JP3695966B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP3695966B2
JP3695966B2 JP32361498A JP32361498A JP3695966B2 JP 3695966 B2 JP3695966 B2 JP 3695966B2 JP 32361498 A JP32361498 A JP 32361498A JP 32361498 A JP32361498 A JP 32361498A JP 3695966 B2 JP3695966 B2 JP 3695966B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
internal
detection
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32361498A
Other languages
English (en)
Other versions
JP2000149552A (ja
Inventor
利昭 川崎
博仁 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32361498A priority Critical patent/JP3695966B2/ja
Publication of JP2000149552A publication Critical patent/JP2000149552A/ja
Application granted granted Critical
Publication of JP3695966B2 publication Critical patent/JP3695966B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dram (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路に関し、特に、内部昇圧電源発生回路を備えた半導体集積回路に関する。
【0002】
【従来の技術】
従来、内部昇圧電源発生回路を備えた半導体集積回路では、発生した内部昇圧電圧が基準レベル未満であれば、発振信号でポンプ回路を動作させて、昇圧電源に電荷を供給する一方、発生した内部昇圧電圧が基準レベル以上になると、前記ポンプ回路の動作を停止させる。このため、内部昇圧電源発生回路には、内部に、発生昇圧電圧を基準レベルと比較するレベル検知回路が備えられる。このレベル検知回路として、本願出願人は、先に、特開平7−6582号公報に開示される構成を提案している。以下、この提案したレベル検知回路を図10に基づいて説明する。
【0003】
図10のレベル検知回路において、120は昇圧電源、121は基準電位発生部、122はレベル検知部、124は第1の電源、125は接地電源である。前記基準電位発生部121では、ダイオード型のPMOSトランジスタ161と、高抵抗として使用されるNMOSトランジスタ162と、ダイオード型のNMOSトランジスタ163とが直列に接続されて、第1の電源124と接地電源125との間に配置される。第1の基準電位129は、ダイオード型のPMOSトランジスタ161と高抵抗として使用しているNMOSトランジスタ162との間から取り出され、第2の基準電位133は、前記高抵抗として使用しているNMOSトランジスタ162とダイオード型のNMOSトランジスタ163との間から取り出される。尚、前記ダイオード型のNMOSトランジスタ163と接地電位の間には、更に、第2の基準電位133を僅かに高くするNMOSトランジスタ164が配置されている。前記第1の基準電位129のレベルは、『第1の電源レベル−PMOSトランジスタ161のしきい値電圧』であり、第2の基準電位133のレベルはほぼNMOSトランジスタ164のしきい値電圧である。
【0004】
また、前記レベル検知部122では、NMOSトランジスタ128と、PMOSトランジスタ170と、抵抗として働くNMOSトランジスタ171とが直列に接続されて、前記昇圧電源120と接地電源125との間に配置される。前記PMOSトランジスタ170と、抵抗として働くNMOSトランジスタ171との間から出力131が取り出される。前記レベル検知部122の検知レベルは、『第1の電源の電圧レベル+NMOSトランジスタ128のしきい値電圧』になり、昇圧電圧の検知レベルは第1の電源の電圧レベルを基準とする電圧レベルになる。
【0005】
前記レベル検知回路の動作を説明すると、次の通りである。昇圧電源の電圧レベルが前記検知レベル未満の場合は、NMOSトランジスタ128がOFFし、出力131の電荷は、NMOSトランジスタ171を介して接地電源125にディスチャージされ、出力131はLレベルになり、昇圧電源の電位が検知レベル未満であることを示す。一方、昇圧電源の電圧レベルが前記検知レベル以上に高くなると、NMOSトランジスタ128がONして、昇圧電源−接地電源間にはNMOSトランジスタ128、171及びPMOSトランジスタ170を介して電流が流れ、これにより出力131の電圧レベルがHレベルになり、昇圧電源の電位が検知レベル以上であることを示す。
【0006】
図10のレベル検知回路では、昇圧電源の電位が検知レベル以上の際、昇圧電源−接地電源間に電流が流れるものの、第1の基準電位129はNMOSトランジスタ170のゲートに接続されるので、前記電流が第1の基準電位129を経て第1の電源に流れ込むことが防止されて、チップの誤動作を防止できる。
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来のレベル検知回路では、以下の問題点を有することが判った。即ち、前記第1の電源が外部電源でなく、内部で外部電源の電圧を受けて内部動作電圧VINTを生成する内部動作電圧発生回路である場合には、電源投入時に次の問題が生じることがあることが判った。以下、具体的に説明すると、図11に示すように、時刻t=t0で外部電源VCCを投入すると、しばらくして時刻t=t1で内部動作電圧VINTが立ち上がる。昇圧電圧VPPが検知レベル(=内部動作電圧VINT+NMOSトランジスタ128のしきい値電圧Vt)未満の際には、レベル検知部122の出力131はLレベルであって、この出力131に基づいてポンプ回路が動作し、昇圧電圧VPPは上昇する。
【0008】
その後、時刻t=t3で、内部動作電圧VINTが所定電圧VINT0に達しない途中の電圧値Aの段階で、昇圧電圧VPPが前記内部動作電圧値Aを基準としてNMOSトランジスタ128のしきい値電圧Vtだけ高い電圧値Bに達すると、この昇圧電圧VPPは安定値VPP0への昇圧が完了していない途中の電圧値B(B<VPP0)であるにも拘わらず、レベル検知部122の出力131はHレベルに変化し、ポンプ回路の動作は停止する。この段階でレベル検知回路の動作を停止させる構成である場合には、その後に内部動作電圧VINTが前記途中電圧値Aから上昇して昇圧電圧VPPが再び検知レベル未満になっても、ポンプ回路の動作の停止は継続されて、昇圧電圧VPPは前記途中電圧値Bのまま、昇圧電圧の昇圧制御は停止することになる。
【0009】
本発明は、前記問題点を解決するためになされたものであり、その目的は、外部電源の投入時には、昇圧電圧VPPが所期の昇圧完了電圧(安定値)VPP0に昇圧されるまで、ポンプ回路の動作を続行して、外部電源投入時での昇圧電圧を早期に安定化することにある。
【0010】
【課題を解決するための手段】
前記問題点を解決するために、本発明では、外部電源の投入時には、昇圧電圧の電圧レベルが所期の昇圧完了電圧VPP0に達するまでは、レベル検知回路の動作を継続させて、ポンプ回路の動作を再開させる。
【0011】
即ち、請求項1記載の発明の半導体集積回路は、外部電源を受けて生成される内部動作電源電圧に基づいて検知レベルを設定し、内部昇圧電源電圧を前記検知レベルで検知する検知回路と、前記検知回路の出力信号に応じて内部昇圧電源に電荷を供給するポンプ回路とを持つ内部昇圧電源電圧発生回路を備えた半導体集積回路において、前記検知回路の動作の開始及び停止を制御する制御回路と、前記外部電源の投入時に、前記内部動作電源電圧が安定値に上昇した後に初めて前記検知回路の検知動作の停止を行うように前記制御回路に指令信号を出力する信号出力回路とを備え、前記制御回路は、前記検知回路の出力信号と、前記信号出力回路の指令信号と、動作状態及び待機状態を判定した動作/待機モード信号とに基づいて、出力信号を生成して前記検知回路に供給し、前記制御回路が前記信号出力回路の指令信号を受け、前記検知回路が前記内部昇圧電源電圧が前記検知レベルを越えたことを検知し、且つ、前記動作/待機モード信号が待機状態を示しているときに、前記検知回路の検知動作が停止させられることを特徴とする。
【0012】
請求項2記載の発明は、前記請求項1記載の半導体集積回路において、前記検知回路は、MOSトランジスタを有し、前記内部動作電源電圧を基準として前記MOSトランジスタのしきい値電圧だけ高い電圧を前記検知レベルに設定することを特徴とする。
【0013】
請求項3記載の発明は、前記請求項1又は2記載の半導体集積回路において、前記内部動作電源電圧の立ち上がり時に、前記内部動作電源電圧を所定検知レベルで検知する電圧検知回路を有し、前記信号出力回路は、プログラマブルなヒューズオプションを持ち、前記電圧検知回路の検知信号を遅らせる遅延回路であることを特徴とする。
【0014】
請求項4記載の発明は、前記請求項1又は2記載の半導体集積回路において、前記内部動作電源電圧の立ち上がり時に、前記内部動作電源電圧を所定検知レベルで検知する電圧検知回路を有し、前記信号出力回路は、前記電圧検知回路の所定検知レベルより高い検知レベルを持ち、この検知レベルで前記内部動作電源電圧の立ち上がり時に前記内部動作電源電圧を検知する電源電圧検知回路であることを特徴とする。
【0015】
請求項5記載の発明は、前記請求項1又は2記載の半導体集積回路において、前記信号出力回路は、外部電源の投入後に内部動作を規定する最初のコマンドを、前記指令信号として前記制御回路に出力することを特徴とする。
【0016】
請求項6記載の発明は、前記請求項5記載の半導体集積回路において、シンクロナスDRAMを持ち、前記信号出力回路は、前記外部電源の投入後に最初に前記シンクロナスDRAMのプリチャージ動作を規定するプリチャージコマンドを前記指令信号として、前記制御回路に出力することを特徴とする。
【0017】
請求項7記載の発明は、前記請求項5記載の半導体集積回路において、モードレジスタを有するシンクロナスDRAMを持ち、前記信号出力回路は、前記外部電源の投入後に前記モードレジスタをセットするモードレジスタセットコマンドを、前記指令信号として前記制御回路に出力することを特徴とする。
【0018】
請求項8記載の発明は、前記請求項1又は2記載の半導体集積回路において、前記内部昇圧電源電圧発生回路は、前記検知回路及びポンプ回路を有し且つ内部昇圧電源への電荷供給能力が大きいメイン回路と、前記検知回路及びポンプ回路を有し且つ内部昇圧電源への電荷供給能力が小さいサブ回路とを持ち、前記制御回路は、前記メイン回路に備える前記検知回路の動作の開始及び停止を制御することを特徴とする。
【0019】
請求項9記載の発明は、前記請求項8記載の半導体集積回路において、前記メイン回路は、外部電源の投入後から前記信号出力回路が指令信号を出力するまでの期間、及び内部回路の動作時には、検知回路の出力信号に応じて前記ポンプ回路を動作又は停止させ、前記信号出力回路が指令信号を出力した後から内部回路が動作状態になるまでの期間、及び内部回路の待機時には、前記ポンプ回路を停止させることを特徴とする。
【0020】
請求項10記載の発明は、前記請求項8記載の半導体集積回路において、前記サブ回路は、前記検知回路により内部昇圧電源電圧を常時検知し、前記制御回路及び前記信号出力回路の動作並びに内部回路の動作/待機状態に拘わらず、前記検知回路の出力信号に応じて前記ポンプ回路の動作を制御することを特徴としている。
【0021】
以上の構成により、請求項1ないし請求項10記載の発明の半導体集積回路では、外部電源の投入時には、内部動作電源電圧が立ち上がるが、昇圧電源電圧が安定値に昇圧される前に検知回路が検知動作を停止しようとする場合がある。例えば、電源投入時での内部動作電源電圧が安定値に達する前の途中電圧値の段階で、昇圧電源電圧が前記途中電圧値よりも検知回路内のMOSトランジスタのしきい値電圧分高くなる,即ち検知レベルに達すれば、この時点で、昇圧電源電圧がその後に検知レベル未満になる場合であっても、検知回路は検知動作を停止しようとする。しかし、信号出力回路が制御回路に指令信号を出力して、前記制御回路は検知回路の検知動作を続行させるので、ポンプ回路の動作が継続されて、昇圧電源電圧は安定値にまで早期に昇圧される。従って、電源投入時でも内部昇圧電源電圧は早期に安定値に安定する。
【0022】
【発明の実施の形態】
(第1の実施の形態)
図1は、本発明の第1の実施の形態の半導体集積回路のブロック図を示す。同図において、1は電源電圧検知回路1であって、この電源電圧検知回路(電圧検知回路)1は、内部動作電源電圧VINTを電源とし、外部電源の投入時にこの内部動作電源電圧VINTの立ち上がりの電圧レベルが検知レベルに達したことを検知して、LレベルからHレベルに論理反転する信号/PORを発生する。前記検知レベルは、図5に示すように、内部動作電源電圧VINTの安定値VINT0よりも所定値未満の電圧値VINTdetに設定される。その理由は、内部動作電源電圧VINTが何らかの理由で変動した際に、この電圧変動に伴い前記信号/PORが誤ってHレベルからLレベルに反転することを防止して、内部回路の正常動作を確保するためである。
【0023】
また、2は内部回路、3は遅延回路、4は制御回路、13は内部昇圧電源電圧発生回路である。前記内部回路2は、半導体集積回路の内部に備えられる入力回路及びデコーダ等を含む回路であって、前記電源電圧検知回路1の出力信号/PORと外部入力信号(図示せず)とに基づいて、内部動作を規定する信号ACTを生成する。前記内部昇圧電源電圧発生回路13は、内部昇圧電源VPPへ電荷を供給するメイン回路5とサブ回路6とを持ち、前記メイン回路45は、電荷供給能力が大きく、前記サブ回路6は電荷供給能力が小さい。前記メイン回路5及びサブ回路6は、各々、内部昇圧電源VPPの電圧レベルを検知する検知回路7、10と、発振信号を生成する発振回路8、11と、前記発振回路8、11で生成される発振信号に基づいて内部昇圧電源VPPに電荷を供給するポンプ回路9、12とを備えている。
【0024】
前記メイン回路5において、検知回路7は、前記制御回路4からの制御信号を受けて動作可能となって、内部昇圧電源VPPの電圧レベルを検知し、内部昇圧電源VPPの電圧レベルが所定の検知レベル(詳しくは後述する)よりも低い場合には、発振回路8で生成される高周波の発振信号でポンプ回路9を動作させて、内部昇圧電源VPPに電荷を高速に供給する。そして、内部昇圧電源VPPの電圧レベルが検知レベルより高くなると、発振回路8の動作を停止させて、ポンプ回路9による内部昇圧電源VPPへの電荷供給を停止する。
【0025】
また、前記サブ回路6において、検知回路10は、内部昇圧電源VPPの電圧レベルを常時検知して、内部昇圧電源VPPの電圧レベルが検知レベルよりも低い場合には、発振回路11で生成される低周波の発振信号でポンプ回路12を動作させて、内部昇圧電源VPPに電荷を供給し、内部昇圧電源VPPの電圧レベルが検知レベルよりも高くなると、発振回路11の動作を停止させて、ポンプ回路12による内部昇圧電源VPPへの電荷供給を停止する。
【0026】
本実施の形態では、内部昇圧電源VPPへの電荷供給について、外部電源の投入時や内部回路の動作時のように、高速に内部昇圧電源VPPの電圧レベルを昇圧する必要がある場合は、電荷供給能力の大きいメイン回路5を動作させ、また内部回路が待機時にある場合のように、リーク電流等を補う程度の供給能力しか必要とされない場合は、サブ回路6のみを動作させて、低消費電力化を図っている。
【0027】
図3に、図1の検知回路7の動作を制御する制御回路4の内部構成を示す。同図に示すように、制御回路4は、3個の入力端子128、129、130と、入力端子128、129の信号が入力されるインバータ125、126と、前記インバータ125、126の出力と入力端子130の信号が入力されるNAND回路127から構成される。前記入力端子128には、図1の検知回路7の出力信号(発振回路8への駆動信号)OSCENが入力され、この信号は内部昇圧電源VPPの電圧レベルがその検知レベルより低くなると“H”、内部昇圧電源VPPの電圧レベルがその検知レベルより高くなると“L”となる信号である。また、前記入力端子129には、図1の内部回路2の出力信号ACTが入力され、この出力信号は、外部入力信号に基づいて内部回路2で生成される信号であって、内部回路2が動作モードの際は“H”となり、待機モードの際は“L”となる動作/待機モード信号である。更に、前記入力端子130には、前記遅延回路3の出力信号/POR2が入力される。この信号/POR2は、後に詳述するが、図5に示すように、外部電源投入時に、電源電圧検知回路1の出力信号/PORの立ち上がり(t=t3)の後、所定時間遅れて時間t=t5で立ち上がってHレベルとなる信号である。
【0028】
図4は、図1の検知回路7の内部構成を示す。同図において、検知回路7は、PMOSトランジスタ135、139、142と、NMOSトランジスタ137、138、140、141、143と、インバータ144、145、146及び抵抗Rとから構成される。PMOSトランジスタ135、142のソースは内部動作電源VINTに、またNMOSトランジスタ138のドレイン及びゲートは内部昇圧電源VPPに接続される。内部動作電源VINT147とGNDとの間には、ゲートとソースとを短絡させたPMOSトランジスタ135、NMOSトランジスタ137及び抵抗Rを介してDC電流が流れていて、PMOSトランジスタ139のゲートに現れるリファレンス電圧VREFPと、NMOSトランジスタ141のゲートに現れるリファレンス電圧VREFNとを生成している。
【0029】
ここで、図4の検知回路7において、2個のPMOSトランジスタ135、139が同じしきい値電圧を有する場合には、ドレインとゲートとを短絡したNMOSトランジスタ(MOSトランジスタ)138のしきい値電圧をVtn、内部動作電源VINTの電圧レベルを同符号のVINTとすると、検知回路7での昇圧電源VPPの検知レベルVdetは、Vdet=VINT+Vthと表され、内部動作電源VINTの電圧レベルを基準とした電圧レベルになる。
【0030】
この検知回路7において、入力端子151には、図1の制御回路4の出力信号DETENが入力され、出力端子150の出力信号OSCENは図1の発振回路8及び制御回路4の入力端子128に入力される。入力端子151の信号値が“H”の場合、PMOSトランジスタ142がOFF、NMOSトランジスタ140がONして、内部昇圧電源VPPの電圧レベルのモニターを開始し、一方、内部昇圧電源VPPの電圧レベルが前記検知レベルよりも低い場合は、NMOSトランジスタ138がOFFし、図示したノードAの電荷は、NMOSトランジスタ140、141を介してGNDにディスチャージされる。そして、ノードAの電圧レベルがインバータ144のしきい値電圧よりも低くなると、出力信号OSCENは“H”レベルになって図1の発振回路8を動作させ、ポンプ回路9を動作させて、内部昇圧電源VPPに電荷を供給する。
【0031】
前記内部昇圧電源VPPへの電荷供給により、内部昇圧電源VPPの電圧レベルが前記検知レベルよりも高くなると、NMOSトランジスタ138がONし、内部昇圧電源VPPとGNDとの間には、NMOSトランジスタ138、140、141及びPMOSトランジスタ139を介して電流が流れる。そして、この電流による電圧降下により、ノードAの電圧レベルがインバータ144のしきい値電圧を越えると、出力信号OSCENは“L”レベルになって、発振回路8の動作を停止させる。
【0032】
入力端子151の信号値が“L”レベルの場合には、PMOSトランジスタ142がON、NMOSトランジスタ140がOFFであるので、内部昇圧電源VPPの電圧レベルのモニターは停止状態にあり、この時、ノードAは内部動作電源VINTの電圧レベルにチャージされるため、出力信号OSCENは“L”レベルになって、発振回路8は動作を停止した状態を保持する。
【0033】
以上、メイン回路5の検知回路7について述べたが、サブ回路6の検知回路10については、図4の検知回路7での入力端子151、PMOSトランジスタ142、NMOSトランジスタ140、及び内部動作電源VINTを省いた回路構成と同一構成であって、その動作は、図4の検知回路7において入力端子151の信号値が“H”レベルの場合と同様である。
【0034】
図2(a)は、図1に示した遅延回路(信号出力回路)3の内部構成を示し、抵抗値を用いたヒューズオプション回路である。同図において、3aは内部動作電源VINTに接続され且つゲートに入力信号INが入力されるPMOSトランジスタ、3bは接地電源に接続され且つゲートに前記入力信号INが入力されるPMOSトランジスタ、R1、R2及びR3は前記2個のトランジスタ3a、3b間に直列接続された3個の抵抗であって、拡散抵抗又は配線抵抗などを用いて形成される。また、F1、F2及びF3は各々前記抵抗R1〜R3に並列に接続されたヒューズ、3cは前記PMOSトランジスタ3aと抵抗R1との接続点であるノードBに接続されたインバータであって、インバータ3cの出力信号OUTは図1の信号(指令信号)/POR2として制御回路4に出力される。また、Cは前記ノードBと接地電源との間に配置されたコンデンサである。
【0035】
前記遅延回路3では、図2(b)に示すように、入力信号INがLレベルになると、PMOSトランジスタ3aがON、NMOSトランジスタ3bがOFFして、ノードBの電位はHレベルとなり、出力信号OUT(/POR2)はLレベルになる。一方、入力信号INがHレベルになると、PMOSトランジスタ3aがOFF、NMOSトランジスタ3bがONして、ノードBの電位はLレベルとなり、出力信号OUT(/POR2)はHレベルになる。この時、3個のヒューズF1〜F3が切断されていない場合には、出力信号OUTは同図に実線で示す時点で立ち上がるが、ヒューズF1〜F3の1個、2個又は全部が切断された場合には、各々、同図に破線で示すように出力信号OUTの立ち上がり時刻が順次遅延する。従って、遅延回路3では、図1の電源電圧検知回路1の出力/POR1の立ち上がり時から本遅延回路3の出力/POR2の立ち上がり時までの遅延時間を前記3個のヒューズF1〜F3の切断により最適値に調整する。
【0036】
以上のように構成された半導体集積回路について、その動作を図5に示すタイミングチャートを用いて説明する。
【0037】
いま、外部電源VCCの投入時(t=t0)に、電源電圧検知回路1が内部動作電源VINTの電圧レベルを検知して、その出力信号/POR1が“L”レベルから“H”レベルになり(t=t1)、内部動作電源VINTの電圧レベルが所望の基準電位(安定値)に達する過程(t≧t1)において、内部昇圧電源VPPの電圧レベルが内部動作電源VINTの電圧レベルAに対して、検知回路7のNMOSトランジスタ138のしきい値電圧Vtnよりも高い電圧値Bに達すると、検知回路7の出力OSCENが“L”レベルになるので、発振回路8の動作は停止し、ポンプ回路9による内部昇圧電源VPPへの電荷供給も停止する。
【0038】
しかし、メイン回路5の動作を制御する制御回路4には、電源電圧検知回路1の出力信号/POR1を遅延回路3で時間Δt(=t2-t1)だけ遅延した信号/POR2が入力されるので、内部動作電源VINTが安定値VINT0に達するまでは、遅延回路3の出力信号/POR2が“L”を保持するように、遅延時間Δtを設定すれば、制御回路4からメイン回路5の検知回路7への信号DETENの出力を継続できるので、電荷供給能力の大きいメイン回路5の動作を続行させて、内部昇圧電源VPPへの電荷の供給を継続でき、電源投入時に内部昇圧電源VPPの電圧レベルを早期に安定値VPP0に安定化することができる。
【0039】
ここで、前記遅延回路3の遅延時間Δtは、プロセスの仕様や外部電源電圧VCCの立ち上がり時間に対する内部動作電源レギュレータの特性、メインポンプの能力等を考慮して、最適化すればよい。
【0040】
尚、前記第1の実施の形態では、遅延回路3を用いたが、電源電圧検知回路1の検知レベルよりも高い検知レベルを有する他の電源電圧検知回路を設けて、この高い検知レベルを有する電源電圧検知回路の出力信号を制御回路4に入力する構成を採用すれば、前記と同様の効果を奏することができる。
【0041】
また、第1の実施の形態では、メイン回路5を制御する制御回路4として図3の回路構成を用いたが、同等な機能を持つ回路であれば、この回路構成に限定される必要はない。
【0042】
(第2実施の形態)
図6は、本発明の第2の実施の形態の半導体集積回路のブロック図を示す。同図において、PREは、電源投入直後に内部回路41の動作を最初に規定する内部信号であって、この内部信号PREは、図8に示すように、外部電源の投入時(t=t0)から時点t=t1で電源電圧検知回路1の出力信号/POR1が立ち上がった後のt=t2の時点で立ち上がり、内部回路(信号出力回路)41で生成される。ACTは内部回路41が動作モードか待機モードかを規定する動作/待機モード信号であって、同様に前記内部回路41により生成される。前記内部信号PREが制御回路42に入力される点を除けば、図1に示す半導体集積回路と同様の外観構成である。従って、図1の構成と同様の構成部分には同一の符号を付して、その説明を省略する。
【0043】
前記制御回路42に入力される内部信号(指令信号)PREは、特に、半導体記憶装置の一例であるシンクロナスDRAMにおいては、電源投入後に最初に内部動作を規定する信号であるプリチャージコマンドや、電源投入直後にモードレジスタをセットする信号であるモードレジスタセットコマンドが用いられる。
【0044】
本実施の形態の制御回路42の回路構成を図7に示す。図7の制御回路42は、入力端子74〜77と、インバータ69〜72と、NAND回路66〜68、73とを有する。前記入力端子74には図6の内部回路41の出力信号(指令信号)PREが入力され、入力端子75には図6の電源電圧検知回路1の出力信号/POR1が入力され、入力端子76には検知回路7の出力信号OSCENが入力され、入力端子77には図6の内部回路41の動作/待機モード判定信号ACTが入力される。前記入力端子74はNAND回路66に接続され、入力端子75はNAND回路66、68に接続される。また、前記NAND回路66、68の出力はNAND回路67に入力され、NAND回路67の出力はNAND回路68に入力される。前記NAND回路67の出力はインバータ69に入力され、このインバータ69の出力はインバータ70に入力される。入力端子76はインバータ71に入力され、入力端子77はインバータ72に入力される。前記3個のインバータ70〜72の出力はNAND回路73に入力され、このNAND回路73の出力が制御回路42の出力DETENであって、この出力が前記検知回路7に入力される。
【0045】
以上のように構成された本実施の形態の半導体集積回路について、その動作を図8に示すタイミングチャートを用いて説明する。
【0046】
今、外部電源が投入されて(t=t0)、内部動作電源電圧VINTが検知レベルに達するまでは(t=t1)、図6の電源電圧検知回路1の出力/POR1は“L”レベルを保持するので、制御回路42において、NAND回路66、68の出力は共に“H”レベル、NAND回路67の出力は“L”レベルとなって、NAND回路68の出力は“H”レベルをラッチする。また、NAND回路67の“L”レベル出力を受けて、NAND回路73の入力が“L”レベルとなるので、前記NAND回路73の出力は“H”レベルとなる。即ち、信号/POR1が“L”レベルの期間(t0≦t≦t1)では、検知回路7が動作して、内部昇圧電源VPPの電圧レベルをモニターし、電荷供給能力の大きいメイン回路5から電荷を高速に供給して、内部昇圧電源VPPの電圧レベルを昇圧する。尚、この期間(t0≦t≦t1)において、制御回路42に入力されるその他の内部信号PRE、ACTは“L”レベルである。
【0047】
その後、信号/POR1が“L”レベルから“H”レベルになり、内部動作電源VINTの電圧レベルが安定値VINT0に達する過程(t≧t1)において、内部昇圧電源VPPの電圧レベルが内部動作電源VINTの電圧レベルAを基準として、図4の検知回路7のNMOSトランジスタ138のしきい値電圧Vtnよりも高い電圧値Bに達すると、検知回路7の出力が“L”レベルとなって、発振回路8の動作を停止させて、ポンプ回路9による内部昇圧電源VPPへの電荷供給を停止する。
【0048】
しかし、外部電源の投入後に、内部動作を最初に規定する内部信号PREが内部回路41で生成されるまでは、制御回路42では、入力端子74への入力信号PREが“L”レベルを保持するので、NAND回路73の出力DETENは“H”レベルを保持する。従って、外部電源の投入後に前記内部信号PREが“H”レベルになるまでは、メイン回路5の検知回路7が内部昇圧電源VPPの電圧レベルのモニターを続行して、その電圧レベルが検知レベルよりも低い場合には内部昇圧電源VPPに電荷を供給し、内部昇圧電源VPPの電圧レベルを高速に昇圧する。よって、電源投入時に内部昇圧電源VPPの電圧レベルを早期に安定値VPP0に安定化することができる。
【0049】
尚、内部信号PREは、外部電源の投入時にその外部電源VCCの電圧レベルが安定した後に、製品仕様で規定される所定時間が経過して初めて生成される信号であるので、例えば、電源投入時に何らかの要因で、内部動作電源VINTの電圧レベルが図9に示すようにクランプ領域を含むような場合であっても、内部信号PREが“H”レベルになるまでは、制御回路42の出力信号は“H”レベルを保持して、メイン回路5の検知回路7の動作を続行させるので、電源投入時の内部昇圧電源VPPの電圧レベルを早期に安定値VPP0に安定化することができる。
【0050】
尚、本実施の形態では、制御回路42として図7に示す回路構成を用いたが、同等な機能を持つ回路であれば、図7の回路構成に限定される必要はない。
【0051】
また、本実施の形態では、シンクロナスDRAMにおいて、前記制御回路42に入力される内部信号(指令信号)PREとして、プリチャージコマンドのうち電源投入後に最初に発生するコマンドや、電源投入直後に発生するモードレジスタセットコマンドが使用されるので、別途に指令信号を生成する必要が無い。
【0052】
【発明の効果】
以上説明したように、請求項1ないし請求項10記載の発明の半導体集積回路によれば、外部電源の投入時には、昇圧電源電圧が安定値に昇圧されるまでは、検知回路による内部昇圧電源電圧の検知動作を続行させて、ポンプ回路の動作を継続させたので、昇圧電源電圧の安定値にまでの昇圧動作を確保して、電源投入時での内部昇圧電源電圧を早期に安定値に安定させることが可能である。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態の半導体集積回路の構成を示すブロック図である。
【図2】 同半導体集積回路に備える遅延回路の内部構成を示す図である。
【図3】 同半導体集積回路に備える制御回路の内部構成を示す図である。
【図4】 同半導体集積回路に備える内部昇圧電源電圧発生回路のメイン回路内の検知回路の内部構成を示す図である。
【図5】 本発明の第1の実施の形態の半導体集積回路の電源投入時の動作を示すタイミングチャート図である。
【図6】 本発明の第2の実施の形態の半導体集積回路の構成を示すブロック図である。
【図7】 同半導体集積回路に備える制御回路の内部構成を示す図である。
【図8】 本発明の第2の実施の形態の半導体集積回路の電源投入時の動作を示すタイミングチャート図である。
【図9】 本発明の第2の実施の形態の半導体集積回路の電源投入時の他の動作を示すタイミングチャート図である。
【図10】 従来の内部昇圧電源電圧のレベル検知回路の構成を示す図である。
【図11】 従来の内部昇圧電源電圧のレベル検知回路の電源投入時での動作を示すタイミングチャート図である。
【符号の説明】
VINT 内部動作電源電圧
VPP 内部昇圧電源
1 電源電圧検知回路(電圧検知回路)
2 内部回路
3 遅延回路(信号出力回路)
/POR2 遅延回路の出力信号(指令信号)
4、42 制御回路
5 メイン回路
6 サブ回路
7 メイン回路内の検知回路
OSCEN メイン回路内の検知回路の出力信号
ACT 動作/待機モード信号
9 メイン回路内のポンプ回路
10 サブ回路内の検知回路
12 サブ回路内のポンプ回路
13 内部昇圧電源電圧発生回路
41 内部回路(信号出力回路)
138 NMOSトランジスタ
(メイン回路内の検知回路に備えるMOSトランジスタ)
PRE 内部信号(指令信号)

Claims (10)

  1. 外部電源を受けて生成される内部動作電源電圧に基づいて検知レベルを設定し、内部昇圧電源電圧を前記検知レベルで検知する検知回路と、前記検知回路の出力信号に応じて内部昇圧電源に電荷を供給するポンプ回路とを持つ内部昇圧電源電圧発生回路
    を備えた半導体集積回路において、
    前記検知回路の動作の開始及び停止を制御する制御回路と、
    前記外部電源の投入時に、前記内部動作電源電圧が安定値に上昇した後に初めて前記検知回路の検知動作の停止を行うように前記制御回路に指令信号を出力する信号出力回路と
    を備え
    前記制御回路は、前記検知回路の出力信号と、前記信号出力回路の指令信号と、動作状態及び待機状態を判定した動作/待機モード信号とに基づいて、出力信号を生成して前記検知回路に供給し、
    前記制御回路が前記信号出力回路の指令信号を受け、前記検知回路が前記内部昇圧電源電圧が前記検知レベルを越えたことを検知し、且つ、前記動作/待機モード信号が待機状態を示しているときに、前記検知回路の検知動作が停止させられる
    ことを特徴とする半導体集積回路。
  2. 前記検知回路は、
    MOSトランジスタを有し、前記内部動作電源電圧を基準として前記MOSトランジスタのしきい値電圧だけ高い電圧を前記検知レベルに設定する
    ことを特徴とする請求項1記載の半導体集積回路。
  3. 前記内部動作電源電圧の立ち上がり時に、前記内部動作電源電圧を所定検知レベルで検知する電圧検知回路を有し、
    前記信号出力回路は、プログラマブルなヒューズオプションを持ち、前記電圧検知回路の検知信号を遅らせる遅延回路である
    ことを特徴とする請求項1又は2記載の半導体集積回路。
  4. 前記内部動作電源電圧の立ち上がり時に、前記内部動作電源電圧を所定検知レベルで検知する電圧検知回路を有し、
    前記信号出力回路は、前記電圧検知回路の所定検知レベルより高い検知レベルを持ち、この検知レベルで前記内部動作電源電圧の立ち上がり時に前記内部動作電源電圧を検知する電源電圧検知回路である
    ことを特徴とする請求項1又は2記載の半導体集積回路。
  5. 前記信号出力回路は、
    外部電源の投入後に内部動作を規定する最初のコマンドを、前記指令信号として前記制御回路に出力する
    ことを特徴とする請求項1又は2記載の半導体集積回路。
  6. シンクロナスDRAMを持ち、
    前記信号出力回路は、前記外部電源の投入後に最初に前記シンクロナスDRAMのプリチャージ動作を規定するプリチャージコマンドを前記指令信号として、前記制御回路に出力する
    ことを特徴とする請求項5記載の半導体集積回路。
  7. モードレジスタを有するシンクロナスDRAMを持ち、
    前記信号出力回路は、前記外部電源の投入後に前記モードレジスタをセットするモードレジスタセットコマンドを、前記指令信号として前記制御回路に出力する
    ことを特徴とする請求項5記載の半導体集積回路。
  8. 前記内部昇圧電源電圧発生回路は、
    前記検知回路及びポンプ回路を有し且つ内部昇圧電源への電荷供給能力が大きいメイン回路と、前記検知回路及びポンプ回路を有し且つ内部昇圧電源への電荷供給能力が小さいサブ回路とを持ち、
    前記制御回路は、前記メイン回路に備える前記検知回路の動作の開始及び停止を制御する
    ことを特徴とする請求項1又は2記載の半導体集積回路。
  9. 前記メイン回路は、
    外部電源の投入後から前記信号出力回路が指令信号を出力するまでの期間、及び内部回路の動作時には、検知回路の出力信号に応じて前記ポンプ回路を動作又は停止させ、
    前記信号出力回路が指令信号を出力した後から内部回路が動作状態になるまでの期間、及び内部回路の待機時には、前記ポンプ回路を停止させる
    ことを特徴とする請求項8記載の半導体集積回路。
  10. 前記サブ回路は、
    前記検知回路により内部昇圧電源電圧を常時検知し、前記制御回路及び前記信号出力回路の動作並びに内部回路の動作/待機状態に拘わらず、前記検知回路の出力信号に応じて前記ポンプ回路の動作を制御する
    ことを特徴とする請求項8記載の半導体集積回路。
JP32361498A 1998-11-13 1998-11-13 半導体集積回路 Expired - Fee Related JP3695966B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32361498A JP3695966B2 (ja) 1998-11-13 1998-11-13 半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32361498A JP3695966B2 (ja) 1998-11-13 1998-11-13 半導体集積回路

Publications (2)

Publication Number Publication Date
JP2000149552A JP2000149552A (ja) 2000-05-30
JP3695966B2 true JP3695966B2 (ja) 2005-09-14

Family

ID=18156703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32361498A Expired - Fee Related JP3695966B2 (ja) 1998-11-13 1998-11-13 半導体集積回路

Country Status (1)

Country Link
JP (1) JP3695966B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100350768B1 (ko) * 1999-12-30 2002-08-28 주식회사 하이닉스반도체 내부 전원전압 발생장치
JP4529028B2 (ja) * 2004-12-24 2010-08-25 ルネサスエレクトロニクス株式会社 半導体装置
KR100716662B1 (ko) * 2005-03-31 2007-05-09 주식회사 하이닉스반도체 내부전원 생성장치
US8103805B2 (en) * 2005-04-29 2012-01-24 Micron Technology, Inc. Configuration finalization on first valid NAND command
JP4749076B2 (ja) * 2005-07-27 2011-08-17 ルネサスエレクトロニクス株式会社 半導体装置
JP5251499B2 (ja) 2008-12-26 2013-07-31 富士通セミコンダクター株式会社 半導体装置、半導体装置の起動制御方法、及びシステム

Also Published As

Publication number Publication date
JP2000149552A (ja) 2000-05-30

Similar Documents

Publication Publication Date Title
JP2662345B2 (ja) 内部電源電圧発生回路
JP2541585B2 (ja) リセット信号発生回路
US7382666B2 (en) Power supply circuit for delay locked loop and its method
JP3803144B2 (ja) 半導体メモリ装置のデータ出力バッファ
US6160392A (en) Start-up circuit for voltage reference generator
US7940094B2 (en) Semiconductor start control device, method, and system
JPH088697A (ja) ヒステリシス比較器を備えた電圧制限回路
JPH1079191A (ja) 半導体メモリ装置の内部昇圧電圧発生器
JP3695966B2 (ja) 半導体集積回路
JP2004063019A (ja) 内部電圧発生回路
JP3323045B2 (ja) 情報処理装置
US7973526B2 (en) Reference voltage generator having improved setup voltage characteristics and method of controlling the same
US7436730B2 (en) Method and device for controlling internal power voltage, and semiconductor memory device having the same
JPH1074394A (ja) 半導体記憶装置
JP2005122837A (ja) 半導体集積回路装置
GB2373865A (en) High voltage detector
US20020181310A1 (en) Semiconductor memory device internal voltage generator and internal voltage generating method
KR100642402B1 (ko) 반도체 장치의 초기화 신호 발생회로
JPH076591A (ja) 記憶装置のプログラミング装置
KR100308197B1 (ko) 반도체 장치의 전압 부스팅 회로
JP7075715B2 (ja) 半導体装置及びパワーオンリセット信号の生成方法
US6459329B1 (en) Power supply auxiliary circuit
JP4159570B2 (ja) オシレータ回路、該オシレータ回路を備えた半導体装置、及び該オシレータ回路を備えた半導体記憶装置
KR100258362B1 (ko) 반도체 소자의 기준전압 발생장치
JP3742345B2 (ja) オシレータ回路、該オシレータ回路を備えた半導体装置、及び該オシレータ回路を備えた半導体記憶装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees