KR100601956B1 - 자기장의 변화를 이용한 온도측정장치 - Google Patents

자기장의 변화를 이용한 온도측정장치 Download PDF

Info

Publication number
KR100601956B1
KR100601956B1 KR1020040048934A KR20040048934A KR100601956B1 KR 100601956 B1 KR100601956 B1 KR 100601956B1 KR 1020040048934 A KR1020040048934 A KR 1020040048934A KR 20040048934 A KR20040048934 A KR 20040048934A KR 100601956 B1 KR100601956 B1 KR 100601956B1
Authority
KR
South Korea
Prior art keywords
magnetic field
wafer
temperature
conductor structure
magnitude
Prior art date
Application number
KR1020040048934A
Other languages
English (en)
Other versions
KR20060000070A (ko
Inventor
김태규
김성구
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020040048934A priority Critical patent/KR100601956B1/ko
Priority to JP2005186453A priority patent/JP2006013517A/ja
Priority to US11/167,093 priority patent/US7275865B2/en
Publication of KR20060000070A publication Critical patent/KR20060000070A/ko
Application granted granted Critical
Publication of KR100601956B1 publication Critical patent/KR100601956B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2215/00Details concerning sensor power supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

본 발명은 웨이퍼의 열처리 공정에서 자기장의 변화를 이용하여 웨이퍼의 온도를 실시간으로 측정하는 장치를 개시한다. 웨이퍼의 열처리 공정에서 웨이퍼의 온도를 측정하는 본 발명에 따른 장치는, 상기 웨이퍼의 상면에 배치되며, 온도에 따라 전기전도도가 변화하는 적어도 하나의 전도체 구조물; 상기 웨이퍼의 하면에서 상기 전도체 구조물과 대향하도록 설치된 자기장 생성부; 및 상기 전도체 구조물의 상면으로부터 이격되어 설치되는 자기장 측정 센서;를 포함하는 것을 특징으로 한다.
리소그래피, 웨이퍼, 소프트 베이크, 하드 베이크, PEB, 온도측정장치, 적외선센서, 접촉식 온도측정방법, 비접촉식 온도측정방법, 자기장, 유도코일

Description

자기장의 변화를 이용한 온도측정장치{Apparatus for measuring temperature using change of magnetic field}
도 1a 및 도 1b는 종래의 접촉식 온도측정 방법을 설명하기 위한 개략적인 도면이다.
도 2는 종래의 비접촉식 온도측정 방법을 설명하기 위한 개략적인 단면도이다.
도 3a 및 도 3b는 각각 본 발명에 따른 자기장의 변화를 이용한 온도측정장치의 개략적인 구조를 예시적으로 도시하는 사시도 및 단면도이다.
도 4는 일반적인 도체의 전기전도도와 온도의 관계를 나타내는 그래프이다.
도 5는 전도체 구조물의 유도자기장과 온도의 관계를 나타내는 그래프이다.
도 6은 전도체 구조물에 의한 자기장 분포의 변화를 테스트하기 위한 온도측정장치의 구조를 도시한다.
도 7a 및 도 7b는 도 6에 도시된 구조에서의 자기장 분포를 각각 자기장 벡터와 등자력선으로 도시한 도면이다.
도 8은 전도체 구조물의 권선수와 유도자기장의 관계를 도시하는 그래프이다.
도 9는 전도체 구조물의 전기전도도와 유도자기장의 관계를 도시하는 그래프 이다.
도 10은 전자석에 인가되는 전류의 주파수와 전도체 구조물에서 발생하는 유도자기장의 관계를 도시하는 그래프이다.
도 11a 및 도 11b은 다수의 전도체 구조물을 구비하는 온도측정장치의 구조를 도시한다.
도 12는 본 발명에 따른 온도측정장치에서 측정한 웨이퍼의 온도 편차를 예시적으로 도시한다.
도 13은 본 발명에 따른 온도측정장치를 포함하는 열처리 장치의 구조를 개략적으로 도시하는 단면도이다.
도 14는 본 발명에 따른 온도측정장치의 개략적인 회로 구성을 도시한다.
※ 도면의 주요 부분에 대한 부호의 설명 ※
10.......웨이퍼 12.......자기장 생성부
15.......전도체 구조물 18.......자기장 측정 센서
40.......핫플레이트 60.......교류발생장치
본 발명은 자기장의 변화를 이용한 온도측정장치에 관한 것으로, 보다 상세하게는, 반도체 제조 공정중 웨이퍼의 열처리 장치에서 자기장의 변화를 이용하여 웨이퍼의 온도를 실시간으로 측정하는 장치에 관한 것이다.
웨이퍼 위에 적층된 반도체 재료를 패터닝하는 포토리소그래피 공정에서는 크게 세 번의 열처리 공정을 거친다. 첫 번째 열처리 공정은, 웨이퍼의 전면에 포토레지스트(photo resist)를 도포한 후 수행하는 소프트 베이크(soft bake) 공정이다. 소프트 베이크는 웨이퍼 위에 도포된 포토 레지스트의 균일도를 유지하기 위한 것으로, 약 80~110℃의 핫 플레이트(hot plate)에서 웨이퍼에 열을 가해 포토 레지스트의 솔벤트를 제거 해준다. 소프트 베이크 공정이 수행된 후에는, 투영 노광 장치 등을 이용하여 웨이퍼에 자외선을 노광(exposure)시켜, 상기 포토 레지스트 상에 소정의 패턴을 형성하는 공정이 수행된다. 상기 노광 공정 이후에 두 번째 열처리 공정인 PEB(Post Exposure Bake) 공정이 수행된다. PEB는 노광시 자외선 빛의 산란으로 인한 노광 경계 부위의 불필요한 노광 현상을 방지하기 위한 것으로, 약 150℃의 핫 플레이트에서 웨이퍼를 굽는 공정이다. 그런 후에는, 노광이 끝난 웨이퍼에 현상 용액을 분사시켜, 노광시 빛을 받은 부분이나 빛을 받지 않은 부분을 화학작용에 의해 제거하는 공정이 수행된다. 이러한 현상 공정후, 약 150℃ 정도의 핫 플레이트 위에서 웨이퍼를 가열함으로써 포토 레지스트로부터 솔벤트를 제거하고 포토 레지스트를 경화시키는 세 번째 열처리 공정인 하드 베이크(hard bake) 공정이 수행된다.
이러한 열처리 공정에서, 웨이퍼의 온도분포와 온도균일도는 반도체 회로선폭의 품질과 산포에 가장 큰 영향을 미치는 중요한 공정변수이다. 왜냐하면, 온도가 미세한 오차를 가지더라도 포토 레지스트의 용해도의 차이가 달라져서 패턴의 선폭의 차이를 유발하기 때문이다. 일반적으로 양호한 품질을 얻기 위해서는, 핫 플레이트 위에서 가열되는 웨이퍼의 전체 영역에서의 온도 편차가 대략 ±0.1℃ 범위 이내에 있어야 한다. 따라서, 웨이퍼가 균일하게 가열되고 있는 지를 판단하기 위해서 열처리 공정중에 웨이퍼의 온도를 측정해야 할 필요가 있다.
종래의 웨이퍼 온도측정 방법으로는 접촉식 온도측정 방법과 비접촉식 온도측정 방법이 있다.
접촉식 온도측정 방법은, 실제로 웨이퍼의 열처리 공정을 시작하기 전에, 테스트를 위한 센서 웨이퍼를 핫 플레이트 위에서 가열하여 웨이퍼가 균일하게 가열되는 지를 검사하는 방법이다. 도 1a 및 도 1b는 이러한 센서 웨이퍼(110)를 도시하고 있다. 도 1a에 도시된 방법은, 센서 웨이퍼(110) 상에 다수의 온도센서(120)를 고르게 설치하고, 상기 온도센서(120)에 각각 연결된 와이어(125)를 통해 센서 웨이퍼(110) 상의 온도변화를 측정하는 방법이다. 그리고, 도 1b에 도시된 방법은, 와이어를 복잡하게 연결하는 대신, 센서 웨이퍼(110) 상에 다수의 온도센서(120)와 메모리(130)를 설치하고, 센서 웨이퍼(110) 상의 온도변화를 메모리(130)에 기록하는 방법이다. 여기서 사용하는 접촉식 온도센서로는, 전기저항을 이용하는 RTD(Resistance Thermal Detector), 열기전력을 이용하는 TC(Thermo Couple), 열팽창을 이용하는 금속 또는 유리 온도계, 실리콘 트랜지스터의 온도 특성을 이용하는 IC 온도센서 등 다양한 온도센서를 이용할 수 있다. 이러한 방법을 통해, 각각의 온도센서에서 측정된 온도가 균일하게 될 때까지 핫 플레이트의 가열 조건을 조절한다. 이렇게 해서, 센서 웨이퍼(110)의 전체 영역이 균일하게 가열됨을 확인한 후에, 실제로 웨이퍼를 투입하여 웨이퍼의 열처리 공정을 수행하게 된다.
이러한 접촉식 온도측정 방법에서는 온도센서를 웨이퍼에 직접 접촉시켜야 하지만, 온도센서를 측정대상에 정확하게 접촉시키기가 어렵다. 또한, 종래의 접촉식 온도측정 방법은 센서 웨이퍼를 이용해 미리 적절한 가열 조건을 설정하기 위한 것으로, 실제 웨이퍼의 열처리 공정이 수행되는 동안에는 웨이퍼의 온도를 측정할 수 없다. 즉, 열처리 공정중에 실시간(real time)으로 웨이퍼의 온도를 측정하는 것이 불가능하다. 따라서, 열처리 공정을 수행하는 도중에 외부 환경이 변화될 경우, 외부 환경 변화에 즉각적으로 대응하는 것이 불가능하다. 그 결과, 웨이퍼의 열처리 공정에서 불량률이 증가하게 된다. 또한, 복잡한 반도체 제조 과정에서 불량이 발생할 경우, 열처리 공정에 문제가 있는 것인지, 아니면 다른 공정에 문제가 있는 것인지 조차 확인하는 것이 불가능하다. 이를 확인하기 위해서는, 공정을 중지시키고 센서 웨이퍼를 이용해 온도측정을 다시 할 수밖에 없다. 이로 인해, 반도체 제조 공정 전체가 지연되고, 제조 비용이 증가하게 된다.
이러한 문제를 개선하여, 열처리 공정중 웨이퍼의 온도를 실시간으로 측정하고, 열처리 공정중 시간에 따른 온도변화를 기록한 온도이력 정보를 얻기 위한 비접촉식 온도측정 방법이 제안되었다. 상기 비접촉식 온도측정 방법은 흑체복사의 원리를 이용하는 것으로, 가열되는 물체에서 복사되는 적외선을 검출하여 온도를 측정하는 방식이다. 도 2는 비접촉식 온도측정 방법을 설명하기 위한 개략적인 단면도이다. 도 2에 도시된 바와 같이, 핫 플레이트(140) 위에서 웨이퍼(110)를 가열하고 있는 동안, 열처리 장치의 캡(cap)(150) 하부에 다수의 온도센서(160)를 설치하여 웨이퍼(110)의 온도를 실시간으로 측정한다. 여기서, 온도센서(160)로는 일반 적으로 적외선 센서(Infrared Thermometer)를 이용한다. 적외선 센서로는, 반도체의 내부광전효과를 이용하는 양자형 적외선 센서와, 재료온도의 상승에 따른 물성정수의 변화를 이용하는 열형 적외선 센서를 주로 사용한다. 또한, 열형 적외선 센서로는, 적외선을 받은 강유전체에서 전기가 발생되는 초전효과를 이용한 초전 적외선 센서가 주로 사용된다.
그러나, 상기와 같은 종래의 비접촉식 온도측정 방법의 경우, 측정대상에서 발생한 복사에너지가 센서에 충분히 도달해야 하고, 측정 대상물의 실효 방사율(emissivity)이 명확하게 알려져 있거나, 또는 재현이 가능해야 한다는 문제가 있다. 또한, 비접촉식 온도측정 방법에서 사용하는 적외선 센서는 고온(일반적으로 1000℃ 이상)에서는 비교적 정확도가 높지만, 웨이퍼의 열처리가 일어나는 저온(수백 ℃)에서는 정확도가 비교적 낮다는 문제가 있다. 더욱이, 앞서 설명한 바와 같이, 웨이퍼의 전체 영역에서 온도 편차는 ±0.1℃ 범위 이내에 있을 것이 요구되는데 반하여, 적외선 센서의 해상도는 약 1℃ 정도이기 때문에, 웨이퍼의 열처리 공정에 적외선 센서를 사용하는 것은 적당하지 않다.
본 발명은 상술한 종래기술의 문제점들을 개선하기 위한 것이다. 따라서, 본 발명의 목적은, 웨이퍼의 열처리 공정을 수행하는 동안 웨이퍼의 온도분포를 실시간으로 정밀하게 측정할 수 있는 온도측정장치를 제공하는 것이다.
본 발명의 한 실시예에 따르면, 웨이퍼의 열처리 공정에서 웨이퍼의 온도를 측정하는 장치는, 상기 웨이퍼의 상면에 배치되며, 온도에 따라 전기전도도가 변화하는 적어도 하나의 전도체 구조물; 상기 웨이퍼의 하면에서 상기 전도체 구조물과 대향하도록 설치된 자기장 생성부; 및 상기 전도체 구조물의 상면으로부터 이격되어 설치되는 자기장 측정 센서;를 포함하는 것을 특징으로 한다.
상기 웨이퍼 온도측정장치는, 상기 자기장 생성부에 교류 전류를 공급하는 교류전원; 상기 자기장 측정 센서에서 측정된 자기장의 세기로부터 온도를 계산하는 신호처리부; 및 상기 계산된 온도를 디스플레이 하는 단말기를 더 포함한다. 이때, 상기 교류전원은 소정의 순서에 따라 소정의 시간 간격으로 각각의 자기장 생성부에 순차적으로 교류 전류를 공급하는 것을 특징으로 한다.
한편, 상기 전도체 구조물은 나선형으로 적어도 1회 권선된 유도코일인 것을 특징으로 한다.
또한, 본 발명의 다른 실시예에 따르면, 상부면에 놓여진 웨이퍼를 균일하게 가열하는 핫플레이트 및 상기 핫플레이트를 밀폐하도록 덮는 커버를 포함하는 웨이퍼의 열처리 장치는, 상기 가열되는 웨이퍼의 상면에 배치되며, 온도에 따라 전기전도도가 변화하는 적어도 하나의 전도체 구조물; 상기 웨이퍼를 중심으로 상기 전도체 구조물과 대향하도록 설치된 자기장 생성부; 및 상기 전도체 구조물의 상방에 설치되는 자기장 측정 센서;를 구비하는 웨이퍼 온도측정장치를 더 포함하는 것을 특징으로 한다.
이때, 상기 자기장 생성부는 상기 핫플레이트 내부에 설치되며, 상기 자기장 측정 센서는 상기 커버의 내면으로부터 하방으로 돌출하여 설치된다.
이하, 첨부한 도면을 참조하여, 본 발명의 실시예에 따른 웨이퍼의 온도측정장치의 구조 및 동작에 대해 상세히 설명한다.
도 3a는 본 발명에 따른 자기장의 변화를 이용한 온도측정장치의 개략적인 구조를 예시적으로 도시하는 사시도이다. 그리고, 도 3b는 도 3a에 도시된 웨이퍼의 중심을 기준으로 한 단면도이다. 도 3a 및 도 3b에 도시된 바와 같이, 본 발명에 따른 온도측정장치는, 웨이퍼(10)의 상면에 배치되는 전도체 구조물(15), 상기 웨이퍼(10)를 중심으로 상기 전도체 구조물(15)과 대향하도록 설치된 자기장 생성부(12) 및 상기 전도체 구조물(15)의 상방에 설치되는 자기장 측정 센서(18)를 포함한다.
여기서, 전도체 구조물(15)은 전자기 유도에 따른 자기장 변화를 일으키기 위한 것으로, 예컨대, 나선형으로 적어도 1회 이상 권선된 유도 코일일 수 있다. 이러한 전도체 구조물(15)은 일반적으로 상온에서 높은 전기전도도를 가지며, 온도의 변화에 따라 전기전도도의 변화가 큰 재료를 사용하는 것이 바람직하다. 또한, 자기장 생성부(12)는 전류가 인가되었을 때 자기장을 발생시키기 위한 것으로, 예컨대, 교류 전원에 의해 구동되는 교류 구동 전자석일 수 있다.
이와 같은 구조의 본 발명에 따른 동작 원리를 설명하면 다음과 같다. 전자석과 같은 자기장 생성부(12)에 교류 전압이 인가되면, 상기 자기장 생성부(12)는 시간에 따라 변화하는 자기장을 생성한다. 그러면, 렌츠의 법칙(Lenz's law)과 패러데이의 유도법칙(Faraday's law)에 따라, 유도 코일과 같은 전도체 구조물(15)에서는 자기장의 변화를 방해하려는 방향으로 유도 자기장을 발생시킨다. 즉, 웨이퍼(10)에 설치된 전도체 구조물(15)에서 발생하는 유도 자기장은, 자기장 생성부(12)에 의해 발생하는 자기장을 감소시킨다. 따라서, 시간에 따라 변화하는 자기장의 크기는 웨이퍼(10) 상의 전도체 구조물(15)에 의해 감소한다. 이때, 전도체 구조물(15)에 의해 유도되는 유도 자기장의 크기는 전도체 구조물(15)의 전기전도도에 비례한다.
그런데, 일반적으로 금속과 같은 대부분의 전도성 물질은 온도의 증가에 따라, 도 4에 도시된 바와 같이, 전기전도도가 감소하게 된다.
유도 자기장의 크기가 전기전도도에 비례하므로, 금속 재료를 이용하여 전도체 구조물(15)을 형성하는 경우, 전도체 구조물(15)에서 발생하는 유도 자기장의 크기는, 도 5에 도시된 바와 같이, 온도의 증가에 따라 감소하게 된다. 그 결과, 온도가 증가할수록, 자기장 생성부(12)에 의해 발생되는 자기장의 감소량은 적어지게 된다. 따라서, 온도가 증가하면, 자기장 측정 센서(18)에서 측정되는 전체적인 자기장의 크기는 증가하게 된다.
이러한 원리에 따라, 웨이퍼(10)의 온도측정이 가능하게 된다. 즉, 웨이퍼(10) 상의 전도체 구조물(15)에서 발생하는 유도 자기장의 크기를 측정하면, 상기 웨이퍼(10)의 온도를 계산하는 것이 가능하다. 여기서, 전도체 구조물(15)에서 발생하는 유도 자기장의 크기는, 자기장 생성부(12)에서 발생하는 자기장의 크기와 자기장 측정 센서(18)에서 측정되는 전체적인 자기장의 크기의 차이를 통해 알 수 있다. 또한, 자기장 생성부(12)에서 발생하는 자기장의 크기는, 자기장 생성부(12)에 인가되는 교류전압의 크기 및 주파수를 통해 제어가 가능하다. 이때, 온 도측정장치의 해상도를 증가시키기 위해서는, 온도에 따른 전기전도도의 변화가 클수록 유리하다.
자기장 생성부(12)와 전도체 구조물(15)에 의한 자기장 분포를 확인하기 위해, 도 6의 좌측에 도시된 바와 같이, 권선(turn)수가 적어도 1회인 전도체 구조물(15)을 웨이퍼(10)의 중심에 배치하고, 웨이퍼(10) 아래에 자기장 생성부(12)를 배치하였다. 도 6의 우측은 좌측의 사각형 박스 부분을 나타내는 단면도이다. 여기서, 12a는 자기장 생성부(12)의 코어 부분이며, 12b는 자기장 생성부(12)의 코일 부분을 나타낸다. 도 7a 및 도 7b는 도 6의 구조에서 권선수가 1회인 경우에 대한 자기장 분포를 각각 자기장 벡터와 등자력선으로 도시하는 시뮬레이션 결과이다. 도 7a 및 도 7b에 도시된 바와 같이, 전도체 구조물(15)의 존재로 인해 자기장 생성부(12)에서 발생하는 자기장의 크기가 약화된다.
이때, 온도측정장치의 해상도는, 온도에 따른 전도체 구조물(15)의 전기전도도의 변화량 이외에, 전도체 구조물(15)에 의해 발생하는 유도 자기장의 크기에도 비례한다. 즉, 유도 자기장의 크기가 클수록 온도측정장치의 해상도를 더 높일 수 있다. 유도 자기장의 크기가 커지게 되면, 온도의 변화에 따른 유도 자기장의 절대적인 변화폭이 그만큼 커지게 되기 때문이다. 일반적으로 유도 자기장의 크기는, 코일의 권선수, 전기전도도, 자기장의 변화량 등에 의존하게 된다.
먼저, 도 8은 평면형 유도 코일 형태를 갖는 전도체 구조물(15)의 권선수에 따른 유도 자기장의 크기를 나타내는 그래프이다. 도 8에 도시된 바와 같이, 권선수가 각각 1회, 5회, 10회일 때, 전도체 구조물(15)에서 발생하는 유도 자기장의 크기가 점점 증가하는 것을 알 수 있다. 따라서, 코일의 권선수를 증가시킴으로서 온도에 따른 자기장의 변화량을 증폭시킬 수 있다.
도 9는 전기전도도에 따른 유도 자기장의 크기를 나타내는 그래프이다. 도 9를 통해서 알 수 있듯이, 구리의 전기전도도를 1x라고 할 때, 전도체 구조물(15)의 전기전도도가 감소할수록(0.5x에서 0.1x로 갈수록) 유도 자기장의 크기가 감소한다.
또한, 도 10은 자기장 생성부(12)에 인가되는 교류 전압의 주파수에 따른 유도 자기장의 크기를 나타내는 그래프이다. 도 10에 도시된 바와 같이, 교류 전압의 주파수가 100Hz에서 10000Hz로 증가할 때, 전도체 구조물(15)에서 유도되는 유도 자기장의 크기도 크게 증가한다. 앞서 설명한 바와 같이, 전도체 구조물(15)에서 발생하는 유도 자기장은, 전도체 구조물(15) 주위의 자기장의 변화에 비례하여 발생하기 때문이다.
따라서, 전도체 구조물(15)의 권선수가 증가할수록, 전도체 구조물(15)의 전기전도도가 클수록, 자기장 생성부(12)에 인가되는 교류 전압의 주파수가 높을수록, 본 발명에 따른 온도측정장치의 해상도가 증가한다.
도 11a 및 도 11b은 다수의 전도체 구조물(15)을 구비하는 온도측정장치의 구조를 도시로서, 도 11a는 웨이퍼(10)의 위쪽에서 본 평면도이고, 도 11b는 측면도이다. 베이크 장치와 같은 열처리 장치 내에서 열처리 되고 있는 웨이퍼(10)의 온도 편차를 정확히 측정하기 위해서는, 가능한 한 웨이퍼(10)의 여러 영역에서 온도를 측정할 필요가 있다. 따라서, 도 11a에서와 같이, 웨이퍼(10)의 상면에 다수 의 전도체 구조물(15)을 고르게 설치하여, 웨이퍼(10)의 각 부분에서의 온도를 측정한다. 이때, 웨이퍼의 표면에 적층되어 있는 반도체 칩(또는, 반도체 칩을 형성하기 위한 구조물)이 손상되지 않도록, 상기 전도체 구조물(15)은 웨이퍼의 표면 중 반도체 칩이 형성되지 않는 빈 공간에 배치되는 것이 바람직하다.
또한, 도 11b에 도시된 바와 같이, 상기 다수의 전도체 구조물(15)의 각각에 대응하는 위치에 다수의 자기장 생성부(12)와 자기장 측정 센서(18)가 각각 배치된다. 이를 통해, 다수의 전도체 구조물(15) 각각에 변화하는 자기장을 인가하며, 또한, 각각의 전도체 구조물(15)에서 발생하는 유도 자기장의 크기를, 상기 전도체 구조물(15) 상방에 있는 자기장 측정 센서(18)가 측정한다. 이때, 다수의 자기장 생성부(12)에서 각각 발생하는 자기장들에 의해 간섭 현상이 일어날 수도 있다. 이러한 간섭 현상은 정확한 온도측정을 방해할 것이다. 따라서, 각각의 자기장 생성부(12)에 교류 전압을 번갈아 가며 하나씩 인가하는 것이 바람직하다. 예컨대, 첫 번째 자기장 생성부에 교류 전압을 인가하는 동안, 다른 자기장 생성부는 OFF 상태가 되도록 한다. 그리고, 소정의 시간이 지나면, 두 번째 자기장 생성부에 교류 전압을 인가하고, 다른 자기장 생성부는 OFF로 한다. 이때, 각 자기장 생성부에 교류 전압이 인가되는 시간 간격은, 교류 전압의 주파수에 따라 적절히 정해질 수 있다. 예컨대, 교류 전압의 주파수가 100Hz 라면, 적어도 1/100 초 이상의 시간 동안 자기장 생성부에 전압이 인가되어야 한다.
도 12는 도 11a 및 도 11b에 도시된 본 발명에 따른 온도측정장치에서 측정한 웨이퍼의 온도 편차를 예시적으로 도시하는 그래프이다. 웨이퍼(10)가 가열되기 직전에서는 웨이퍼(10)의 전체 표면이 대기의 온도와 같은 상태에 있을 것이다. 웨이퍼(10)가, 예컨대, 베이크 장치의 핫플레이트(hot plate) 위에서 가열되면 웨이퍼(10)의 표면 온도가 서서히 올라가기 시작한다. 이때, 핫플레이트 및 웨이퍼(10)의 상태에 따라, 웨이퍼(10)의 표면온도의 증가속도는 차이가 있을 수 있기 때문에, 열처리 도중에도 △T1의 온도편차가 있을 수 있다. 또한, 웨이퍼(10)의 열처리가 완료된 후에도 △T2의 온도편차가 있을 수 있다. 본 발명에 따른 온도측정장치는 웨이퍼(10)의 표면에 다수 설치된 자기장 생성부(12), 전도체 구조물(15), 자기장 측정 센서(18)를 통해 이러한 온도편차를 실시간으로 관측할 수 있다. 따라서, 온도편차의 크기(△T1 또는 △T2)가, 예컨대, 0.1℃ 이상으로 커질 경우, 열처리 과정에서 문제가 발생하였음을 신속히 알 수 있다.
도 14는 본 발명에 따른 온도측정장치의 개략적인 회로 구성을 도시한다. 도 14에 도시된 바와 같이, 교류발생장치(또는 교류전원)(60)는 자기장 생성부(12)에 교류전압을 공급한다. 이때, 사용자는 자기장 생성부(12)에 공급되는 교류전압의 특성(예컨대, 주파수, 파형, 진폭 등)을 적절히 조절할 수 있다. 또한, 다수의 자기장 생성부(12)가 존재할 경우, 상기 교류발생장치(60)는 다수의 자기장 생성부(12)에 하나씩 번갈아 가며 전압을 인가할 수 있다. 그러면, 앞서 설명한 바와 같이, 자기장 생성부(12)에서 자기장이 발생한다. 상기 자기장 생성부(12)에서 발생한 자기장의 크기는, 유도 코일과 같은 전도체 구조물(15)에 의해 감소되며, 자기장 측정 센서(18)가 이러한 자기장의 크기를 측정한다.
자기장 측정 센서(18)는 자기장의 크기에 따른 신호를 발생시키는데, 이 신호는 신호처리부(70)로 전달된다. 신호처리부(70)는 상기 자기장 측정 센서(18)에서 측정된 자기장의 세기로부터 온도를 계산하는 역할을 한다. 보다 구체적으로, 상기 신호처리부는(70)는, 자기장 측정 센서(18)로부터 받은 신호를 증폭하는 신호증폭기(72), 증폭된 신호로부터 자기장의 크기를 계산하는 자기장 계산부(74), 자기장 생성부(12)에서 발생한 자기장의 크기와 자기장 계산부(74)에서 계산된 자기장의 크기를 비교하여, 상기 전도체 구조물(15)에서 유도된 자기장의 크기를 계산하는 유도 자기장 계산부(76) 및 상기 계산된 유도 자기장의 크기로부터 웨이퍼(10)의 온도를 계산하는 온도계산부(78)를 포함할 수 있다. 여기서, 자기장 생성부(12)에서 발생한 자기장의 크기는 자기장 생성부(12)에 인가되는 교류전압으로부터 알 수 있다. 한편, 상기 온도계산부(78)는, 전도체 구조물(15)에서 발생하는 유도 자기장의 크기와 웨이퍼(10)의 온도 사이의 관계에 대한 미리 측정된 데이터를 룩업테이블(lookup table)의 형태로 메모리(도시되지 않음)에 기록하여 둘 수 있다. 이 경우, 상기 온도계산부(78)는, 별도의 계산 과정없이, 룩업테이블을 검색하여 유도 자기장의 크기로부터 웨이퍼(10)의 온도를 빠른 속도로 구할 수 있다.
이렇게 해서 얻은 웨이퍼(10)의 온도는 단말기(80)로 전달되어, 사용자가 쉽게 알아 볼 수 있도록 디스플레이 된다. 예컨대, 온도는 도 12의 그래프와 같은 형태로 표시될 수도 있다.
도 13은 본 발명에 따른 온도측정장치를 포함하는 열처리 장치의 구조를 개략적으로 도시하는 단면도이다. 웨이퍼(10)를 균일하게 가열하기 위한 베이크 장치 와 같은 열처리 장치에서, 웨이퍼(10)는 핫플레이트(hot plate)(40)의 상면에 놓여진다. 핫플레이트(40)의 내부에는 열을 발생시키기 위한 열선이 내장되어 있다. 여기서, 도 13에 도시된 바와 같이, 이러한 핫플레이트(40) 내부에 본 발명에 따른 다수의 자기장 생성부(12)를 설치할 수 있다. 그러나, 이는 어디까지나 하나의 예일 뿐이고, 핫플레이트(40)의 하부에 자기장 생성부(12)를 다수 설치할 수도 있다. 따라서, 상기 핫플레이트(40)는 자기장에 영향을 주지 않는 재료를 사용하는 것이 바람직하다.
한편, 도 13에 도시된 바와 같이, 자기장의 세기를 측정하기 위한 자기장 측정 센서(18)는 상기 핫플레이트를 덮는 커버(50)에 설치될 수 있다. 상기 커버(50)는 열처리 되는 웨이퍼(10)가 외부의 환경에 의해 영향을 받지 않도록 내부를 밀폐하는 역할을 한다. 자기장 측정 센서(18)는 이러한 커버(50)의 내면으로부터 하방으로 돌출하여 전도체 구조물(15)과 대향하도록 설치될 수 있다. 이러한 구조를 통해, 본 발명에 따른 온도측정장치는 웨이퍼 열처리 장치에 적절히 적용될 수 있다.
지금까지 설명한 바와 같이, 본 발명에 따르면, 온도센서 대신에 유도 자기장을 발생시킬 수 있는 소자를 측정대상에 부착함으로써, 온도센서의 불완전 접촉문제를 해결할 수 있다. 또한, 웨이퍼의 열처리 공정중에 시간에 따른 웨이퍼의 온도변화를 실시간으로 정확히 측정할 수 있다. 그리고, 기존 비접촉식 온도측정 방법과는 달리, 측정대상물의 표면 상태와 무관하게 정확한 온도측정이 가능하다. 즉, 적외선 센서를 이용하는 종래의 비접촉식 온도측정 방법에서는, 측정대상의 실 효 방사율이 명확하게 알려져 있어야 온도측정이 가능하지만, 본 발명에서는 이러한 조건이 불필요하다.

Claims (18)

  1. 웨이퍼의 열처리 공정에서 웨이퍼의 온도를 측정하는 장치에 있어서,
    상기 웨이퍼의 상부 표면에 배치되며, 온도에 따라 전기전도도가 변화하는 적어도 하나의 전도체 구조물;
    상기 웨이퍼의 하면 쪽에서 상기 전도체 구조물과 대향하도록 설치된 자기장 생성부; 및
    상기 전도체 구조물의 상면으로부터 이격되어 설치되는 자기장 측정 센서;를 포함하는 것을 특징으로 하는 웨이퍼 온도측정장치.
  2. 제 1 항에 있어서,
    상기 자기장 생성부에 교류 전류를 공급하는 교류전원;
    상기 자기장 측정 센서에서 측정된 자기장의 세기로부터 웨이퍼의 온도를 계산하는 신호처리부; 및
    상기 계산된 웨이퍼의 온도를 디스플레이 하는 단말기를 더 포함하는 웨이퍼 온도측정장치.
  3. 제 2 항에 있어서,
    상기 신호처리부는:
    상기 자기장 측정 센서로부터의 신호를 증폭하는 신호증폭기;
    상기 증폭된 신호로부터 자기장의 크기를 계산하는 자기장 계산부;
    자기장 생성부에서 발생한 자기장의 크기와 자기장 계산부에서 계산된 자기장의 크기를 비교하여, 상기 전도체 구조물에서 유도된 자기장의 크기를 계산하는 유도자기장 계산부; 및
    상기 계산된 유도자기장의 크기로부터 웨이퍼의 온도를 계산하는 온도계산부;를 포함하는 것을 특징으로 하는 웨이퍼 온도측정장치.
  4. 제 3 항에 있어서,
    상기 온도계산부는 유도자기장의 크기와 웨이퍼의 온도 사이의 관계를 미리 측정하여 기록한 룩업테이블을 이용하는 것을 특징으로 하는 웨이퍼 온도측정장치.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 전도체 구조물은 나선형으로 적어도 1회 권선된 유도코일인 것을 특징으로 하는 웨이퍼 온도측정장치.
  6. 제 5 항에 있어서,
    상기 웨이퍼의 표면에 다수의 유도코일이 배치되어 있는 것을 특징으로 하는 웨이퍼 온도측정장치.
  7. 제 6 항에 있어서,
    상기 다수의 유도코일은, 상기 웨이퍼의 표면 중 반도체 칩이 형성되지 않는 빈 공간에 배치되는 것을 특징으로 하는 웨이퍼 온도측정장치.
  8. 제 7 항에 있어서,
    상기 다수의 유도코일 각각에 대응하는 위치에 다수의 자기장 생성부와 자기장 측정 센서가 각각 배치되는 것을 특징으로 하는 웨이퍼 온도측정장치.
  9. 제 8 항에 있어서,
    상기 교류전원은 소정의 순서에 따라 소정의 시간 간격으로 각각의 자기장 생성부에 순차적으로 교류 전류를 공급하는 것을 특징으로 하는 웨이퍼 온도측정장치.
  10. 제 1 항 또는 제 2 항에 있어서,
    상기 자기장 생성부는 교류 구동 전자석인 것을 특징으로 하는 웨이퍼 온도측정장치.
  11. 상부면에 놓여진 웨이퍼를 균일하게 가열하는 핫플레이트 및 상기 핫플레이트를 밀폐하도록 덮는 커버를 포함하는 웨이퍼의 열처리 장치에 있어서,
    상기 가열되는 웨이퍼의 상면에 배치되며, 온도에 따라 전기전도도가 변화하는 적어도 하나의 전도체 구조물;
    상기 웨이퍼를 중심으로 상기 전도체 구조물과 대향하도록 설치된 자기장 생성부; 및
    상기 전도체 구조물의 상방에 설치되는 자기장 측정 센서;를 구비하는 웨이퍼 온도측정장치를 더 포함하는 것을 특징으로 하는 웨이퍼 열처리 장치.
  12. 제 11 항에 있어서,
    상기 온도측정장치는:
    상기 자기장 생성부에 교류 전류를 공급하는 교류전원;
    상기 자기장 측정 센서에서 측정된 자기장의 세기로부터 웨이퍼의 온도를 계산하는 신호처리부; 및
    상기 계산된 웨이퍼의 온도를 디스플레이 하는 단말기를 더 포함하는 웨이퍼 열처리 장치.
  13. 제 11 항 또는 제 12 항에 있어서,
    상기 전도체 구조물은 나선형으로 적어도 1회 권선된 유도코일인 것을 특징으로 하는 웨이퍼 열처리 장치.
  14. 제 13 항에 있어서,
    상기 웨이퍼의 표면에 다수의 유도코일이 배치되어 있는 것을 특징으로 하는 웨이퍼 열처리 장치.
  15. 제 14 항에 있어서,
    상기 다수의 유도코일은, 상기 웨이퍼의 표면 중 반도체 칩이 형성되지 않는 빈 공간에 배치되는 것을 특징으로 하는 웨이퍼 열처리 장치.
  16. 제 15 항에 있어서,
    상기 다수의 유도코일 각각에 대응하는 위치에 다수의 자기장 생성부와 자기장 측정 센서가 각각 배치되는 것을 특징으로 하는 웨이퍼 열처리 장치.
  17. 제 16 항에 있어서,
    상기 자기장 생성부는 상기 핫플레이트 내에 설치되며, 상기 자기장 측정 센서는 상기 커버의 내면으로부터 하방으로 설치되는 것을 특징으로 하는 웨이퍼 열처리 장치.
  18. 제 16 항에 있어서,
    상기 교류전원은 소정의 순서에 따라 소정의 시간 간격으로 각각의 자기장 생성부에 순차적으로 교류 전류를 공급하는 것을 특징으로 하는 웨이퍼 열처리 장치.
KR1020040048934A 2004-06-28 2004-06-28 자기장의 변화를 이용한 온도측정장치 KR100601956B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020040048934A KR100601956B1 (ko) 2004-06-28 2004-06-28 자기장의 변화를 이용한 온도측정장치
JP2005186453A JP2006013517A (ja) 2004-06-28 2005-06-27 磁場の変化を利用した温度測定装置
US11/167,093 US7275865B2 (en) 2004-06-28 2005-06-28 Temperature measuring apparatus using change of magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040048934A KR100601956B1 (ko) 2004-06-28 2004-06-28 자기장의 변화를 이용한 온도측정장치

Publications (2)

Publication Number Publication Date
KR20060000070A KR20060000070A (ko) 2006-01-06
KR100601956B1 true KR100601956B1 (ko) 2006-07-14

Family

ID=35505688

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040048934A KR100601956B1 (ko) 2004-06-28 2004-06-28 자기장의 변화를 이용한 온도측정장치

Country Status (3)

Country Link
US (1) US7275865B2 (ko)
JP (1) JP2006013517A (ko)
KR (1) KR100601956B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521718B1 (ko) * 2013-11-18 2015-05-19 전북대학교산학협력단 홀센서 어레이를 이용한 임계전이온도 측정장치 및 그 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230536A1 (en) * 2006-03-28 2007-10-04 Mtu Aero Engines Gmbh Method and apparatus for detection of flaws in a metal component
US20080085609A1 (en) * 2006-07-31 2008-04-10 Vasek James E Method for protecting high-topography regions during patterning of low-topography regions
US7651267B2 (en) * 2006-08-08 2010-01-26 Ford Global Technologies, Llc Sensor arrangement and method for using same
JP4842195B2 (ja) * 2007-04-06 2011-12-21 新日本製鐵株式会社 鋳片表面温度の測定装置および鋳片表面温度の測定方法
CN102564637B (zh) * 2010-12-15 2015-09-09 新科实业有限公司 磁隧道结中偏流/偏压引起的升温的测量方法
JP2013036941A (ja) * 2011-08-10 2013-02-21 Yamaha Corp 磁気センサの検査装置及び検査方法
US9779872B2 (en) * 2013-12-23 2017-10-03 Kla-Tencor Corporation Apparatus and method for fine-tuning magnet arrays with localized energy delivery
KR101594256B1 (ko) 2014-08-19 2016-02-17 세종대학교산학협력단 열 감지 마그네틱 센서
US10041842B2 (en) * 2014-11-06 2018-08-07 Applied Materials, Inc. Method for measuring temperature by refraction and change in velocity of waves with magnetic susceptibility

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515356B1 (en) * 1988-08-24 1995-07-12 Valtion Teknillinen Tutkimuskeskus Method and apparatus for measuring the temperature of an electrically conductive material
JP3165938B2 (ja) * 1993-06-24 2001-05-14 東京エレクトロン株式会社 ガス処理装置
US5466614A (en) * 1993-09-20 1995-11-14 At&T Global Information Solutions Company Structure and method for remotely measuring process data
US6150809A (en) * 1996-09-20 2000-11-21 Tpl, Inc. Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
US6064220A (en) * 1997-07-29 2000-05-16 Lsi Logic Corporation Semiconductor integrated circuit failure analysis using magnetic imaging
US6034357A (en) * 1998-06-08 2000-03-07 Steag Rtp Systems Inc Apparatus and process for measuring the temperature of semiconductor wafers in the presence of radiation absorbing gases
JP3709552B2 (ja) * 1999-09-03 2005-10-26 株式会社日立製作所 プラズマ処理装置及びプラズマ処理方法
JP3556549B2 (ja) * 1999-12-10 2004-08-18 シャープ株式会社 シート抵抗測定器および電子部品製造方法
US6716303B1 (en) * 2000-10-13 2004-04-06 Lam Research Corporation Vacuum plasma processor having a chamber with electrodes and a coil for plasma excitation and method of operating same
US6639402B2 (en) * 2001-01-31 2003-10-28 University Of Kentucky Research Foundation Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)
US6671232B1 (en) * 2001-07-25 2003-12-30 Maxtor Corporation Method and apparatus for measuring the surface temperature of a disk
US6794886B1 (en) * 2001-11-01 2004-09-21 Kla-Tencor Technologies Corporation Tank probe for measuring surface conductance
US20030186519A1 (en) * 2002-04-01 2003-10-02 Downey Daniel F. Dopant diffusion and activation control with athermal annealing
EP2226644A1 (en) * 2002-11-29 2010-09-08 Yamaha Corporation Magnetic sensor for obtaining data regarding temperature characteristic of the same
US6864108B1 (en) * 2003-10-20 2005-03-08 Texas Instruments Incorporated Measurement of wafer temperature in semiconductor processing chambers
JP4433820B2 (ja) * 2004-02-20 2010-03-17 Tdk株式会社 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP4466487B2 (ja) * 2005-06-27 2010-05-26 Tdk株式会社 磁気センサおよび電流センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521718B1 (ko) * 2013-11-18 2015-05-19 전북대학교산학협력단 홀센서 어레이를 이용한 임계전이온도 측정장치 및 그 방법

Also Published As

Publication number Publication date
US20050286607A1 (en) 2005-12-29
US7275865B2 (en) 2007-10-02
JP2006013517A (ja) 2006-01-12
KR20060000070A (ko) 2006-01-06

Similar Documents

Publication Publication Date Title
US7275865B2 (en) Temperature measuring apparatus using change of magnetic field
US6676289B2 (en) Temperature measuring method in pattern drawing apparatus
KR20000011356A (ko) 가열장치,가열장치의평가법및패턴형성방법
US20080238466A1 (en) Temperature sensing and prediction in ic sockets
CN101495821A (zh) 集成电路插座中的温度感测与预测
JP2012230023A (ja) 温度測定装置、温度校正装置及び温度校正方法
US6593761B1 (en) Test handler for semiconductor device
JP2001210683A (ja) プローバのチャック機構
JPH07106392A (ja) 加工データを遠隔的に測定するための構造ならびにその方法
JP5485936B2 (ja) 温度校正装置及び温度校正方法
JP2001242014A (ja) 基板の温度測定方法および処理方法
TWI230952B (en) Testing method for electronic part and testing device
WO2019001105A1 (zh) 一种基于红外热像仪的发射率测试方法
US6130414A (en) Systems and methods for controlling semiconductor processing tools using measured current flow to the tool
TW528860B (en) Temperature measuring method and apparatus and semiconductor heat treatment apparatus
KR20120121852A (ko) 온도 측정 장치, 온도 교정 장치 및 온도 교정 방법
KR20160064272A (ko) 열전박막의 수직방향 열전특성 측정센서유닛
JPH0774218A (ja) Icのテスト方法およびそのプローブカード
CN112098765A (zh) 一种基于热电堆的设备的自检系统、自检电路及自检方法
CN113557430A (zh) 传感器设备及用于操作传感器设备的方法
JP2524384B2 (ja) 極低温用温度計
KR100683587B1 (ko) 추진제어인버터의 냉각 유니트 성능 시험장치 및 그 방법
JPH06151537A (ja) 配線寿命の評価方法
JPS62165325A (ja) ランプアニ−ル装置
JPH0275983A (ja) 磁性体の鉄損の温度特性測定方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140619

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160620

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170619

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 14