JP3693495B2 - エポキシ樹脂組成物およびその用途 - Google Patents

エポキシ樹脂組成物およびその用途 Download PDF

Info

Publication number
JP3693495B2
JP3693495B2 JP14017898A JP14017898A JP3693495B2 JP 3693495 B2 JP3693495 B2 JP 3693495B2 JP 14017898 A JP14017898 A JP 14017898A JP 14017898 A JP14017898 A JP 14017898A JP 3693495 B2 JP3693495 B2 JP 3693495B2
Authority
JP
Japan
Prior art keywords
group
epoxy resin
resin composition
epoxy
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14017898A
Other languages
English (en)
Other versions
JPH11322901A (ja
Inventor
達宣 浦上
賢一 杉本
啓輔 詫摩
忠仁 昇
夘三治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP14017898A priority Critical patent/JP3693495B2/ja
Priority to US09/312,701 priority patent/US6310147B1/en
Priority to SG9902464A priority patent/SG81988A1/en
Priority to KR1019990018362A priority patent/KR100328791B1/ko
Priority to EP19990303909 priority patent/EP0959088A3/en
Priority to CNB991076664A priority patent/CN1155654C/zh
Priority to TW88108345A priority patent/TW457255B/zh
Publication of JPH11322901A publication Critical patent/JPH11322901A/ja
Application granted granted Critical
Publication of JP3693495B2 publication Critical patent/JP3693495B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂により半導体集積回路を封止してなる半導体装置に関するものであり、その目的に供するに充分な諸物性を与えるエポキシ樹脂組成物、特に硬化剤としてエステル基を有する化合物もしくは樹脂を用い、エステル基をエポキシ基と速やかに反応させる触媒を組み合わせてなるエポキシ樹脂組成物、およびその硬化物に関する。
【0002】
【従来の技術】
従来、集積回路(IC)や大規模集積回路(LSI)は、それを保護する封止材により、外部雰囲気のゴミや埃、熱、水分、あるいは光による誤作動等から守られ、実用化されている。
この封止材としては、金属やセラミックスによるものから、近年では樹脂封止へと変遷しており、現在ではエポキシ樹脂封止が主流となっている。
特にコスト面と物性面のバランスから、フェノール樹脂を硬化剤としたエポキシ樹脂組成物が多く使われている。これらエポキシ樹脂組成物を用いた封止材は機械的物性の向上はもとより、以下に示す様な課題の向上が求められている。
【0003】
すなわち、課題としては
▲1▼外気中の水分を吸湿するため、半田処理条件下に晒される際、高温下におかれるため水分の爆発的な気化によりクラックを生じる、
▲2▼硬化の際の副反応として、エポキシ単独重合が部分的に起こることにより、フェノール樹脂の水酸基が過剰となり耐湿性、電気特性に劣ったり、本来のエポキシ−フェノール樹脂ネットワーク以外にエポキシ単独重合部分や、過剰となったフェノール樹脂部分が存在する事により機械特性が低下したりする、
▲3▼フリーイオン、特にハロゲンイオンの混入により半導体の金属部分の腐食や電気漏洩が起こる、等である。
このうち▲3▼のイオン不純物については特にエポキシ樹脂の精製、純度の問題であるが、▲1▼は樹脂の改質、▲2▼は副反応の抑制により本来のエポキシ樹脂組成物の物性を充分に引き出すことが可能となる。
【0004】
しかしながら、▲1▼の樹脂の吸湿に関しては、エポキシ基と水酸基の反応による硬化反応である限り、下記反応式(II)(化2)で表される様に、必ず水酸基を生成する反応であり、水酸基を要因として親水性が大きくなり、基本骨格を疎水化しても全体としての吸湿率の低減には限界がある。
【0005】
【化2】
Figure 0003693495
(式中、Aはエポキシ残基、Bはフェノール残基を示す。)
【0006】
この問題を解決する一つの手法として、西久保ら出願の特開昭62−53327号に示される様なエポキシ基とエステル基の反応の利用が考えられる。該公報中には、触媒の好ましいものとして4級オニウム塩やクラウンエーテル錯体が示され、更に同氏らの論文(有機合成化学第49巻第3号第218〜233頁(1991)、エポキシ化合物とエステル類との付加反応とその高分子合成への応用)中において、具体的に単位反応としての各触媒を用いたときの収率が示されている。それによれば、最高値としてはテトラブチルアンモニウムクロライドの91%があるものの、収率は総じて低い。また、これら4級オニウム塩やクラウンエーテル錯体は、半導体集積回路の封止材として用いる樹脂中に含まれたままであると、電気的な短絡等の好ましくない結果をもたらすのみでなく、それが接触する金属部分の腐食等も引き起こし、製品として重大な欠陥となることは言うまでもない。
【0007】
一方、一般的なエポキシ樹脂とフェノール樹脂との付加反応においては、触媒としてトリアルキルホスフィン、トリアリールホスフィンの様なホスフィン類、イミダゾール類、三級アミン類等が用いられ、特に半導体封止用としてはイミダゾール類、ホスフィン類が多く用いられる。
これらの内、イミダゾール類は反応活性はあるが、先に述べた副反応であるエポキシ単独重合を起こしやすく、上記の▲2▼の問題が大きい。一方、ホスフィン類はこれらの問題はないものの、硬化速度が遅い。
イミダゾール類を触媒としてエポキシ/エステル硬化反応に応用した場合、先の西久保氏らの文献によるとエポキシ基に対するエステル基の付加反応の反応収率は約50%程度であり、その他はエポキシ樹脂の単独重合等の副反応であることをふまえると、充分な硬化物が得られる触媒ではない。
【0008】
更に、本発明者らの追試においては、これらイミダゾール類やホスフィン類を硬化触媒としたときに、本発明における脂肪族アシル基によるエステルは実質的にエポキシ樹脂の硬化反応を起こさないことが分かる(後述比較例参照)。
具体的には、通常、硬化の際に用いられる温度である150〜200℃の範囲では10分以上ゲル化せず、現実には硬化物が得られる前に樹脂組成物が流れ出してしまう状況である。
【0009】
また、エポキシ樹脂をエステル硬化させ、半導体集積回路の封止材として利用するために、フェノール樹脂の10〜90%をエステル化し、硬化剤とする方法が提案されている(特開平9−235451号)。
この方法は、エステル樹脂を製造するに当たり、原料であるフェノール樹脂のフェノール性水酸基を一部残存させることにより、硬化初期において、反応し易いフェノール部分により一次的に架橋部分を形成させ、後のアフターキュアーによりエステル基をエポキシ基に作用させるという発想に基づくものである。
ところが、該公報においては、脂肪族アシル基によるエステルはエポキシ樹脂と反応しないとされ、芳香族アシル基によるエステルに限定されている。
【0010】
【発明が解決しようとする課題】
本発明の課題は、低吸湿性、且つ電気特性に優れたエポキシ樹脂硬化物を与える脂肪族アシル基によるエステル含有化合物もしくはエステル含有樹脂を効果的にエポキシ基と反応させるためのものであり、それにより得られる耐クラック性および電気特性に優れた半導体封止材用エポキシ樹脂組成物、その硬化物および半導体装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、硬化促進剤としてホスフィンオキシド誘導体を用いることにより、上記の課題を解決しえることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明は、(1)(A)2官能以上のエポキシ化合物もしくはエポキシ樹脂と、(B)硬化剤として水酸基の10モル%〜100モル%が脂肪族アシル基によりエステル化された2官能以上のエステル含有化合物もしくはエステル含有樹脂とを含有するエポキシ樹脂組成物において、硬化促進剤として一般式(I)(化3)で表されるホスフィンオキシド誘導体を必須の成分とすることを特徴とするエポキシ樹脂組成物に関するものである。
【0013】
【化3】
Figure 0003693495
(式中、R1 〜R6 は水素原子、炭素数1〜10の直鎖、分岐または環状のアルキル基あるいは炭素数6〜10のアリール基またはアラルキル基を示し、全て同一であっても、それぞれ異なっていても良い。)
【0014】
また、(2)(C)有機および/または無機充填剤を、(A+B)100重量部に対し、100重量部以上、1900重量部以下の範囲で含有する上記(1)記載のエポキシ樹脂組成物、
(3)上記(1)または(2)に記載のエポキシ樹脂組成物を、熱硬化させて得られるエポキシ樹脂硬化物、
(4)上記(1)または(2)に記載のエポキシ樹脂組成物を用いて半導体集積回路を封止して得られる半導体装置に関するものである。
【0015】
【発明の実施の形態】
本発明のエポキシ樹脂組成物は、(A)2官能以上のエポキシ化合物もしくはエポキシ樹脂と、(B)硬化剤として水酸基の10モル%〜100モル%が脂肪族アシル基によりエステル化された2官能以上のエステル含有化合物もしくはエステル含有樹脂とを含有するエポキシ樹脂組成物において、硬化促進剤として前記一般(I)で表されるホスフィンオキシド誘導体を必須の成分とすることを特徴とするエポキシ樹脂組成物である。
【0016】
硬化促進剤として一般式(I)で表されるホスフィンオキシド誘導体を必須の成分として用いる本発明のエポキシ樹脂組成物は、従来のイミダゾール類やホスフィン類を硬化促進剤として用いた場合に比べて、前述の問題▲1▼および▲2▼を解決し、さらに脂肪族アシル基によるエステル基とエポキシ基を速やかに反応させ、高い機械的物性、特に可とう性に優れ、耐クラック性および電気特性に優れる硬化物を与えることは本発明者らが初めて見出したものである。
さらに本発明者らは、この樹脂組成物に有機および/または無機充填剤を添加してなる樹脂組成物が半導体集積回路用封止材として極めて優れていることを見いだしたのである。
【0017】
更に付け加えるならば、先述の特開平9−235451号においては、従来のエポキシ樹脂硬化用触媒を用いた場合、脂肪族アシル基によるエステルはエポキシ基との反応が非常に遅いことから、用いるエステルは芳香族アシル基によるエステルに限定されているが、本発明においては先に示したホスフィンオキシド誘導体が、脂肪族アシル基によるエステルとエポキシ基との反応を充分実用的に硬化させることを見いだし、本発明が達成された。
【0018】
本発明のエポキシ樹脂組成物において、(A)成分である2官能以上のエポキシ化合物またはエポキシ樹脂(以下エポキシ樹脂という)としては、1分子中に2つ以上のエポキシ基を有するものは全て使用できる。具体的には、オレフィン類の酸化や水酸基のグリシジルエーテル化、1,2級アミン類のグリシジルアミン化、カルボン酸のグリシジルエステル化等により得られるエポキシ基を持つものである。
【0019】
これらエポキシ化され得る原料としては、例えば、エチレングリコール、ポリエチレングリコール等のグリコール;グリセリン、エリスリトール、ペンタエリスリトール、1,6−ヘキサンジオール等のポリオール類;
カテコール、レゾルシン、ハイドロキノン等のジヒドロキシベンゼン類;
2,6−ジヒドロキシナフタレン;
2,2−ビス(4’−ヒドロキシフェニル)プロパン(ビスフェノールA)、2−(3’−ヒドロキシフェニル)−2−(4''−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン(ビスフェノールF)、ビス(4−ヒドロキシフェニル)スルホン(ビスフェノールS)、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)メチルシクロヘキサン、ビス(4−ヒドロキシフェニル)メチルベンゼン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−2,2’,6,6’−テトラメチルビフェニル、4、4’−ジヒドロキシジフェニルエーテル、6,6’−ジヒドロキシ−3,3,3’,3’−テトラメチル−1,1−スピロビインダン、1,3,3−トリメチル−1−(4−ヒドロキシフェニル)−1−インダン−6−オール等のビスフェノール類;
テトラフェニロールエタン、ナフトール−クレゾールレゾール縮合物等のオリゴフェノール類;
フェノールノボラック類;クレゾールノボラック類;ノボラック類からビスフェノール体を除いた残査物(トリフェノール体以上:以下VRと略す);
一般式(III)(化4)で表されるフェノールアラルキル類;
一般式(IV)(化5)で表されるナフトールアラルキル類;
一般式(V)(化6)で表されるフェノール−ジシクロペンタジエン共重合樹脂(DPR樹脂)等のフェノール樹脂類;
エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、アニリン、4,4’−ジアミノフェニルメタン(MDA)、4、4’−ジアミノジフェニルエーテル、4、4’−ジアミノジフェニルスルホン、2,2−ビス(4,4’−ジアミノフェニル)プロパン、m−キシリレンジアミン、p−キシリレンジアミン、1,2−ジアミノシクロヘキサン、一般式(VI)(化7)で表されるアニリンアラルキル樹脂(商品名:Anilix、三井化学(株)製)等の脂肪族、芳香族アミン類;
m−アミノフェノール、p−アミノフェノール、2−(4−アミノフェニル)−2−(4’−ヒドロキシフェニル)プロパン、4−アミノフェニル−4−ヒドロキシフェニル)メタン等のアミノフェノール類;
フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ダイマー酸、アジピン酸、1,3−ジカルボキシシクロヘキサン等のカルボン酸類;
サリチル酸、4−ヒドロキシ安息香酸等のヒドロキシカルボン酸類;
等を挙げることができる。
【0020】
【化4】
Figure 0003693495
(式中、R7 は水素原子、ハロゲン原子、水酸基、炭素数1〜9までの直鎖、分岐または環状のアルキル基、炭素数1〜9までのアルコキシ基あるいはフェニル基を示し、mは1〜3を示す。繰り返し単位数を示すnは0〜100の範囲であり、その平均は0〜50の範囲である。尚、繰り返し単位数nの平均が0とはビスフェノール体であることを示す。)
【0021】
【化5】
Figure 0003693495
(式中、繰り返し単位数を示すn’は0〜50の範囲であり、その平均は0〜15の範囲である。尚繰り返し単位数n’の平均が0とはビスナフトール体であることを示す。)
【0022】
【化6】
Figure 0003693495
(式中、R8 は水素原子、ハロゲン原子、水酸基、炭素数1〜9までの直鎖、分岐または環状のアルキル基、炭素数1〜9までのアルコキシ基あるいはフェニル基を示し、mは1〜3を示す。繰り返し単位数を示すn’は0〜50の範囲であり、その平均は0〜15の範囲である。尚、繰り返し単位数nの平均が0とはビスフェノール体であることを示す。)
【0023】
【化7】
Figure 0003693495
(式中、R9 は水素原子、炭素数1〜9までの直鎖、分岐または環状のアルキル基を示し、繰り返し単位数を示すn’は0〜50の範囲であり、その平均は0〜15の範囲である。尚、繰り返し単位数nの平均が0とはビスアニリン体であることを示す。)
【0024】
尚、これらの活性水素を持つエポキシ原料のグリシジル化は公知の方法によりなされる。ハロゲン化水素アクセプターの存在下においてエピクロルヒドリンを反応させることが最も一般的であるが、グリシジルエステルを製造する際には、金属触媒、特にTlNO3 、Tl(OCOCF3 3 等のタリウム化合物を触媒とし、カルボン酸メチルエステルとグリシドールとを反応させる方法が好ましいことも知られている。
本発明において用いられるエポキシ樹脂のうち、半導体集積回路の封止材として好ましく用いられるものは、前記したジヒドロキシベンゼンやナフタレン類、ビスフェノール類、オリゴフェノール類、ノボラック類あるいは一般式(III)、一般式(IV)および一般式(V)で表される化合物から誘導されるグリシジルエーテル類である。
【0025】
本発明のエポキシ樹脂組成物において、(B)硬化剤とは、水酸基を一分子中に2個以上持つものを、10モル%〜100モル%の範囲で脂肪族アシル基によりエステル化したものであり、実際は前記のエポキシ樹脂用原料に記載されたものをはじめとして、水酸基を持つものをエステル化したものは全て相当する。
本発明において、硬化剤として用いられるエステル化物のエステル化の範囲は、10モル%〜100モル%、好ましくは、50モル%〜100モル%、さらに好ましくは、80モル%〜100モル%である。
【0026】
エステル化の方法は公知の方法が用いられるが、具体的には以下の通りである。すなわち、上述のような水酸基をエステル化する際に用いるエステル化剤としては、有機カルボン酸無水物、有機カルボン酸ハライド、有機カルボン酸のいずれでも良い。誘導したいエステルの炭素数によるエステル化剤の特徴により適宜選択すればよい。このエステル化剤を具体的に例示すれば、無水酢酸、アセチルクロライド、酢酸、無水プロピオン酸、プロピオン酸クロライド、プロピオン酸ブロマイド、プロピオン酸、無水酪酸、酪酸クロライド、酪酸、無水吉草酸、吉草酸クロライド、吉草酸ブロマイド、吉草酸、ピバリン酸クロライド、ピバリン酸、フェニル酢酸、フェニル酢酸クロライド、2−フェニルプロピオン酸、3−フェニルプロピオン酸、o−トリル酢酸、m−トリル酢酸、p−トリル酢酸、クメン酸等を挙げることができる。
これらのエステル化剤は単独あるいは任意の2種類以上を併用して用いることも可能である。
【0027】
その使用量は、水酸基に対して10モル%以上で用いればよく、上限は特に限定されず、過剰に用いて充分にエステル化を進行させた場合、過剰のエステル化剤は反応終了後除去すればよいが、現実的には反応容積効率、コスト等の観点から、水酸基に対し10倍モル以下、好ましくは5倍モル以下、さらに好ましくは3倍モル以下が良い。
【0028】
具体的な反応は、エステル化剤の種類によって異なるが、それぞれについて述べれば、有機カルボン酸無水物については、一般に用いられる反応で良い。
すなわち、水酸基に対しエステル化するべき任意の量の有機カルボン酸無水物を反応させたのち、副成する有機カルボン酸、過剰の有機カルボン酸無水物を常圧蒸留、減圧蒸留、水洗、炭酸塩等の弱塩基水洗浄等任意の方法もしくはそれらの組み合わせによって除去する事により、目的とするエステル化合物を得るものである。部分エステル化を行う際は、水酸基に対して任意の量、すなわち、本発明の樹脂組成物においては10モル%以上がエステル化されたエステル化物を用いるので、10モル%以上の有機カルボン酸無水物を用い、完全にエステル化する際には、水酸基に対して等モル以上、溶剤を兼ねればその上限は特に制限されるものではないが、経済効率、反応の容積効率を考慮すれば10倍モル以下で用いればよい。なお、この使用量は後述の有機カルボン酸を用いた反応の際にも同様である。
【0029】
一般にエステル化反応においては、ピリジン、ピペリジン、トリエチルアミン等の反応に対しては不活性な有機塩基の存在下において行うことが多いが、本発明のエポキシ樹脂組成物を半導体集積回路の封止材等の電気・電子分野に用いる場合、これらの含窒素有機塩基が残存することを避けなければならない。このため、最終的には水洗行程を導入する事が望ましい。しかしながら、これら有機塩基を用いなくとも充分反応は進行するので、有機塩基を用いないことが最も望ましい。
【0030】
反応温度は60℃〜200℃の範囲、望ましくは80℃〜180℃の範囲、特に望ましくは100℃〜160℃の範囲が望ましい。
反応時間は反応基質の種類や反応温度に大きく左右されるが、およそ1時間〜25時間の範囲であり、現実的には高速液体クロマトグラフィーやガスクロマトグラフィー等でエステル化剤の消失や水酸基の消失などを追跡しつつ終点を決定することが望ましい。
反応における溶媒は用いても用いなくても良い。原料とする水酸基を有する物質が反応温度に於いて充分溶融し、且つエステル化剤が液体である場合、また反応温度において溶融、あるいは樹脂に溶解し反応に支障がない場合には無溶媒で反応を行えばよい。
【0031】
溶媒を必要とするならば、反応に不活性な溶媒であれば全て使用することができる。それらを例示すれば、ベンゼン、トルエン、キシレン、クロロベンゼン、o−ジクロロベンゼン、ジフェニルエーテル等の芳香族炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド、スルホラン等の非プロトン性極性溶媒類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、等を単独で、あるいは任意の組み合わせで用いることができる。
【0032】
反応は常圧、加圧(オートクレーブ中)、減圧のいずれでもよく、また反応系の雰囲気は空気中、窒素、アルゴン、ヘリウム等の不活性ガス中のいずれでも良いが、好ましくは窒素雰囲気下が良い。
【0033】
次に、エステル化剤として有機カルボン酸ハライドを用いる場合における反応について説明する。この場合も一般に用いられる手法を用いることができる。
すなわち、水酸基に対してエステル化するべき任意の量の有機カルボン酸ハライドを反応させれば良い。この場合、副成するハロゲン化水素は、ピリジン、ピペラジン、トリエチルアミン等の反応に不活性な塩基を必要量存在させて系内においてトラップする方法と、ガスとして反応中に順次速やかに系外に放出し、反応系外に設置された水またはアルカリトラップを用いて捕捉する場合が考えられるが、先に示した理由により、含窒素化合物、イオン性化合物の混入を避けるためハロゲン化水素ガスは反応中速やかに系外に放出する方法が好ましい。
この時、やはり反応に不活性なガスの気流下において反応を行うとより好ましい。
【0034】
有機カルボン酸ハライドの使用量は、部分エステル化を行う際は、水酸基に対して任意の量、すなわち、本発明の樹脂組成物においては10モル%以上がエステル化されたエステル化物を用いるので、10モル%以上の有機カルボン酸ハライドを用い、完全にエステル化する際には水酸基に対して等モルもしくは小過剰を用いればよく、大過剰用いることは特に制限されるものではないが、経済効率、反応の容積効率、さらに反応後の処理工程の煩雑さを考慮すれば、水酸基に対して10倍モル以下、好ましくは5倍モル、さらに好ましくは3倍モルの範囲で用いればよい。
反応温度、反応における溶媒の使用、反応の形態に関しては先の有機カルボン酸無水物の場合に準じればよい。
【0035】
また、エステル化剤として有機カルボン酸を用いる場合に関しては、ほぼ有機カルボン酸無水物に準じればよいが、反応に際して酸触媒を必要とする。酸触媒を例示すれば、塩酸、硫酸、リン酸、ポリリン酸等の鉱酸類、p−トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸、ジメチルスルホン酸、ジエチルスルホン酸等の有機スルホン酸類、トリフルオロメタンスルホン酸に代表される超強酸、アルカンスルホン酸型に代表される酸性イオン交換樹脂、パーフルオロアルカンスルホン酸型に代表される超強酸型イオン交換樹脂等である。
【0036】
その使用量は、原料の重量に対して超強酸の場合が0.00001〜5重量%、好ましくは0.0001〜1重量%、より好ましくは0.001〜0.1重量%の範囲、イオン交換樹脂類の場合が1〜100重量%、好ましくは10〜50重量%の範囲、その他の場合は0.01〜10重量%、好ましくは0.1〜5重量%の範囲である。この範囲を下まわると反応速度が低下し、現実的な反応時間では完結しない。またこの範囲より大きくなると、副反応が無視できなくなり、あるいは触媒の除去の行程の煩雑さ等を含めてコストの増大に繋がる。
【0037】
以上、3種類のエステル化剤についてその反応を説明してきたが、いずれの場合もより精製度の高いエステル化物を得る必要のある場合には、反応終了後、水洗行程を導入すればよい。その場合はトルエン、キシレン、メチルイソブチルケトン、メチルエチルケトン、酢酸エチル等の水洗可能な溶媒を用いて、洗浄廃水に酸性成分、イオン性不純物が混入しなくなるまで洗浄すればよい。
【0038】
以上のようにして得られた、エステル化率10〜100モル%のエステル化物は、従来のフェノール樹脂と同様にしてエポキシ樹脂に対する硬化剤として用いることが可能である。すなわち2官能以上のエポキシ樹脂に対して硬化剤として用いることにより従来のエポキシ−フェノール硬化物と同様に熱硬化性樹脂として同一の分野で利用することができる。
【0039】
本発明の硬化物の最も大きな特徴は、従来のエポキシ−フェノール硬化物と比較して、吸湿率が大きく低減されること、エステル基を有する効果により、非常に可とう性に優れることにある。さらには硬化後の構造に水酸基が生成するエポキシ−フェノール硬化物に対して、その水酸基がエステル化された形で硬化物が形成されるため、電気特性も向上する。
【0040】
従来、エポキシ樹脂は、特に封止材の分野において、フェノール樹脂を硬化剤として多く用いられてきたが、その性能の向上は吸湿率の低下と大きな相関がある。樹脂中に含まれる水分は、IRリフロー時の様に急激に200℃以上の高温に晒されると、一気に気化し、いわゆる水蒸気爆発的な力が生じ、このためにクラックを生じ、種々の物性に悪影響を及ぼし、最悪の場合は封止材とチップとの剥離に至る場合がある。
本発明は上述したような特徴から、低吸湿性および耐クラック性の両面においてこの問題の解決に対して寄与するものである。
【0041】
エポキシ樹脂と硬化剤との配合比は、エポキシ基1モル当量に対してエステル基もしくはエステル基および水酸基の合計、すなわちエポキシ基に対する活性基が0.5〜1.5モル当量、好ましくは0.7〜1.3モル当量である。硬化物の最適物性が得られるモル比を調整して用いることがより好ましい。
エポキシ樹脂および硬化剤はそれぞれ一種類づつ単独で用いても、複数を併用しても良い。
【0042】
本発明において硬化促進剤の必須の成分として用いられる前記一般式(I)で表されるホスフィンオキシド誘導体について説明する。
一般式(I)において、置換基R1 〜R6 は、全て同一であっても、それぞれ異なっていてもよく、水素原子、炭素数1〜10の直鎖、分岐または環状のアルキル基、炭素数6〜10のアリール基あるいはアラルキル基である。
【0043】
具体例としては、例えば、水素原子;メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、1−ペンチル基、2−ペンチル基、3−ペンチル基、2−メチル−1−ブチル基、イソペンチル基、tert−ペンチル基、3−メチル−2−ブチル基、ネオペンチル基、n−ヘキシル基、4−メチル−2−ペンチル基、シクロペンチル基、シクロヘキシル基、1−ヘプチル基、3−ヘプチル基、1−オクチル基、2−オクチル基、2−エチル−1−ヘキシル基、ノニル基またはデシル基等の直鎖、分岐または環状のアルキル基;フェニル基等のアリール基;トルイル基、ベンジル基、1−フェニルエチル基または2−フェニルエチル基等のアラルキル基が挙げられる。
これらのうち、好ましいものは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基またはシクロヘキシル基の様な炭素数1〜6のアルキル基であり、より好ましくは、メチル基、エチル基である。
【0044】
ホスフィンオキシド誘導体は、G.N.Koian etal.Journal of Generral Chemistry of The USSR , 55 , 1453 (1985) に記載されているように、オキシ三塩化リンに3分子のイミノトリスアミノ(無置換、一置換、二置換)ホスホランを反応させて合成することができる。更に、精製が必要であればカラムクロマトグラフィー、蒸留、再結晶等の汎用される方法により精製することができる。
この様にして得られるホスフィンオキシド誘導体は、通常固体である。
【0045】
本発明のエポキシ樹脂組成物における、硬化促進剤であるホスフィンオキシド誘導体の使用量は、全エポキシ樹脂組成物(樹脂成分:エポキシ樹脂と硬化剤の合計)に対して、重量で0.001〜25%(0.001〜25g/100g)の範囲、好ましくは0.01〜15%、更に好ましくは0.1〜5%の範囲で用いられる。モル当量に換算すれば、1.5×10-6〜4.5×10-2モル/100g、好ましくは1.5×10-5〜2.5×10-2、更に好ましくは1.5×10-4〜1.0×10-2モル/100gの範囲である。
【0046】
また、本発明のエポキシ樹脂組成物においては、このホスフィンオキシド誘導体以外の一般に用いられる公知の硬化促進剤、例えば2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン等のホスフィン類等をホスフィンオキシド誘導体の0.5重量%〜500重量%(5倍重量)の範囲で併用しても良い。その量が500重量%を超えると本発明の特徴が失われる。
【0047】
本発明のエポキシ樹脂組成物においては、必要に応じて、エポキシ樹脂組成物に(C)成分として有機および/または無機充填剤や、その他の添加剤を添加してもよい。特に半導体集積回路の封止材に用いるときには、その機械的特性の向上や全体のコストのダウンのために有機および/または無機充填剤を、また、光による誤動作を防ぐためにカーボンブラック等の着色剤を、更には離型剤、カップリング剤、難燃剤等を用いることが望ましい。
有機および/または無機充填剤の使用量としては、(A+B)100重量部に対し、100重量部以上、1900重量部以下の範囲であり、耐湿性、機械的強度の観点から好ましくは250重量部以上、より好ましくは550重量部以上である。
用いられる有機および/または無機充填剤としては、例えば、シリカ、アルミナ、窒化珪素、炭化珪素、タルク、ケイ酸カルシウム、炭酸カルシウム、マイカ、クレー、チタンホワイト等の粉体、ガラス繊維、カーボン繊維、アラミド繊維等の繊維体等が挙げられる。
これらの中で封止材用途において好ましいものは、結晶性シリカおよび/または溶融シリカであり、さらにその樹脂組成物の成型時の流動性を考慮すると、その形状は球形または球型と不定型の混合物が望ましい。
【0048】
また、本発明のエポキシ樹脂組成物においては、機械的強度や耐熱性の面を考慮した各種添加剤を配合することが好ましい。例えば、樹脂と無機充填剤との接着性向上のためにはカップリング剤を用いることが望ましく、かかるカップリング剤としてはシラン系、チタネート系、アルミネート系、およびジルコアルミネート系等を挙げることができる。
なかでも好ましいものとしてはシランカップリング剤であり、特にエポキシ基と反応する官能基を持つシランカップリング剤が最も好ましい。
そのようなカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノメチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アニリノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン等を挙げることができ、これらを単独で、あるいは2種類以上組み合わせて使用することができる。
これらのカップリング剤は、予め無機充填剤の表面に吸着あるいは、反応により固定化されていることが望ましい。
【0049】
本発明のエポキシ樹脂組成物を用いて半導体集積回路を封止し、半導体装置を作成する方法としては、低圧トランスファー成型が最も一般的であると言えるが、その他の方法、例えばインジェクション成型、圧縮成型、注型等の方法も可能であり、また溶剤を用いるような特殊な手法も可能である。
【0050】
【実施例】
次に、本発明を実施例により詳細に説明するが、本発明はこれにより何ら制限されるものではない。
硬化剤合成例1
温度計、攪拌器、滴下ロートおよび還流冷却器を備えたガラス製容器に、フェノールアラルキル樹脂(商品名:ミレックスXLC−4L、水酸基当量169g/eq:三井化学(株)製)507g(3モル)を装入し、内温を125℃まで昇温した。内温を同温度に保ち、攪拌を行いながら無水酢酸336.9g(3.3モル)を2時間で滴下した。その後、125℃を保ちながら2時間反応を行った後、更に140℃まで昇温した。140〜150℃において2時間熟成したのち、過剰の無水酢酸および副生した酢酸を最高150℃/10mmHgの条件で減圧留去した。
【0051】
ここで得られた樹脂を、トルエン1400gに溶解し、廃水が中性になるまで60〜70℃において湯洗を行った後、トルエンを最高150℃/5mmHgの条件で留去して水酸基が完全にアセチル化された樹脂を609g得た。
この樹脂の溶融粘度(ICIコーン型溶融粘度型による。以下同じ)は100℃で3.4ポイズ、125℃で1.0ポイズ、150℃で0.5ポイズであり、水酸基当量は3000g/eq以上(検出できず)であった。
【0052】
硬化剤合成例2
合成例1と同様の反応装置に、フェノールアラルキル樹脂(商品名:ミレックスXLC−4L、水酸基当量169g/eq:三井化学(株)製)507g(3モル)を装入し、内温を125℃まで昇温した。内温を同温度に保ち、攪拌を行いながら無水酢酸245.0g(2.4モル)を2時間で滴下した。その後、125℃を保ちながら2時間反応を行った後、更に140℃まで昇温した。140〜150℃において2時間熟成したのち、副生した酢酸を最高150℃/10mmHgの条件で減圧留去した。
【0053】
ここで得られた樹脂を、トルエン1400gに溶解し、廃水が中性になるまで60〜70℃において湯洗を行った後、トルエンを最高150℃/5mmHgの条件で留去して水酸基が80モル%アセチル化された樹脂を590g得た。
この樹脂の溶融粘度(ICIコーン型溶融粘度型による。以下同じ)は125℃で1.2ポイズ、150℃で0.7ポイズであり、水酸基当量は880g/eqであった。
【0054】
硬化剤合成例3
合成例1と同様の反応装置に、フェノールアラルキル樹脂(商品名:ミレックスXLC−4L、水酸基当量169g/eq:三井化学(株)製)507g(3モル)を装入し、内温を125℃まで昇温した。内温を同温度に保ち、攪拌を行いながら無水酢酸153.1g(1.5モル)を2時間で滴下した。その後、125℃を保ちながら2時間反応を行った後、更に140℃まで昇温した。140〜150℃において2時間熟成したのち、副生した酢酸を最高150℃/10mmHgの条件で減圧留去した。
【0055】
ここで得られた樹脂を、トルエン1400gに溶解し、廃水が中性になるまで60〜70℃において湯洗を行った後、トルエンを最高150℃/5mmHgの条件で留去して水酸基が50モル%アセチル化された樹脂を561g得た。
この樹脂の溶融粘度(ICIコーン型溶融粘度型による。以下同じ)は125℃で2.0ポイズ、150℃で1.1ポイズであり、水酸基当量は359g/eqであった。
【0056】
硬化剤合成例4
合成例1と同様の反応装置に、フェノールアラルキル樹脂(商品名:ミレックスXLC−4L、水酸基当量169g/eq:三井化学(株)製)507g(3モル)を装入し、内温を125℃まで昇温した。内温を同温度に保ち、攪拌を行いながら酢酸クロライド23.6g(0.3モル)を1時間で滴下した。その後、125℃を保ちながら2時間反応を行った後、更に140℃まで昇温した。
【0057】
反応系は副生した塩酸により赤く着色したが、140〜150℃において2時間熟成したのち、160℃まで昇温し、水流アスピレーターにより軽く減圧したところ、もとの微黄色透明に戻った。なお、副生した塩酸は環流冷却器の先端から系外へ排気し、そのまま導入管を通じてアルカリトラップにより捕捉した。
この樹脂を排出して水酸基の10モル%がアセチル化された樹脂を520g得た。
この樹脂の溶融粘度(ICIコーン型溶融粘度型による。以下同じ)は125℃で2.0ポイズ、150℃で1.1ポイズであり、水酸基当量は192g/eqであった。
【0058】
実施例1
エポキシ樹脂としてビスフェノールA型ジグリシジルエーテル(商品名:エピコート828、油化シェルエポキシ社製、エポキシ当量184g/eq)、硬化剤として合成例1のアセチル化フェノールアラルキル樹脂(エステル当量211g/eq=計算値)1グラム当量づつを80℃において充分溶融混練し、均一な樹脂混合物とした。
この樹脂混合物に、前記一般式(I)でR1 〜R6 の全てがメチル基であるホスフィンオキシド誘導体(PZO)を0.0055モル加え50℃で1分間混練して樹脂組成物とした。
【0059】
この樹脂組成物を10gとり、2cm×5cm×0.7mmの型枠を用い、150℃→185℃/5min、185℃/5min、150kg/cm2 の条件下で硬化物を得た後、185℃/8Hr(窒素雰囲気)の条件でアフターキュアーをかけて、充分に硬化を進行させた樹脂板を成型した。
この樹脂板用い、簡便なクラックテストを行った。その方法は、縦半分にはさみで切り、生じたクラック数を目視により数えた。
その結果、クラックは生じなかった。
【0060】
さらに、残りの樹脂組成物200gに対し、充填剤およびその他の添加剤を表−1(表1)に示す割合で配合し、ロールによる加熱混練を行って封止材用成形材料を得た。こうして得られた成形材料の一部を用い、150℃→185℃/5min、185℃/5min、150kg/cm2 の条件下で硬化物を得た後、185℃/8Hr(窒素雰囲気)の条件でアフターキュアーをかけて、十分に硬化を進行させた。
この硬化物を用いて各物性を測定した。また、同じ成形材料を用いて、低圧トランスファー成形によりテスト用半導体装置を作成し、半田浴によるクラック発生テストをおこなった。
結果を表−1(表1)に示した。
尚、ロール混練前の樹脂組成物のゲルタイムは150℃において測定した。(以下同じ)
【0061】
実施例2
実施例1におけるエポキシ樹脂を下記式(VII)(化8)のテトラフェニロールエタン型エポキシ樹脂(商品名:E1031S、油化シェルエポキシ社製、エポキシ当量189g/eq)に変えた以外は実施例1と同様にして、樹脂組成物の簡便なクラックテストを行い、クラックが生じないことを確認した。その後、更に同様にして残りの樹脂組成物を用い、封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表1)に示した。
【0062】
【化8】
Figure 0003693495
【0063】
実施例3
実施例1におけるエポキシ樹脂を下記式(VIII)(化9)に示されるナフトール−クレゾールレゾール縮合型エポキシ樹脂(商品名:EOCN7000、日本化薬社製、エポキシ当量204g/eq)に変えた以外は実施例1と同様にして、樹脂組成物の簡便なクラックテストを行い、クラックが生じないことを確認した。その後、更に同様にして残りの樹脂組成物を用い、封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表1)に示した。
【0064】
【化9】
Figure 0003693495
【0065】
実施例4
実施例1におけるエポキシ樹脂を式(IX)(化10)に示されるスピロビインダンジフェノール型エポキシ樹脂(商品名:SPIDG、三井化学(株)製、エポキシ当量233g/eq)に変えた以外は実施例1と同様にして、樹脂組成物の簡便なクラックテストを行い、クラックが生じないことを確認した。その後、更に同様にして残りの樹脂組成物を用い、封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表1)に示した。
【0066】
【化10】
Figure 0003693495
【0067】
実施例5〜8
実施例1〜4における硬化剤を、合成例2によって得られたアセチル化フェノールアラルキル樹脂に変え、エポキシ基/官能基(水酸基+エステル基)=1/1のモル比で、同様にして樹脂組成物の簡便なクラックテストを行い、クラックが生じないことを確認した。その後、更に同様にして残りの樹脂組成物を用い、封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表1)に示した。
【0068】
実施例9〜12
実施例1〜4における硬化剤を、合成例3によって得られたアセチル化フェノールアラルキル樹脂に変え、エポキシ基/官能基(水酸基+エステル基)=1/1のモル比で、同様にして樹脂組成物の簡便なクラックテストを行い、クラックが生じないことを確認した。その後、更に同様にして残りの樹脂組成物を用い、封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表2)に示した。
【0069】
実施例13〜16
実施例1〜4における硬化剤を、合成例4によって得られたアセチル化フェノールアラルキル樹脂に変え、エポキシ基/官能基(水酸基+エステル基)=1/1のモル比で、同様にして樹脂組成物の簡便なクラックテストを行い、クラックが生じないことを確認した。その後、更に同様にして残りの樹脂組成物を用い、封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表2)に示した。
【0070】
比較例1〜4
実施例1〜4における硬化剤を、エステル化する以前のフェノールアラルキル樹脂(商品名:ミレックスXLC−4L、水酸基当量169g/eq:三井化学(株)製)に変え、硬化促進剤をトリフェニルホスフィン(TPP)に変えたが、非常に硬化性が悪く、ゲルタイムの測定および成型物を得ることができないため、トリフェニルホスフィンの量を0.015モルに増量し、ゲルタイムを測定した。
結果を表−1(表3)に示した。
この結果、ほぼ実施例と同等のゲルタイムとなったため、実施例と同様にして樹脂組成物から硬化物を得、簡便なクラックテストを行ったところ、その全てに5〜15個のクラックが発生していた。
更に封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表3)に示した。
【0071】
比較例5〜8
実施例1〜4における硬化剤を、エステル化する以前のフェノールアラルキル樹脂(商品名:ミレックスXLC−4L、水酸基当量169g/eq:三井化学(株)製)に変え、硬化促進剤を2−ウンデシルイミダゾール(商品名:C11Z、四国ファインケミカル社製)に変えたが、非常に硬化性が悪く、ゲルタイムの測定および成型物を得ることができないため、トリフェニルホスフィンの量を0.015モルに増量し、ゲルタイムを測定した。
結果を表−1(表3)に示した。
この結果、ほぼ実施例と同等のゲルタイムとなったため、実施例と同様にして樹脂組成物から硬化物を得、簡便なクラックテストを行ったところ、その全てに5〜15個のクラックが発生していた。
更に封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表3)に示した。
【0072】
比較例9〜12
実施例1〜4における硬化促進剤を、トリフェニルホスフィンに、その使用量を0.015モルに変えた以外は同様にして樹脂組成物を得た後、簡便なクラックテストを行うために、成型物を得ようとしたが、いずれも硬化する前に流れでてしまい、成型物を得られなかった。そこでゲルタイムを測定したが、150℃および200℃において、15分でゲル化せず、テストを中止した。
【0073】
比較例13〜16
実施例5〜8における硬化促進剤を、トリフェニルホスフィンに、その使用量を0.015モルに変えた以外は同様にして樹脂組成物を得た後、簡便なクラックテストを行うために、成型物を得ようとしたが、いずれも硬化する前に流れでてしまい、成型物を得られなかった。そこでゲルタイムを測定したが、150℃および200℃において、15分でゲル化せず、テストを中止した。
【0074】
比較例17〜20
実施例9〜12における硬化促進剤を、トリフェニルホスフィン0.015モルに変えた以外は同様にして樹脂組成物から硬化物を得、簡便なクラックテストを行ったところ全ての試験片が破壊された。
更に封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表5)に示した。
【0075】
比較例21〜24
実施例13〜16における硬化促進剤を、トリフェニルホスフィン0.015モルに変えた以外は同様にして樹脂組成物から硬化物を得、簡便なクラックテストを行ったところ全ての試験片が破壊された。
更に封止材用成形材料を得、硬化物物性およびテスト用半導体装置のクラック発生テストをおこなった。
結果を表−1(表5)に示した。
【0076】
尚、各種物性等の試験方法は以下の通りである。
・Tg(ガラス転移温度):TMA針進入法(島津 TMA−DRW DT−30により測定。
・曲げ強度、弾性率:JIS K−6911による。
・煮沸吸水率:100℃の沸騰水中で2時間煮沸後の重量増加を測定。
・V.P.Sテスト:試験用の半導体装置を85℃、85%の恒温恒湿槽に168時間放置した後、直ちに240℃のフロリナート液(住友スリーエム(株)社製、FC−70)に投入し、パッケージ樹脂にクラックが発生した半導体の数を数えた。試験値を分数で示し、分子はクラックの発生した半導体の数、分母は被験体数である。
【0077】
また、試験に用いた各種添加剤は以下の通りである。
・無機充填剤:球形溶融シリカ(ハリミックS−CO、(株)マイクロン社製)50重量部と、不定形溶融シリカ(ヒューズレックスRD−8、(株)龍森製)50重量部の混合物。
・シランカップリング材:(SZ−6083、東レダウコーニングシリコーン社製)
【0078】
【表1】
Figure 0003693495
【0079】
【表2】
Figure 0003693495
【0080】
【表3】
Figure 0003693495
【0081】
【表4】
Figure 0003693495
【0082】
【表5】
Figure 0003693495
尚、表中の添加剤の値は、主剤+硬化剤200gに対する値である。
【0083】
以上、実施例等により詳細に説明してきたが、本発明のホスフィンオキシド誘導体を必須の硬化促進剤として用い、エステル化合物を硬化剤としたエポキシ樹脂組成物は、従来のエポキシ樹脂−フェノール樹脂硬化物に比較して大きく吸湿性に優れ、且つ可とう性に優れており、耐クラック性において非常に有利である。このため、特に半導体集積回路の封止材用途において耐クラック性に優れることがわかる。
【0084】
【発明の効果】
本発明により与えられるエポキシ樹脂組成物は、従来エポキシ樹脂組成物が用いられてきた産業分野において用いることが可能であるが、特に半導体の封止材として用いることにより、従来のエポキシ樹脂−フェノール樹脂硬化物より耐クラック性に優れたパッケージを与えるものである。

Claims (4)

  1. (A)2官能以上のエポキシ化合物もしくはエポキシ樹脂と、(B)硬化剤として、水酸基の10モル%〜100モル%が脂肪族アシル基によりエステル化された、2官能以上のエステル含有化合物もしくはエステル含有樹脂とを含有するエポキシ樹脂組成物において、硬化促進剤として一般式(I)(化1)で表されるホスフィンオキシド誘導体を必須の成分とすることを特徴とするエポキシ樹脂組成物。
    Figure 0003693495
    (式中R1 〜R6 は、水素原子、炭素数1〜10の直鎖、分岐または環状のアルキル基あるいは炭素数6〜10のアリール基またはアラルキル基を示し、全て同一であっても、それぞれ異なっていても良い。)
  2. (C)有機および/または無機充填剤を、(A+B)100重量部に対し、100重量部以上、1900重量部以下の範囲で含有する請求項1記載のエポキシ樹脂組成物。
  3. 請求項1または2に記載のエポキシ樹脂組成物を、熱硬化させて得られるエポキシ樹脂硬化物。
  4. 請求項1または2に記載のエポキシ樹脂組成物を用いて半導体集積回路を封止して得られる半導体装置。
JP14017898A 1998-05-21 1998-05-21 エポキシ樹脂組成物およびその用途 Expired - Lifetime JP3693495B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14017898A JP3693495B2 (ja) 1998-05-21 1998-05-21 エポキシ樹脂組成物およびその用途
US09/312,701 US6310147B1 (en) 1998-05-21 1999-05-17 Epoxy-resin composition and use thereof
SG9902464A SG81988A1 (en) 1998-05-21 1999-05-18 An epoxy-resin composition and use thereof
EP19990303909 EP0959088A3 (en) 1998-05-21 1999-05-20 An epoxy-resin composition and use thereof
KR1019990018362A KR100328791B1 (ko) 1998-05-21 1999-05-20 에폭시수지조성물 및 그 용도
CNB991076664A CN1155654C (zh) 1998-05-21 1999-05-21 环氧树脂组合物及其应用
TW88108345A TW457255B (en) 1998-05-21 1999-05-21 Epoxy-resin composition, epoxy-resin cured product prepared therefrom, and semiconductor device manufactured therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14017898A JP3693495B2 (ja) 1998-05-21 1998-05-21 エポキシ樹脂組成物およびその用途

Publications (2)

Publication Number Publication Date
JPH11322901A JPH11322901A (ja) 1999-11-26
JP3693495B2 true JP3693495B2 (ja) 2005-09-07

Family

ID=15262718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14017898A Expired - Lifetime JP3693495B2 (ja) 1998-05-21 1998-05-21 エポキシ樹脂組成物およびその用途

Country Status (1)

Country Link
JP (1) JP3693495B2 (ja)

Also Published As

Publication number Publication date
JPH11322901A (ja) 1999-11-26

Similar Documents

Publication Publication Date Title
US20070232728A1 (en) Resin composition for semiconductor encapsulation and semiconductor device
US7585904B2 (en) Curing accelerator, curable resin composition and electronic parts device
JP4527977B2 (ja) エポキシ樹脂組成物およびその用途
JP2004156035A (ja) 硬化性樹脂の硬化促進剤、硬化性樹脂組成物及び電子部品装置
JP4349683B2 (ja) エポキシ樹脂組成物およびその用途
US6310147B1 (en) Epoxy-resin composition and use thereof
JP3688120B2 (ja) エポキシ樹脂組成物およびその用途
JP3693495B2 (ja) エポキシ樹脂組成物およびその用途
JP2002226552A (ja) エポキシ樹脂組成物及びその用途
JP4643000B2 (ja) エステル基を有する化合物及びエポキシ樹脂組成物
JP2004107584A (ja) 封止用エポキシ樹脂成形材料及び素子を備えた電子部品装置
JP3813105B2 (ja) 硬化性に優れたエポキシ樹脂組成物、その硬化物およびその用途
JP2005256011A (ja) 硬化性樹脂組成物及び電子部品装置
JP2000053748A (ja) エポキシ樹脂組成物およびその用途
JPH11140167A (ja) ポリエステル化合物、その製造方法および用途
JP2000327747A (ja) エポキシ樹脂組成物およびその用途
JP6291729B2 (ja) エポキシ樹脂用硬化促進剤、エポキシ樹脂組成物及び電子部品装置
JPH04337316A (ja) エポキシ樹脂組成物
JP2000169551A (ja) エポキシ樹脂組成物およびその用途
JP2000327751A (ja) エポキシ樹脂組成物およびその用途
JP4752333B2 (ja) 硬化性樹脂組成物及び電子部品装置
JP2000327750A (ja) エポキシ樹脂組成物およびその用途
JP4517433B2 (ja) エポキシ樹脂組成物及び半導体装置
JP2000143775A (ja) エポキシ樹脂組成物およびその用途
JP2000319358A (ja) エポキシ樹脂組成物およびその用途

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term