WO2019001105A1 - 一种基于红外热像仪的发射率测试方法 - Google Patents

一种基于红外热像仪的发射率测试方法 Download PDF

Info

Publication number
WO2019001105A1
WO2019001105A1 PCT/CN2018/083683 CN2018083683W WO2019001105A1 WO 2019001105 A1 WO2019001105 A1 WO 2019001105A1 CN 2018083683 W CN2018083683 W CN 2018083683W WO 2019001105 A1 WO2019001105 A1 WO 2019001105A1
Authority
WO
WIPO (PCT)
Prior art keywords
emissivity
infrared camera
temperature
infrared
testing method
Prior art date
Application number
PCT/CN2018/083683
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
张运湘
刘凯
胡建景
杨玉
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Publication of WO2019001105A1 publication Critical patent/WO2019001105A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the invention relates to a test method for emissivity, in particular to an emissivity test method based on an infrared camera.
  • the emissivity is the ratio of the radiant energy of an actual object to the radiant energy of a black body at the same temperature.
  • the emissivity of an actual object is related to the surface state of an object such as the surface temperature of the object, the surface roughness, and the surface oxide layer, surface impurities, or coating.
  • the infrared camera uses an infrared detector and an optical imaging objective to receive the infrared radiation energy distribution pattern of the target to be reflected on the photosensitive element of the infrared detector, thereby obtaining an infrared thermal image.
  • the infrared thermal image reflects the intensity of the infrared radiation of the target object, and since the emissivity of the object is directly related to the infrared radiance, the emissivity of the surface of the object can be measured by an infrared camera.
  • the method for testing the emissivity of an object is usually to make a small sample of a small-sample sample and measure it with a dedicated emissivity meter.
  • a dedicated emissivity meter In some cases, when the site needs to evaluate the surface emissivity of an object without damage or insufficient time, It is impossible to obtain its emissivity data.
  • dedicated infrared emissivity meters are generally benchtop and expensive, and cannot meet field testing needs.
  • the present invention provides an emissivity testing method based on an infrared camera, which has the advantages of being portable and non-destructive.
  • an infrared camera-based emissivity testing method comprising: measuring physical parameters of an environment; setting a built-in parameter of the infrared camera according to the physical parameter of the environment, and Setting an infrared measuring distance; measuring a temperature of the surface of the object; and illuminating the surface of the object with the infrared camera to continuously adjust a built-in radiance parameter of the infrared camera until the display temperature of the infrared camera The same as the temperature of the surface of the object, the emissivity of the infrared camera is the emissivity of the surface of the object.
  • the measuring the temperature of the surface of the object comprises: applying an insulating tape on the surface of the object to stabilize for 15 to 25 minutes; and adjusting the built-in radiance parameter of the infrared camera to The emissivity of the insulating tape is irradiated to the surface of the insulating tape by the infrared camera, and the display temperature is the temperature of the surface of the object.
  • the insulating tape is a layer of electrical insulating tape having an emissivity of 0.98.
  • the built-in radiance parameter of the infrared camera is adjusted to 0.98.
  • the infrared camera is placed at the infrared measuring distance.
  • the normal angle of the infrared camera and the surface of the object is maintained at 45 ° C to 90 ° C.
  • the size of the insulating tape is 5 mm ⁇ 1 mm. ⁇ 10mm ⁇ 1mm.
  • the insulating tape can be replaced by applying a black lacquer having an emissivity of 0.97.
  • the built-in radiance parameter of the infrared camera is adjusted to 0.97.
  • the temperature of the surface of the object is measured using a thermocouple or a thermal resistance.
  • the infrared camera when the surface of the object is illuminated by the infrared camera, the infrared camera is placed at the infrared measuring distance.
  • the normal angle of the infrared camera and the surface of the object is maintained at 45 ° C to 90 ° C.
  • the temperature and humidity of the environment are measured with a temperature and humidity meter.
  • the invention provides an emissivity testing method based on an infrared thermal imager, comprising: measuring physical parameters of an environment, setting internal parameters of the infrared thermal imager according to physical parameters of the environment, setting an infrared measuring distance, and measuring the surface of the object.
  • the temperature and the surface of the object are illuminated by the infrared camera, and the built-in radiance parameter of the infrared camera is continuously adjusted until the display temperature of the infrared camera is the same as the temperature of the surface of the object, and the radiance of the infrared camera is the surface of the object. Emissivity.
  • the invention relies on the precision of the infrared camera, the temperature measurement accuracy of the thermocouple or the thermal resistor, the thermal conductivity of the insulating tape or the black paint, and the stability of the emissivity, providing a field and portability, and The emissivity test method does not destroy the object.
  • the test result of the method has high accuracy.
  • the invention can well realize the emissivity evaluation of the workpiece and the construction site, especially when the infrared coating is applied, if it does not meet the requirements, it can be reworked in time. To avoid construction problems caused by deviations between test samples and construction workpieces. It can be widely used in construction sites on construction sites, inspection and diagnosis of buildings and bridges, and maintenance of large-scale industrial equipment.
  • FIG. 1 is a flow chart of an infrared camera based emissivity testing method in accordance with an embodiment of the present invention.
  • thermocouple 2 is a schematic diagram of testing the surface temperature of an object using a thermocouple or a thermal resistance, in accordance with an embodiment of the present invention.
  • FIG 3 is a schematic view of testing the surface temperature of an object using an insulating tape or black lacquer as a comparative substance, in accordance with an embodiment of the present invention.
  • the infrared thermal imager-based emissivity testing method comprises the following steps:
  • step S101 in Fig. 1 the physical parameters of the environment are measured.
  • the temperature and humidity of the environment are measured using a temperature and humidity meter.
  • the physical parameters of the environment are not only temperature and humidity, but other physical parameters can be measured if necessary, and are not limited herein.
  • the built-in parameters of the infrared camera are set according to the physical parameters of the environment, and the infrared measurement distance is set.
  • the built-in parameters of the temperature and humidity of the infrared camera are set according to the physical parameters of the temperature and humidity of the environment in step S101, and the infrared measurement distance is set.
  • the detection distance of the infrared camera the target size ⁇ IFOV, where IFOV is the spatial resolution and the spatial resolution is the minimum target (area) that can be detected by each pixel of the infrared camera at the unit test distance.
  • IFOV the spatial resolution
  • the spatial resolution is the minimum target (area) that can be detected by each pixel of the infrared camera at the unit test distance.
  • the smaller the spatial resolution the farther it can be measured. Therefore, the infrared measurement distance in this step mainly depends on the size of the object to be measured and the spatial resolution of the infrared camera.
  • step S103 in Fig. 1 the temperature of the surface of the object is measured.
  • the temperature of the surface of the object can be measured by a thermocouple or a thermal resistance.
  • reference numeral 1 denotes an infrared camera
  • 2 denotes a thermocouple or a thermal resistance
  • L denotes an infrared test distance.
  • the temperature of the surface of the object can also be measured by: attaching an insulating tape on the surface of the object for 15 to 25 minutes; adjusting the built-in radiance parameter of the infrared camera to the emissivity of the insulating tape, using infrared heat
  • the image is illuminated by the surface of the insulating tape, and the temperature is the temperature of the surface of the object.
  • an insulating tape with a size of 5mm ⁇ 1mm ⁇ 10mm ⁇ 1mm is attached to the surface of the object and stabilized for 15 ⁇ 25min until the temperature of the surface of the object to be tested is the same as the temperature of the surface of the insulating tape.
  • the insulating tape has a layer emissivity of 0.98.
  • reference numeral 1 denotes an infrared thermal imager
  • reference numeral 3 denotes an insulating tape or black lacquer
  • L denotes an infrared test distance.
  • the working principle of the infrared camera is to use photoelectric equipment to detect and measure the radiation, and establish a certain relationship between the radiation on the surface of the object and the surface temperature, and the emissivity of the surface of the object is directly related to the radiation, so the emissivity of the surface of the object It can be obtained by the surface temperature, that is, it can be considered that one display temperature in the infrared camera corresponds to one emissivity.
  • this step first, by adjusting the built-in radiance of the infrared camera to the radiance of the known contrast substance, and then measuring the temperature of the contrast substance, since the temperature of the contrast substance is the same as the temperature of the surface of the object, To determine the temperature of the surface of the object.
  • the surface of the object is illuminated by the infrared camera, and the built-in radiance parameter of the infrared camera is continuously adjusted until the display temperature of the infrared camera is the same as the temperature of the surface of the object, and the infrared thermal image is
  • the radiance of the instrument is the emissivity of the surface of the object.
  • the infrared camera is placed at the infrared measuring distance in step S102, and the normal angle of the infrared camera and the surface of the object is maintained at 45 ° C to 90 ° C. Based on the same principle as described in step S103, it can be concluded that the radiance of the infrared camera is the emissivity of the surface of the object.
  • the invention provides an emissivity testing method based on an infrared thermal imager, comprising: measuring physical parameters of an environment, setting internal parameters of the infrared thermal imager according to physical parameters of the environment, setting an infrared measuring distance, and measuring the surface of the object.
  • the temperature and the surface of the object are illuminated by the infrared camera, and the built-in radiance parameter of the infrared camera is continuously adjusted until the display temperature of the infrared camera is the same as the temperature of the surface of the object, and the radiance of the infrared camera is the surface of the object. Emissivity.
  • the present invention uses an infrared thermal imager for field testing, which does not require separate sample preparation, does not require special equipment, and has portability.
  • the invention can be used for testing the infrared emissivity of the surface of the non-destructible sample, testing and evaluating the surface emissivity of the object on the construction site, discovering the problem in time, guiding the construction, and also being used for the temporary absence of the emissivity measuring instrument for the sample or
  • the workpiece is evaluated and can be widely used in the detection and diagnosis of buildings and bridges, and the maintenance of large industrial equipment.
  • the temperature and humidity meter uses the temperature and humidity meter to measure the temperature and humidity of the surrounding environment, set the built-in parameters of the temperature and humidity of the infrared camera according to the measured temperature and humidity of the surrounding environment, and set the infrared test distance, and measure the surface temperature of the object with a thermocouple.
  • the infrared camera is used to illuminate the surface of the object at the set infrared test distance.
  • the angle of the infrared camera and the surface of the object to be measured is maintained at 45°, and the built-in radiance parameter of the camera is continuously adjusted until the infrared image is applied.
  • the temperature of the instrument is the same as the temperature of the thermocouple test. At this time, the radiance displayed by the infrared camera is the surface emissivity of the object.
  • the temperature and humidity meter uses the temperature and humidity meter to measure the temperature and humidity of the surrounding environment, set the built-in parameters of the temperature and humidity of the infrared camera according to the measured temperature and humidity of the surrounding environment, and set the infrared test distance, and measure the surface temperature of the object with the thermal resistance.
  • the infrared camera is used to illuminate the surface of the object at a set infrared test distance.
  • the angle of the infrared camera and the surface of the object to be measured is maintained at 90°, and the built-in radiance parameter of the camera is continuously adjusted until the infrared image is applied.
  • the temperature of the instrument is the same as the temperature of the thermal resistance test. At this time, the radiance displayed by the infrared camera is the surface emissivity of the object.
  • the built-in parameters of the temperature and humidity of the infrared camera are set according to the measured temperature and humidity of the surrounding environment, and the infrared test distance is set.
  • the electrical insulating tape is irradiated, and the angle of the infrared camera and the surface of the object to be measured is maintained at 90°.
  • the display temperature is the temperature of the surface of the object.
  • the surface of the object is illuminated by the infrared camera at the set infrared test distance.
  • the angle of the infrared camera and the surface of the measured object is maintained at 90°, and the built-in radiance parameters of the camera are continuously adjusted until the infrared camera
  • the display temperature is the same as the test temperature of the electrical insulating tape, and the radiance displayed by the infrared camera is the surface emissivity of the object.
  • the built-in parameters of the temperature and humidity of the infrared camera are set according to the measured temperature and humidity of the surrounding environment, and the infrared test distance is set.
  • a layer of electrical insulating tape with an emissivity of 0.98 and a size of 7mm ⁇ 1mm is applied to the surface of the object for 25 minutes.
  • the built-in radiance parameter of the infrared camera is adjusted to 0.98, and the infrared tester is used to set the infrared test distance.
  • the electrical insulating tape is irradiated, and the angle of the infrared camera and the surface of the object to be measured is maintained at 60°.
  • the display temperature is the temperature of the surface of the object.
  • the infrared camera is used to illuminate the surface of the object at the set infrared test distance.
  • the angle of the infrared camera and the surface of the object to be measured is maintained at 60°, and the built-in radiance parameters of the camera are continuously adjusted until the infrared camera.
  • the display temperature is the same as the test temperature of the electrical insulating tape, and the radiance displayed by the infrared camera is the surface emissivity of the object.
  • the built-in parameters of the temperature and humidity of the infrared camera are set according to the measured temperature and humidity of the surrounding environment, and the infrared test distance is set. Apply a layer of black paint with an emissivity of 0.97 and a size of 10mm ⁇ 1mm on the surface of the object for 20 minutes. Adjust the built-in radiance parameter of the infrared camera to 0.97, and set the infrared test distance with an infrared camera. The black lacquer is irradiated, and the angle of the infrared camera and the surface of the object to be measured is maintained at 80°. At this time, the display temperature is the temperature of the surface of the object.
  • the infrared camera is used to illuminate the surface of the object at the set infrared test distance.
  • the angle of the infrared camera and the surface of the object to be measured is maintained at 80°, and the built-in radiance parameters of the camera are continuously adjusted until the infrared camera
  • the display temperature is the same as the test temperature of the black lacquer surface, and the radiance displayed by the infrared camera is the surface emissivity of the object.
  • the built-in parameters of the temperature and humidity of the infrared camera are set according to the measured temperature and humidity of the surrounding environment, and the infrared test distance is set. Apply a layer of black paint with an emissivity of 0.97 and a size of 8mm ⁇ 1mm on the surface of the object for 25 minutes. Adjust the built-in radiance parameter of the infrared camera to 0.97, and set the infrared test distance with an infrared camera. The black lacquer is irradiated, and the angle of the infrared camera and the surface of the object to be measured is maintained at 75°. At this time, the display temperature is the temperature of the surface of the object.
  • the surface of the object is illuminated by the infrared camera at the set infrared test distance.
  • the angle of the infrared camera and the surface of the measured object is maintained at 75°, and the built-in radiance parameter of the camera is continuously adjusted until the infrared camera
  • the display temperature is the same as the test temperature of the black lacquer surface, and the radiance displayed by the infrared camera is the surface emissivity of the object.
  • the invention is realized according to the working principle of the infrared thermal imager, relying on the precision of the infrared thermal imager, using the temperature measurement accuracy of the thermocouple and the thermal resistance, or the thermal conductivity and emissivity stability of the insulating tape and the black paint.
  • the accurate measurement of the temperature of the surface of the object provides a non-destructive method for testing the emissivity of the object with field and portability without destroying the object. This method can be used as a field test method to realize the workpiece and the construction site. Evaluate the emissivity, find problems in time, guide the construction, and solve the problem that the measurement of the emissivity of the object requires special valuable instruments and requires special preparation.

Abstract

一种基于红外热像仪的发射率测试方法,包括:测量环境的物理参数(S101),根据环境的物理参数设定红外热像仪的内置参数并设定红外测定距离(S102),测量物体表面的温度(S103)以及用红外热像仪照射物体表面,调节红外热像仪的辐射率参数,直至显示温度与物体表面的温度相同,则红外热像仪的辐射率即为物体表面的发射率(S104)。该方法根据红外热像仪的工作原理,依托于红外热像仪的精密性,利用热电偶、热电阻的测温精度,或绝缘胶带和黑漆的热导率、发射率的稳定性来实现物体表面的温度的准确测定,从而准确测定物体发射率。该方法具有现场性和便携性且不破坏物体,是一种无损测试方法,解决了测量物体发射率需要特殊的贵重仪器且需要专门制样的问题。

Description

一种基于红外热像仪的发射率测试方法 技术领域
本发明涉及发射率的测试方法,具体而言,一种基于红外热像仪的发射率测试方法。
背景技术
发射率是实际物体的辐射能量与同温下的黑体的辐射能量之比。实际物体的发射率与诸如物体表面温度、表面粗糙度以及表面氧化层、表面杂质或涂层存在的物体的表面状态有关。红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图。红外热像图反映了目标物体红外辐射的强弱,而由于物体的发射率与红外辐射率直接相关,因此,可以通过红外热像仪来测量物体表面的发射率。
技术问题
目前,物体发射率的测试方法通常是将物体制成小样品,用专用的发射率测量仪来进行测量,但是有些情况下,现场需要评估某物件表面发射率而不能损坏或者没有充足时间时,就无法获得其发射率数据。另外,专用红外发射率测量仪一般为台式且价格昂贵,无法满足现场测试需要。
技术解决方案
针对相关技术中的问题,本发明提供了一种基于红外热像仪的发射率测试方法,具有便携且无损的优势。
根据本发明的一个方法,提供了一种基于红外热像仪的发射率测试方法,包括:测量环境的物理参数;根据所述环境的所述物理参数设定红外热像仪的内置参数,并设定红外测定距离;测量物体表面的温度;以及用所述红外热像仪照射所述物体表面,不断调节所述红外热像仪的内置辐射率参数,直至所述红外热像仪的显示温度与所述物体表面的所述温度相同,则所述红外热像仪的辐射率即为所述物体表面的发射率。
在上述发射率测试方法中,测量所述物体表面的所述温度包括:在所述物体表面贴一块绝缘胶带,稳定15~25min;将所述红外热像仪的所述内置辐射率参数调节为所述绝缘胶带的发射率,用所述红外热像仪照射所述绝缘胶带的表面,显示温度即为所述物体表面的所述温度。
在上述发射率测试方法中,所述绝缘胶带为一层发射率为0.98的电工绝缘胶带。
在上述发射率测试方法中,将所述红外热像仪的所述内置辐射率参数调节为0.98。
在上述发射率测试方法中,当用所述红外热像仪照射所述绝缘胶带的表面时,将所述红外热像仪放置在所述红外测定距离处。
在上述发射率测试方法中,当用所述红外热像仪照射所述绝缘胶带的表面时,所述红外热像仪与所述物体表面的法向角保持在45℃~90℃。
在上述发射率测试方法中,所述绝缘胶带的大小为5mm×1mm ~10mm×1mm。
在上述发射率测试方法中,可通过涂刷一层发射率为0.97的黑漆来代替所述绝缘胶带。
在上述发射率测试方法中,将所述红外热像仪的所述内置辐射率参数调节为0.97。
在上述发射率测试方法中,采用热电偶或热电阻测量所述物体表面的所述温度。
在上述发射率测试方法中,当用所述红外热像仪照射所述物体表面时,将所述红外热像仪放置在所述红外测定距离处。
在上述发射率测试方法中,当用所述红外热像仪照射所述物体表面时,所述红外热像仪与所述物体表面的法向角保持在45℃~90℃。
在上述发射率测试方法中,用温湿度表测量所述环境的温度和湿度。
有益效果
本发明提供了一种基于红外热像仪的发射率测试方法,包括:测量环境的物理参数,根据环境的物理参数设定红外热像仪的内置参数并设定红外测定距离,测量物体表面的温度以及用红外热像仪照射物体表面,不断调节红外热像仪的内置辐射率参数,直至红外热像仪的显示温度与物体表面的温度相同,则红外热像仪的辐射率即为物体表面的发射率。本发明依托于红外热像仪的精密性,热电偶或热电阻的测温精度,绝缘胶带或黑漆的热导率、发射率的稳定性,提供了一种具有现场性和便携性,且不破坏物体的发射率测试方法。本方法测试结果具有较高的准确性,作为一种现场测试方法,本发明能够很好地实现对工件、施工现场进行发射率评估,特别是红外涂层施工时,如不符合要求可及时返工,避免因测试小样与施工工件偏差而导致的施工问题。可广泛地应用于建筑工地的施工现场、建筑和桥梁的检测诊断、大型工业设备的维护等。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的实施例的基于红外热像仪的发射率测试方法的流程图。
图2是根据本发明的实施例的采用热电偶或热电阻测试物体表面温度的示意图。
图3是根据本发明的实施例的采用绝缘胶带或黑漆作为对比物质测试物体表面温度的示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的基于红外热像仪的发射率测试方法,包括以下步骤:
如图1中的步骤 S101所示:测量环境的物理参数。在该步骤中,使用温湿度表测量环境的温度和湿度,环境的物理参数并不仅仅是温度和湿度,如有需要还可以测量其它的物理参数,在此不做限定。
如图1中的步骤 S102所示:根据环境的物理参数设定红外热像仪的内置参数,并设定红外测定距离。在该步骤中,根据步骤S101中的环境的温度和湿度的物理参数设定红外热像仪的温度和湿度的内置参数,并设定红外测定距离。根据红外热像仪的检测距离 = 被测目标尺寸 ÷ IFOV,其中,IFOV为空间分辨率,空间分辨率是在单位测试距离下,红外热像仪每个像素能够检测的最小目标(面积),空间分辨率越小,可以测得越远。因此,该步骤中的红外测定距离主要取决于被测目标尺寸和红外热像仪的空间分辨率。
如图1中的步骤 S103所示:测量物体表面的温度。在该步骤中,可以采用热电偶或热电阻测量物体表面的温度,如图2所示,标号1表示红外热像仪,标号2表示热电偶或热电阻, L表示红外测试距离。在该步骤中,还可以通过以下方法测量物体表面的温度:在物体表面贴一块绝缘胶带,稳定15~25min;将红外热像仪的内置辐射率参数调节为绝缘胶带的发射率,用红外热像仪照射绝缘胶带表面,显示温度即为物体表面的温度。其中,在物体表面贴一块大小为5mm×1mm ~10mm×1mm的绝缘胶带,稳定15~25min,直到被测物体表面的温度与该绝缘胶带表面的温度相同,绝缘胶带为一层发射率为0.98的电工绝缘胶带,因此将红外热像仪的内置辐射率参数调节为0.98,当用红外热像仪照射绝缘胶带表面时,将红外热像仪放置在步骤S102中的红外测定距离处,并将红外热像仪与物体表面的法向角保持在45℃~90℃。在上述步骤中,还可以通过涂刷一层发射率为0.97的黑漆(丙烯酸树脂)代替绝缘胶带,此时将红外热像仪的内置辐射率参数调节为0.97。如图3所示,标号1表示红外热像仪,标号3表示绝缘胶带或黑漆,L表示红外测试距离。红外热像仪的工作原理是使用光电设备来检测和测量辐射,并且在物体表面的辐射与表面温度之间建立一定的关系,而物体表面的发射率与辐射直接相关,因此物体表面的发射率可以通过表面温度获得,即可以认为在红外热像仪中一个显示温度对应于一个发射率。因此,在该步骤中,可以首先通过将红外热像仪的内置辐射率调节为已知的对比物质的辐射率,然后测量对比物质的温度,由于对比物质的温度与物体表面的温度相同,从而来确定物体表面的温度。
如图1中的步骤 S104所示:用红外热像仪照射物体表面,不断调节红外热像仪的内置辐射率参数,直至红外热像仪的显示温度与物体表面的温度相同,则红外热像仪的辐射率即为物体表面的发射率。当用红外热像仪照射物体表面时,将红外热像仪放置在步骤S102中的红外测定距离处,并且将红外热像仪与物体表面的法向角保持在45℃~90℃。基于与步骤S103所述的同样的原理,可以得出红外热像仪的辐射率即为物体表面的发射率。
本发明提供了一种基于红外热像仪的发射率测试方法,包括:测量环境的物理参数,根据环境的物理参数设定红外热像仪的内置参数并设定红外测定距离,测量物体表面的温度以及用红外热像仪照射物体表面,不断调节红外热像仪的内置辐射率参数,直至红外热像仪的显示温度与物体表面的温度相同,则红外热像仪的辐射率即为物体表面的发射率。为了实现对物体表面发射率进行现场测量,而不损坏或者不需要单独制样的目的,本发明采用红外热像仪来进行现场测试,具有不需要单独制样、不需要专用设备且具有便携性等特点。本发明可以用于对不可破坏样件表面红外发射率的测试、施工现场物体表面发射率测试及评估,及时发现问题,指导施工,也能用于暂时没有发射率测量仪的工况对样品或工件进行评估,可广泛地应用于建筑和桥梁的检测诊断、大型工业设备的维护等。
实施例1
用温湿度表测量周围环境的温度和湿度,根据测量的周围环境的温度和湿度设定红外热像仪的温度和湿度的内置参数,并且设定红外测试距离,用热电偶测得物体表面温度,用红外热像仪在设定的红外测试距离处照射物体表面,红外热像仪与被测物体表面的法相角度保持在45°,不断地调节热像仪内置辐射率参数,直至红外热像仪显示温度与热电偶测试温度相同,此时红外热像仪显示的辐射率即为物体表面发射率。
实施例2
用温湿度表测量周围环境的温度和湿度,根据测量的周围环境的温度和湿度设定红外热像仪的温度和湿度的内置参数,并且设定红外测试距离,用热电阻测得物体表面温度,用红外热像仪在设定的红外测试距离处照射物体表面,红外热像仪与被测物体表面的法相角度保持在90°,不断地调节热像仪内置辐射率参数,直至红外热像仪显示温度与热电阻测试温度相同,此时红外热像仪显示的辐射率即为物体表面发射率。
实施例3
用温湿度表测量周围环境的温度和湿度。根据测量的周围环境的温度和湿度设定红外热像仪的温度和湿度的内置参数,并且设定红外测试距离。在物体表面贴一层发射率为0.98,大小为5mm×1mm的电工绝缘胶带,稳定15min,将红外热像仪的内置辐射率参数调节为0.98,用红外热像仪在设定的红外测试距离处照射电工绝缘胶带,红外热像仪与被测物体表面的法相角度保持在90°,此时,显示温度即为物体表面的温度。用红外热像仪在设定的红外测试距离处照射物体表面,红外热像仪与被测物体表面的法相角度保持在90°,不断地调节热像仪内置辐射率参数,直至红外热像仪显示温度与电工绝缘胶带的测试温度相同,此时红外热像仪显示的辐射率即为物体表面发射率。
实施例4
用温湿度表测量周围环境的温度和湿度。根据测量的周围环境的温度和湿度设定红外热像仪的温度和湿度的内置参数,并且设定红外测试距离。在物体表面贴一层发射率为0.98,大小为7mm×1mm的电工绝缘胶带,稳定25min,将红外热像仪的内置辐射率参数调节为0.98,用红外热像仪在设定的红外测试距离处照射电工绝缘胶带,红外热像仪与被测物体表面的法相角度保持在60°,此时,显示温度即为物体表面的温度。用红外热像仪在设定的红外测试距离处照射物体表面,红外热像仪与被测物体表面的法相角度保持在60°,不断地调节热像仪内置辐射率参数,直至红外热像仪显示温度与电工绝缘胶带的测试温度相同,此时红外热像仪显示的辐射率即为物体表面发射率。
实施例5
用温湿度表测量周围环境的温度和湿度。根据测量的周围环境的温度和湿度设定红外热像仪的温度和湿度的内置参数,并且设定红外测试距离。在物体表面涂刷一层发射率为0.97,大小为10mm×1mm的黑漆,稳定20min,将红外热像仪的内置辐射率参数调节为0.97,用红外热像仪在设定的红外测试距离处照射黑漆,红外热像仪与被测物体表面的法相角度保持在80°,此时,显示温度即为物体表面的温度。用红外热像仪在设定的红外测试距离处照射物体表面,红外热像仪与被测物体表面的法相角度保持在80°,不断地调节热像仪内置辐射率参数,直至红外热像仪显示温度与黑漆表面的测试温度相同,此时红外热像仪显示的辐射率即为物体表面发射率。
实施例6
用温湿度表测量周围环境的温度和湿度。根据测量的周围环境的温度和湿度设定红外热像仪的温度和湿度的内置参数,并且设定红外测试距离。在物体表面涂刷一层发射率为0.97,大小为8mm×1mm的黑漆,稳定25min,将红外热像仪的内置辐射率参数调节为0.97,用红外热像仪在设定的红外测试距离处照射黑漆,红外热像仪与被测物体表面的法相角度保持在75°,此时,显示温度即为物体表面的温度。用红外热像仪在设定的红外测试距离处照射物体表面,红外热像仪与被测物体表面的法相角度保持在75°,不断地调节热像仪内置辐射率参数,直至红外热像仪显示温度与黑漆表面的测试温度相同,此时红外热像仪显示的辐射率即为物体表面发射率。
本发明根据红外热像仪的工作原理,依托于红外热像仪的精密性,利用热电偶、热电阻的测温精度,或绝缘胶带和黑漆的热导率、发射率的稳定性来实现物体表面的温度的准确测定,提供了一种具有现场性和便携性且不破坏物体的无损的物体发射率测试方法,该方法作为一种现场测试方法,能够很好的实现对工件、施工现场进行发射率评估,及时发现问题,指导施工,解决了测量物体发射率需要特殊的贵重仪器且需要专门制样的问题。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种基于红外热像仪的发射率测试方法,其特征在于,包括:
    测量环境的物理参数;
    根据所述环境的所述物理参数设定红外热像仪的内置参数,并设定红外测定距离;
    测量物体表面的温度;以及
    用所述红外热像仪照射所述物体表面,不断调节所述红外热像仪的内置辐射率参数,直至所述红外热像仪的显示温度与所述物体表面的所述温度相同,则所述红外热像仪的辐射率即为所述物体表面的发射率。
  2. 根据权利要求1所述的发射率测试方法,其特征在于,测量所述物体表面的所述温度包括:
    在所述物体表面贴一块绝缘胶带,稳定15~25min;
    将所述红外热像仪的所述内置辐射率参数调节为所述绝缘胶带的发射率,用所述红外热像仪照射所述绝缘胶带的表面,显示温度即为所述物体表面的所述温度。
  3. 根据权利要求2所述的发射率测试方法,其特征在于,所述绝缘胶带为一层发射率为0.98的电工绝缘胶带。
  4. 根据权利要求3所述的发射率测试方法,其特征在于,将所述红外热像仪的所述内置辐射率参数调节为0.98。
  5. 根据权利要求2所述的发射率测试方法,其特征在于,当用所述红外热像仪照射所述绝缘胶带的表面时,将所述红外热像仪放置在所述红外测定距离处。
  6. 根据权利要求2所述的发射率测试方法,其特征在于,当用所述红外热像仪照射所述绝缘胶带的表面时,所述红外热像仪与所述物体表面的法向角保持在45℃~90℃。
  7. 根据权利要求2所述的发射率测试方法,其特征在于,所述绝缘胶带的大小为5mm×1mm ~10mm×1mm。
  8. 根据权利要求2、3、5、6、7中任一项所述的发射率测试方法,其特征在于,可通过涂刷一层发射率为0.97的黑漆来代替所述绝缘胶带。
  9. 根据权利要求8所述的发射率测试方法,其特征在于,将所述红外热像仪的所述内置辐射率参数调节为0.97。
  10. 根据权利要求1所述的发射率测试方法,其特征在于,采用热电偶或热电阻测量所述物体表面的所述温度。
  11. 根据权利要求1所述的发射率测试方法,其特征在于,当用所述红外热像仪照射所述物体表面时,将所述红外热像仪放置在所述红外测定距离处。
  12. 根据权利要求1所述的发射率测试方法,其特征在于,当用所述红外热像仪照射所述物体表面时,所述红外热像仪与所述物体表面的法向角保持在45℃~90℃。
  13. 根据权利要求1所述的发射率测试方法,其特征在于,用温湿度表测量所述环境的温度和湿度。
PCT/CN2018/083683 2017-06-29 2018-04-19 一种基于红外热像仪的发射率测试方法 WO2019001105A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710515789.8A CN109211959A (zh) 2017-06-29 2017-06-29 一种基于红外热像仪的发射率测试方法
CN201710515789.8 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019001105A1 true WO2019001105A1 (zh) 2019-01-03

Family

ID=64741030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083683 WO2019001105A1 (zh) 2017-06-29 2018-04-19 一种基于红外热像仪的发射率测试方法

Country Status (2)

Country Link
CN (1) CN109211959A (zh)
WO (1) WO2019001105A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375815A (zh) * 2021-03-31 2021-09-10 燕山大学 Ccd和红外热像仪相结合的物体表面温度测量方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912526A (zh) * 2020-05-29 2020-11-10 红鼎互联(广州)信息科技有限公司 一种用于红外测温系统的发射率校准方法
CN114113192A (zh) * 2021-09-23 2022-03-01 中国人民解放军空军工程大学 一种常温状态下试件损伤部位发射率测量装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060067379A1 (en) * 2004-08-11 2006-03-30 University Of South Florida Thermally Compensated Fluorescence Decay Rate Temperature Sensor and Method of Use
CN102590262A (zh) * 2012-03-28 2012-07-18 哈尔滨工业大学 一种非均匀凹凸表面红外发射率分布的等温测量方法
CN103063312A (zh) * 2012-12-29 2013-04-24 南京理工大学 一种测量物体发射率的测量系统及方法
CN105486711A (zh) * 2015-11-20 2016-04-13 上海卫星装备研究所 基于红外热像仪的空间材料发射率测量系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006887B (zh) * 2014-06-03 2016-08-31 中国计量学院 一种物体表面发射率现场校准方法
CN106248214A (zh) * 2015-06-05 2016-12-21 桂林市新业机械制造有限责任公司 一种红外热像仪测量物体表面发射率的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060067379A1 (en) * 2004-08-11 2006-03-30 University Of South Florida Thermally Compensated Fluorescence Decay Rate Temperature Sensor and Method of Use
CN102590262A (zh) * 2012-03-28 2012-07-18 哈尔滨工业大学 一种非均匀凹凸表面红外发射率分布的等温测量方法
CN103063312A (zh) * 2012-12-29 2013-04-24 南京理工大学 一种测量物体发射率的测量系统及方法
CN105486711A (zh) * 2015-11-20 2016-04-13 上海卫星装备研究所 基于红外热像仪的空间材料发射率测量系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI, JINGCHEN ET AL.: "Surface Emissivity Measurement Technique Based on Infrared Thermal Imager", JOURNAL OF NORTHEASTERN UNIVERSITY ( NATURAL SCIENCE, vol. 34, no. 12, 31 December 2013 (2013-12-31), pages 1749 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375815A (zh) * 2021-03-31 2021-09-10 燕山大学 Ccd和红外热像仪相结合的物体表面温度测量方法及系统
CN113375815B (zh) * 2021-03-31 2022-07-08 燕山大学 Ccd和红外热像仪相结合的物体表面温度测量方法及系统

Also Published As

Publication number Publication date
CN109211959A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
Bauer et al. Infrared thermography–evaluation of the results reproducibility
WO2019001105A1 (zh) 一种基于红外热像仪的发射率测试方法
US20060067376A1 (en) Emissivity measuring device
CN103278311B (zh) 一种红外辐射面均匀性测量装置及方法
Michalski et al. Comparison of two surface temperature measurement using thermocouples and infrared camera
US20190025126A1 (en) Device and method for testing display panel
CN108593145B (zh) 标定观测角和光线照射角与热色液晶显色对应关系的装置
Barański et al. Thermographic diagnostic of electrical machines
KR101018717B1 (ko) Pcba 비파괴검사 시스템의 적외선 열화상 카메라용성능평가 장치 및 방법
Walach Emissivity measurements on electronic microcircuits
CN110186593A (zh) 一种球型水循环加热的热色液晶标定装置
CN106679818B (zh) 光滑表面温度分布的测量装置及方法
CN204705594U (zh) 氟化钙平晶表面光洁度测试仪
RU2659457C2 (ru) Способ обследования поверхности объекта инфракрасным прибором
JP2008157852A (ja) 非接触温度測定装置、試料ベース、および非接触温度測定方法
Miklavec et al. Calibration of thermal imagers by evaluation of the entire field-of-view
CN206339310U (zh) 光滑表面温度分布的测量装置
CN111912370A (zh) 用于检查电子构件的涂层的方法
RU2655741C1 (ru) Термографометрическая рулетка
Costa et al. Performance evaluation tests and technical relevant parameters of infrared cameras for contactless wood inspection
JP2020026989A (ja) 異常検出方法
CN108132279A (zh) 一种轨道板用反射隔热涂料隔热效果评价装置
TW457372B (en) Infrared circuit board inspection system
Tsai A summary of lightpipe radiation thermometry research at NIST
CN110006353B (zh) 一种热栅格扫描热波无损薄膜厚度检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824648

Country of ref document: EP

Kind code of ref document: A1