142の下面で壁面に到達してプラズマ中から消失する。このため、プラズマは、開口部141付近あるいは中空管142の入り口近傍で急激に密度が低下し、中空管142の内部には侵入していかない。このように、開口部141と磁力線が角度をなしているため、磁場によりプラズマが開口部の入り口付近に束縛されて中空管内部への拡散が抑制されることになる。後に述べるように堆積膜の付着はプラズマでアシストされて促進されるので、側壁102の内表面や中空管142の入り口付近には堆積膜Dw,Dpが付着するが、プラズマが侵入していかない中空管の内部には堆積膜は付着せず、したがって計測窓143には堆積膜は付着しない。なお、計測窓には200 nm付近の短波長まで透過率が高い石英を用いるのが好適であるが、特に酸化膜エッチングにおいては石英がエッチングされて消耗したり表面があれたりする可能性がある。しかしながら、本実施例においてはプラズマが中空管142の内部に侵入しないので計測窓143には接触せず、したがって計測窓143が消耗したりすることはない。
【0029】
ここで、磁場による中空管内部へのプラズマ拡散防止の効果と計測窓への堆積物の付着抑制の効果について、実験的に調べた結果を説明する。図3に、実験で用いた装置の構成図を示す。実験は、無磁場の平行平板型プラズマ装置200を用いて行った。排気系206で真空排気された処理室201は上部電極202と下部電極203を備え、それぞれ高周波電源204、バイアス電源205が接続されてプラズマPを発生する。この処理室201の側壁部分に設けた開口部207に図1の実施例で示したのと同様の構成を持つプラズマ発光計測部140Aを設置した。さらに、中空管142Aの側壁部分にやはり図1の実施例で示したのと同様の構成を持つプラズマ発光計測部140Bを設置した。そして、中空管142の入り口付近に局所磁場発生器209を設置して、中空管142と直交する方向に磁場Bcを発生させ、この磁場強度を変えたときの中空管142Aの内部に拡散してくるプラズマの発光強度を発光計測器147Bで測定した。なお、図1の実施例とは異なる無磁場の平行平板型プラズマ装置200を用いたのは、有磁場型のプラズマ装置では磁場のプラズマ発生への関与と中空管へのプラズマ拡散防止の効果が区別しにくいためである。
【0030】
図4に実験結果を示す。局所磁場発生器209により発生させた磁場強度(磁束密度)を横軸に、発光計測器147Bで計測したプラズマ発光(Ar 419.8 nm)の検出強度を縦軸にとり、検出強度は無磁場のときの値で規格化してある。この結果より、中空管の奥行き方向に拡散し侵入してくるプラズマの発光強度は、40ガウスの比較的弱い磁場でも無磁場のときの10%程度に抑制でき、60ガウスの磁場を印加すればおよそ2 %以下となってプラズマの拡散をほとんど完全に抑止することができることがわかる。
【0031】
そこで、中空管142内部へのプラズマの拡散防止により計測窓の透過率の低下が抑止される効果を図3の実験装置を用いて評価した。実験は、連続放電試験をおこなって発光計測窓143を通したプラズマ発光強度を147で計測し、磁場の印加の有無により、すなわち磁場Bcが0ガウス(磁場印加なし)のときと60ガウスの磁場を印加したときについて比較した。図5に、放電時間に対する発光ピークの検出強度の変化を示す。ここで、磁場を印加しない場合の、60ガウスの磁場を印加した場合を図中に示してあり、その場合にそれぞれCF 230.5 nmおよびAre 693.8 nmの発光検出強度であり、連続試験開始時(放電0時間)での発光強度により規格化してある。磁場を印加しない場合には、CF 230.5 nm、Ar 693.8 nmとも検出強度が低下しており、特に短波長側のCF 230.5 nmの低下が著しい。これはCF系の堆積膜の透過率が短波長側で低いことによる。しかし、磁場を印加することで、短波長側のCF 230.5 nm、Ar 693.8 nmとも、放電15時間の間に発光検出強度を一定に保つことができた。このことから、磁場によるプラズマ拡散防止の効果により、計測窓143Aへの付着物の堆積をほぼ完全に抑止できることがわかる。
【0032】
ところで、一般に壁面への反応生成物やプロセスガスの付着は、壁面温度が高くなると分子の付着率が低下して堆積レートが減少することが知られている。しかしながら、膜の堆積は一種の分子重合反応であり、たとえばCF系のプロセスガスの場合にはC−C結合やC−F結合が連鎖的にネットワークを形成することで堆積膜が形成される。そして、この反応はプラズマ中の電子やイオンにアシストされることで促進されて、堆積レートが増加する。すなわち、堆積物の付着には温度だけでなくプラズマ密度の影響が大きい。このことは、試みに中空管の入り口にφ1 mm程度の小孔が多数開いたメッシュをはりつけることでも容易に確認できる。メッシュによりプラズマは中空管の内部に侵入できないが、このとき中空管内部への堆積膜の付着量は大きく低減する。
【0033】
膜の堆積レートへのプラズマ密度と温度の関係については、図2における処理室内部への堆積膜の付着状況からも考察できる。誘電体リング113の表面温度は120 ℃程度であるが、堆積物はほとんど付着しない。一方、試料台リング132は飽和温度が250 ℃程度にまで上昇するにもかかわらず堆積物が付着するので、適正なバイアスをかけて堆積物を除去する必要がある。これは、プラズマPがプレート115の直下付近で生成されており、試料台リング132の近傍ではプラズマ密度が高いが、誘電体リング113の付近ではプラズマ密度が比較的低いことに起因すると考えられる。また、アンテナ111の外縁部付近では磁力線がほぼ垂直に近くなっており、電子は磁力線に沿って運動して磁力線を横切る方向には移動しにくいので、プラズマが磁場による束縛効果によって側壁方向への拡散が抑制されてアンテナ下方付近に閉じ込められるために、この部分でのプラズマ密度が高くなる効果もある。これらのことから、堆積物の付着は単に温度の関数ではなく、プラズマ密度にも大きく依存することが明らかである。
【0034】
図2においては、開口部141あるいは中空管142と磁力線Bが角度をなしており、磁場強度がおよそ160ガウス程度であるので、あらたに別の磁場発生手段を設けなくとも、中空管142の内部へのプラズマ侵入は入り口付近のみに限定される。この結果、堆積膜のプラズマアシスト反応が抑止されるため、中空管142の内部や計測窓143に堆積膜はほとんど付着しない。中空管142と磁力線Bがなす角度は、図1の実施例の装置においては図2に示すように30度から45度程度であるが、磁力線が中空管となす角度がおよそ10度以上であればプラズマの侵入防止の効果があらわれる。また、中空管142と磁力線Bがなす角度が望ましくは30度以上であると、この効果がより顕著になる。
【0035】
以上で説明した磁場によるプラズマの中空管内部への侵入防止の効果はきわめて顕著である。従来技術ではプラズマ発光検出窓のくもりはさけられなかったが、本実施例においては、図5に示したように放電15時間まで計測窓143の透過率が低下していない。この状態は、さらに放電時間をのばして数10時間から100時間以上の放電を重ねても保つことができる。このことを実験的に確認した結果を図6に示す。これは、図1の実施例の装置において、放電100時間の連続試験をおこなったときの、CF 230.5 nm,CF2 260 nm,およびAr 419.8 nm, Ar 706.7 nmの発光ピークの検出強度の経時的な変化を計測して放電時間との関係を示した結果であり、計測窓の透過率の変化を評価したものである。この連続試験においては、試験を通じてエッチング特性が良好に再現されており、ラジカルの組成および組成比およびプラズマ状態は安定していた。また、プラズマクリーニングなどの装置内部の堆積膜を除去するプロセスを行っていないのはいうまでもない。発光計測窓には加熱機構は設けられておらず、側壁の温度は50℃程度であり、検出窓の温度はほぼ常温であった。
【0036】
図6より明らかなように、発光ピーク検出強度は、CF,CF2,Arとも放電100時間にわたって発光ピークの検出強度はまったく変化していない。特に計測窓への堆積物の付着に敏感な短波長側のCF,CF2にも検出強度の低下の兆候は見られない。また、図中には、連続試験後にエッチング装置を大気開放してウエットクリーニングを行い、再度真空引きをした後の発光ピーク検出強度の再現性を確認した結果を示している。このウエットクリーニングではエッチング装置内の堆積物は除去したが、発光計測窓についてはなんら処理は行っていない。この場合、いずれの発光ピークも検出強度はウエットクリーニングの前後で変化していない。このことからも、発光計測窓にはまったく反応生成物が堆積していないことが明らかである。
【0037】
すでに従来技術の項で述べたように、従来技術では発光計測窓の透過率の低下を完全に抑制することはできず、発光の検出強度がしだいに低下してしまっていた。しかしながら、本発明においては、上記のように放電100時間を超えても計測窓の透過率の低下は認められない。この点で本発明は、明らかに従来技術とは一線を画する効果を示しているといえる。
【0038】
上記のようにして発光計測窓の透過率低下の要因をほぼ完全に排除できることの利点は大きい。まず、プラズマ発光の検出強度が低下しないため、終点検出の精度が経時的に低下したりすることがないことがあげられる。次に、ラジカル組成を常時正確に定量化できることが利点である。たとえばC4F8などのCF系のガスを用いた酸化膜エッチングにおいては、CF,CF2あるいはC2,Fといったラジカルの組成比がプロセス特性に大きな影響を及ぼすが、これらの発光強度を常時モニタすることで、プラズマケミストリーの経時的な変化が検出できる。図1においては、発光計測器148でプラズマの発光強度を計測し、これに基づいてたとえば発光強度のCF2/F比,CF/F比,C2/F比といった演算結果がシステム制御手段149に伝達される。同時にシステム制御手段149は制御インタフェース150を介して、電源のVppやVdcなどの値をモニタし、これらの結果を総合して処理室内部の状態の変化を検知する。この結果に基づいて,たとえばウエットクリーニングのタイミングをユーザに知らせたり,あるいはより積極的に,たとえば発光強度のCF2/F比,CF/F比,C2/F比を一定にするように,プロセス条件,たとえばアンテナ電源系120やバイアス電源134の出力,あるいは磁場形成手段101で形成する磁場の強度・分布,あるいはガス供給手段116から供給するガスの流量・組成比,あるいは圧力制御手段105など,を制御するように指令して,エッチング特性の安定化を図ってもよい。このように、本発明によれば、ラジカル組成を定量的にモニタリングすることで、より進んだプロセス制御の方法を提供でき、処理の再現性や安定性を向上させて、装置の稼働率や生産性の向上に寄与できるプラズマ処理装置を提供することが可能となる。
【0039】
なお、前記の各実施例は、いずれも有磁場UHF帯電磁波放射放電方式のプラズマ処理装置の場合であったが、放射される電磁波はUHF帯以外にも、たとえば2.45 GHzのマイクロ波や、あるいは数10 MHzから300 MHz程度までのVHF帯でもよい。また、磁場強度は、450 MHzに対する電子サイクロトロン共鳴磁場強度である160ガウスの場合について説明したが、必ずしも共鳴磁場を用いる必要はなく、これよりも強い磁場やあるいは数10ガウス程度以上の弱い磁場を用いてもよい。磁場を用いたマグネトロン型のプラズマ処理装置においては、磁場は電極間では電極にほぼ平行な場合もあるが、側壁近傍においては磁力線が電極面と角度をもつことになるので、本発明が同様に適用できる。
【0040】
また、前記の各実施例は、いずれも処理対象が半導体ウェハであり、これに対するエッチング処理の場合であったが、本発明はこれに限らず、例えば処理対象が液晶基板の場合にも適用でき、また処理自体もエッチングに限らず、たとえばスパッタリングやCVD処理に対しても適用可能である。
【0041】
【発明の効果】
以上説明したように、本発明によれば、処理室の側壁に設けられた開口部に中空管を設置してその先端にプラズマ発光の計測窓を取付け、中空管と磁力線が角度をなすような磁場を形成することで、中空管内部へのプラズマの侵入を防止して計測窓への堆積物の付着をおさえることができるので、計測窓の透過率が時間とともに低下せずに一定に保ってプラズマ発光を長時間にわたり安定して精度よく計測することが可能となる。この結果、エッチング処理の終点検出の精度を経時的に低下することなく安定に保つことができる。さらにラジカル組成を定量的にモニタリングしてプロセス条件を制御するといったより進んだプロセス制御が可能となるので、処理の再現性や安定性が向上して、生産性の向上に寄与するプラズマ処理装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である、プラズマエッチング装置の断面模式図である。
【図2】本発明の一実施例であるプラズマエッチング装置において、発光計測窓への堆積物の付着を抑制する機構を説明する図である。
【図3】本発明の要点である磁場による中空管内部へのプラズマ拡散の防止効果と磁場による計測窓の透過率低下の防止効果について調べた実験装置の構成を説明する図である。
【図4】本発明の要点である磁場による中空管内部へのプラズマ拡散の防止効果について調べた実験結果を示す図である。
【図5】本発明の要点である磁場による計測窓の透過率低下の防止効果について調べた実験結果を示す図である。
【図6】本発明の一実施例であるプラズマエッチング装置において、計測窓の透過率が経時的に変化しないことを連続試験により実験的に検証した結果を示す図である。
【符号の説明】
100…処理室、101…磁場形成手段、102…処理室側壁、103…真空室、104…真空排気系、110…アンテナ、111…円板状導電体、112…誘電体、115…プレート、121…アンテナ電源、123…アンテナバイアス電源、130…下部電極、131…静電吸着装置、132…試料台リング、134…バイアス電源、141…開口部、142…中空管、143…計測窓、144…ファイバホルダ、146…光ファイバ、147…発光計測器、148…発光計測器制御・演算手段

Claims (4)

  1. 真空処理室内に処理ガスを供給して,プラズマ発生装置によりプラズマを発生させ,当該プラズマにより試料をプラズマ処理するとともに,当該プラズマからの発光を計測窓を通して計測するように構成された有磁場UHF帯電磁波放射放電方式のプラズマ処理装置において,
    前記真空処理室の側壁に設けられた開口部に中空管を外側にむかって設置して当該中空管の先端部に前記の計測窓を設け,
    前記中空管の内径、長さと前記処理ガスの分子の平均自由行程との関係を、
    動作圧力 0.5 4Pa に対して、
    (内径)/(分子の平均自由行程)が0.1以上2以下、
    (長さ)/(分子の平均自由行程)が2以上50以下、
    (長さ)/(内径)が25ないし50として
    前記磁場が、前記真空処理室に対して略垂直方向でかつ、前記開口部および前記中空管の入り口近傍に前記中空管の軸に対して磁力線が角度をもつように形成され、該磁場により前記プラズマが前記開口部の入り口付近に束縛されるように構成したことを特徴とするプラズマ処理装置。
  2. 請求項1に記載のプラズマ処理装置において,前記中空管の内径が2 mm以上10 mm以下,長さが50 mm以上250 mm以下であることを特徴とするプラズマ処理装置。
  3. 真空処理室内に処理ガスを供給して,プラズマ発生装置によりプラズマを発生させ,当該プラズマにより試料をプラズマ処理するとともに,当該プラズマからの発光を計測窓を通して計測するように構成された有磁場UHF帯電磁波放射放電方式のプラズマ処理装置により試料を処理するプラズマ処理方法であって、
    前記プラズマ処理装置は、前記真空処理室の側壁に設けられた開口部に外側にむかって設置された中空管と当該中空管の先端部に設けられた計測窓を有し、
    前記中空管の内径、長さと前記処理ガスの分子の平均自由行程との関係は、
    動作圧力 0.5 4Pa に対して、
    (内径)/(分子の平均自由行程)が0.1以上2以下、
    (長さ)/(分子の平均自由行程)が2以上50以下、
    (長さ)/(内径)が25ないし50であり、
    前記真空処理室に対して略垂直方向に、前記開口部および前記中空管の入り口近傍に前記中空管の軸に対して磁力線が角度をもつように前記磁場を形成し、該磁場により前記プラズマが前記開口部の入り口付近に束縛されるようにし、
    前記処理室の開口部および前記中空管の入り口近傍に形成される前記磁場を磁束密度60ガウス以上とし、
    前記プラズマにより試料をプラズマ処理することを特徴とするプラズマ処理方法。
  4. 真空処理室内に処理ガスを供給して,プラズマ発生装置によりプラズマを発生させ,当該プラズマにより試料をプラズマ処理するとともに,当該プラズマからの発光を計測窓を通して計測するように構成された有磁場UHF帯電磁波放射放電方式のプラズマ処理装置により試料を処理するプラズマ処理方法であって、
    前記プラズマ処理装置は、前記真空処理室の側壁に設けられた開口部に外側にむかって設置された中空管と当該中空管の先端部に設けられた計測窓を有し、
    前記中空管の内径、長さと前記処理ガスの分子の平均自由行程との関係は、
    動作圧力 0.5 4Pa に対して、
    (内径)/(分子の平均自由行程)が0.1以上2以下、
    (長さ)/(分子の平均自由行程)が2以上50以下、
    (長さ)/(内径)が25ないし50であり、
    前記真空処理室に対して略垂直方向に、前記開口部および前記中空管の入り口近傍に前記中空管の軸に対して磁力線が角度をもつように前記磁場を形成し、該磁場により前記プラズマが前記開口部の入り口付近に束縛されるようにし、
    前記処理室の開口部および前記中空管の入り口近傍に形成される磁力線が中空管の軸に対してなす角度を30度以上とし、
    前記プラズマにより試料をプラズマ処理することを特徴とするプラズマ処理方法。
JP25015699A 1999-09-03 1999-09-03 プラズマ処理装置及びプラズマ処理方法 Expired - Fee Related JP3709552B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25015699A JP3709552B2 (ja) 1999-09-03 1999-09-03 プラズマ処理装置及びプラズマ処理方法
US09/651,720 US6503364B1 (en) 1999-09-03 2000-08-30 Plasma processing apparatus
KR1020000051595A KR100549052B1 (ko) 1999-09-03 2000-09-01 플라즈마 처리장치
TW089117858A TW469535B (en) 1999-09-03 2000-09-01 Plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25015699A JP3709552B2 (ja) 1999-09-03 1999-09-03 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2001077092A JP2001077092A (ja) 2001-03-23
JP3709552B2 true JP3709552B2 (ja) 2005-10-26

Family

ID=17203667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25015699A Expired - Fee Related JP3709552B2 (ja) 1999-09-03 1999-09-03 プラズマ処理装置及びプラズマ処理方法

Country Status (4)

Country Link
US (1) US6503364B1 (ja)
JP (1) JP3709552B2 (ja)
KR (1) KR100549052B1 (ja)
TW (1) TW469535B (ja)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448871B1 (ko) * 2001-09-21 2004-09-16 삼성전자주식회사 식각 종말점 검출창 및 이를 채용하는 식각 장치
TW591202B (en) * 2001-10-26 2004-06-11 Hermosa Thin Film Co Ltd Dynamic film thickness control device/method and ITS coating method
US7162302B2 (en) * 2002-03-04 2007-01-09 Nanoset Llc Magnetically shielded assembly
US7091412B2 (en) * 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US20040210289A1 (en) * 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US20040025791A1 (en) * 2002-08-09 2004-02-12 Applied Materials, Inc. Etch chamber with dual frequency biasing sources and a single frequency plasma generating source
US7223321B1 (en) * 2002-08-30 2007-05-29 Lam Research Corporation Faraday shield disposed within an inductively coupled plasma etching apparatus
AU2003268158A1 (en) * 2002-09-19 2004-04-08 Tokyo Electron Limited Viewing window cleaning apparatus
TWI238680B (en) * 2002-09-30 2005-08-21 Tokyo Electron Ltd Plasma processing system and method
JP4855625B2 (ja) * 2002-12-27 2012-01-18 東京エレクトロン株式会社 プラズマ処理装置の観測窓およびプラズマ処理装置
US20050149169A1 (en) * 2003-04-08 2005-07-07 Xingwu Wang Implantable medical device
US20050119725A1 (en) * 2003-04-08 2005-06-02 Xingwu Wang Energetically controlled delivery of biologically active material from an implanted medical device
US20070010702A1 (en) * 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
US20050149002A1 (en) * 2003-04-08 2005-07-07 Xingwu Wang Markers for visualizing interventional medical devices
US20050155779A1 (en) * 2003-04-08 2005-07-21 Xingwu Wang Coated substrate assembly
US20050025797A1 (en) * 2003-04-08 2005-02-03 Xingwu Wang Medical device with low magnetic susceptibility
US20060102871A1 (en) * 2003-04-08 2006-05-18 Xingwu Wang Novel composition
US20050079132A1 (en) * 2003-04-08 2005-04-14 Xingwu Wang Medical device with low magnetic susceptibility
US20040254419A1 (en) * 2003-04-08 2004-12-16 Xingwu Wang Therapeutic assembly
JP2006514157A (ja) * 2003-09-22 2006-04-27 東京エレクトロン株式会社 ビューウィングウィンドのクリーニング用装置
US20070149496A1 (en) * 2003-10-31 2007-06-28 Jack Tuszynski Water-soluble compound
KR20050059451A (ko) * 2003-12-15 2005-06-21 삼성전자주식회사 기판 가공 공정의 종점 검출 장치
JP4448335B2 (ja) * 2004-01-08 2010-04-07 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US20050249667A1 (en) * 2004-03-24 2005-11-10 Tuszynski Jack A Process for treating a biological organism
KR100601956B1 (ko) * 2004-06-28 2006-07-14 삼성전자주식회사 자기장의 변화를 이용한 온도측정장치
US20060118758A1 (en) * 2004-09-15 2006-06-08 Xingwu Wang Material to enable magnetic resonance imaging of implantable medical devices
JP4601439B2 (ja) * 2005-02-01 2010-12-22 株式会社日立ハイテクノロジーズ プラズマ処理装置
FR2887072A1 (fr) * 2005-06-08 2006-12-15 Alcatel Sa Systeme spectographique ameliore avec source plasma
US7695633B2 (en) * 2005-10-18 2010-04-13 Applied Materials, Inc. Independent control of ion density, ion energy distribution and ion dissociation in a plasma reactor
US20070246162A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with an inductive plasma source and a VHF capacitively coupled plasma source with variable frequency
US20070245958A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Dual plasma source process using a variable frequency capacitively coupled source for controlling ion radial distribution
US7727413B2 (en) * 2006-04-24 2010-06-01 Applied Materials, Inc. Dual plasma source process using a variable frequency capacitively coupled source to control plasma ion density
US7780864B2 (en) * 2006-04-24 2010-08-24 Applied Materials, Inc. Process using combined capacitively and inductively coupled plasma sources for controlling plasma ion radial distribution
US20070246163A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with independent capacitive and inductive plasma sources
US20070245960A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Process using combined capacitively and inductively coupled plasma sources for controlling plasma ion density
US7645357B2 (en) * 2006-04-24 2010-01-12 Applied Materials, Inc. Plasma reactor apparatus with a VHF capacitively coupled plasma source of variable frequency
US20070246161A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with a toroidal plasma source and a VHF capacitively coupled plasma source with variable frequency
US20070246443A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Process using combined capacitively and inductively coupled plasma process for controlling plasma ion dissociation
JP4801522B2 (ja) * 2006-07-21 2011-10-26 株式会社日立ハイテクノロジーズ 半導体製造装置及びプラズマ処理方法
US20080113108A1 (en) * 2006-11-09 2008-05-15 Stowell Michael W System and method for control of electromagnetic radiation in pecvd discharge processes
WO2008108213A1 (ja) 2007-03-08 2008-09-12 Tokyo Electron Limited プラズマ処理装置、プラズマ処理方法、および記憶媒体
FR2920539B1 (fr) * 2007-08-27 2010-05-28 Alcatel Lucent Systeme d'analyse de gaz a basse pression par spectroscopie d'emission optique
JP5450187B2 (ja) 2010-03-16 2014-03-26 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法
WO2011153498A2 (en) 2010-06-04 2011-12-08 Schwarz Reliance Llc Lighting device
DE102010027224A1 (de) * 2010-07-15 2012-01-19 Forschungszentrum Jülich GmbH Elektrode zur Erzeugung eines Plasmas, Plasmakammer mit dieser Elektrode und Verfahren zur in situ-Analyse oder -in situ-Bearbeitung einer Schicht oder des Plasmas
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US8854275B2 (en) 2011-03-03 2014-10-07 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US8164527B2 (en) * 2011-03-03 2012-04-24 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US9293353B2 (en) 2011-04-28 2016-03-22 Lam Research Corporation Faraday shield having plasma density decoupling structure between TCP coil zones
US9490106B2 (en) 2011-04-28 2016-11-08 Lam Research Corporation Internal Faraday shield having distributed chevron patterns and correlated positioning relative to external inner and outer TCP coil
US9966236B2 (en) 2011-06-15 2018-05-08 Lam Research Corporation Powered grid for plasma chamber
US8658897B2 (en) 2011-07-11 2014-02-25 Tangitek, Llc Energy efficient noise dampening cables
DE102012200211A1 (de) * 2012-01-09 2013-07-11 Carl Zeiss Nts Gmbh Vorrichtung und Verfahren zur Oberflächenbearbeitung eines Substrates
US9029267B2 (en) 2013-05-16 2015-05-12 Lam Research Corporation Controlling temperature of a faraday shield
US9885493B2 (en) 2013-07-17 2018-02-06 Lam Research Corporation Air cooled faraday shield and methods for using the same
JP6286215B2 (ja) 2014-01-28 2018-02-28 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20150219565A1 (en) * 2014-02-04 2015-08-06 Applied Materials, Inc. Application of in-line thickness metrology and chamber matching in display manufacturing
US20170021380A1 (en) 2015-07-21 2017-01-26 Tangitek, Llc Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials
CN116978818A (zh) * 2016-06-03 2023-10-31 应用材料公司 扩散腔室内部的气流的设计
US20180166301A1 (en) * 2016-12-13 2018-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor manufacturing system
US11670490B2 (en) * 2017-09-29 2023-06-06 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated circuit fabrication system with adjustable gas injector
US10818479B2 (en) * 2017-11-12 2020-10-27 Taiwan Semiconductor Manufacturing Company, Ltd. Grounding cap module, gas injection device and etching apparatus
CN115488505A (zh) * 2022-09-27 2022-12-20 哈尔滨工业大学(威海) 一种解决镁合金负压激光焊接能量屏蔽的电磁装置及方法
CN118053776A (zh) * 2022-11-16 2024-05-17 江苏鲁汶仪器股份有限公司 一种终点检测装置及离子束刻蚀系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128632A (ja) * 1986-11-18 1988-06-01 Nec Corp 終点検出装置
JPH01232725A (ja) * 1988-03-14 1989-09-18 Oki Electric Ind Co Ltd ドライエッチング装置
JPH08111403A (ja) * 1994-10-06 1996-04-30 Sony Corp ドライエッチング装置
JPH09199476A (ja) * 1996-01-23 1997-07-31 Nec Corp ドライエッチング装置
JP3184765B2 (ja) * 1996-06-10 2001-07-09 東京エレクトロン株式会社 プラズマ処理装置のプラズマ光の検出窓
JP3897391B2 (ja) 1997-03-25 2007-03-22 昭和電工株式会社 金属製接合部材の摩擦撹拌接合法
JP3582287B2 (ja) * 1997-03-26 2004-10-27 株式会社日立製作所 エッチング装置
JP3978257B2 (ja) 1997-07-07 2007-09-19 昭和電工株式会社 摩擦撹拌接合によるワークの接合方法
JP3129265B2 (ja) * 1997-11-28 2001-01-29 日新電機株式会社 薄膜形成装置
JPH11267859A (ja) 1998-03-17 1999-10-05 Sumitomo Light Metal Ind Ltd 接合用加工材とその接合方法及び接合された加工パネル

Also Published As

Publication number Publication date
TW469535B (en) 2001-12-21
KR100549052B1 (ko) 2006-02-02
JP2001077092A (ja) 2001-03-23
US6503364B1 (en) 2003-01-07
KR20010050312A (ko) 2001-06-15

Similar Documents

Publication Publication Date Title
JP3709552B2 (ja) プラズマ処理装置及びプラズマ処理方法
US7686917B2 (en) Plasma processing system and apparatus and a sample processing method
JP4773079B2 (ja) プラズマ処理装置の制御方法
US7658815B2 (en) Plasma processing apparatus capable of controlling plasma emission intensity
TWI620227B (zh) Plasma processing device and plasma etching method
US6796269B2 (en) Apparatus and method for monitoring plasma processing apparatus
US20160372933A1 (en) Method of Detecting Plasma Discharge in a Plasma Processing System
JP2001313285A (ja) プラズマ処理装置及び試料の処理方法
JP5198616B2 (ja) プラズマ処理装置
JP4619468B2 (ja) プラズマ処理方法、プラズマ処理装置およびプラズマモニタリング装置
JP4109020B2 (ja) プラズマ処理装置
JP4098711B2 (ja) プラズマ処理装置
JP4018959B2 (ja) プラズマ処理装置
JPS62122217A (ja) マイクロ波プラズマ処理装置
JP2000021857A (ja) 反応性イオンエッチング方法及び装置
JP2000124199A (ja) プラズマ処理装置における炭素原子ラジカル測定用炭素原子光発生装置
JPH08203865A (ja) プラズマ処理装置
JPH09145675A (ja) 中性ラジカル測定方法及び中性ラジカル測定装置
JP2021119595A (ja) プラズマ処理装置
JP2013089933A (ja) プラズマ処理方法及びプラズマ処理装置
JP2001068457A (ja) ドライエッチング方法
JP2003133297A (ja) 半導体装置の製造方法と製造装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050629

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees