JP3655229B2 - 磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子 - Google Patents

磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子 Download PDF

Info

Publication number
JP3655229B2
JP3655229B2 JP2001295146A JP2001295146A JP3655229B2 JP 3655229 B2 JP3655229 B2 JP 3655229B2 JP 2001295146 A JP2001295146 A JP 2001295146A JP 2001295146 A JP2001295146 A JP 2001295146A JP 3655229 B2 JP3655229 B2 JP 3655229B2
Authority
JP
Japan
Prior art keywords
conductive region
magnetic
region
conductive
constriction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001295146A
Other languages
English (en)
Other versions
JP2003101101A (ja
Inventor
志保 奥野
茂 羽根田
達也 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001295146A priority Critical patent/JP3655229B2/ja
Publication of JP2003101101A publication Critical patent/JP2003101101A/ja
Application granted granted Critical
Publication of JP3655229B2 publication Critical patent/JP3655229B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子に関し、より詳細には、高い磁気抵抗変化率を示す磁気微小接点を有する磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子に関する。
【0002】
【従来の技術】
強磁性層/非磁性層/強磁性層からなる積層構造において面内に電流を流した場合に、巨大磁気抵抗効果(Giant Magnetoresistance effect)が発現することが見出されて以来、さらに大きな磁気抵抗変化率を持つ系が探索されてきた。これまでに、強磁性トンネル接合や電流を積層構造に対して垂直方向に流すCPP(Current Perpendicular to Plane)型MR素子が開発され、これらは磁気センサーや磁気記録の再生素子として有望視されている。
【0003】
磁気記録技術の分野においては、記録密度の向上により必然的に記録ビットの縮小化が進められ、その結果として十分な信号強度を得ることが難しくなりつつある。このため、より感度の高い磁気抵抗効果を示す材料が求められており、上述の如く大きな磁気抵抗変化率を示す系の必要性はますます高くなっている。
【0004】
最近、100%以上の磁気抵抗効果を示すものとして、2つの針状のニッケル(Ni)を付き合わせた「磁気微小接点」、あるいは2つのマグネタイトを接触させた磁気微小接点が、それぞれ、文献 N. Garcia, M. Munoz, and Y. -W. Zhao, Physical Review Letters, vol.82, p2923 (1999) およびJ. J. Versluijs, M. A. Bari and J. M. D. Coey, Physical Review Letters, vol.87, p26601 -1 (2001 ) に開示された。これらは、大きな磁気抵抗変化率を示しているものの、その磁気微小接点の作製方法は、いずれも2つの針状あるいは三角形状に加工した強磁性体を角付き合わせるというものである。
【発明が解決しようとする課題】
しかし、磁気微小接点が磁気抵抗効果を示すためには、微小接点部分が極めて狭いことが条件であり、作製時の接点部の精密な制御は極めて困難であった。磁気ヘッドや固体磁気メモリなどへの応用を考慮すると、制御性よく作製でき、量産可能な微小接点の構造およびその作製方法の開発が必要である。また、磁気抵抗変化は、微小接合を挟んだ両側の磁性電極における磁化方向の差異を検出するため、磁性電極の磁区制御がポイントである。
【0005】
本発明は、かかる課題の認識に基づいてなされたものであり、その目的は、大きな磁気抵抗変化を示し、素子化可能でかつ制御性が良好、さらに作製容易な磁気抵抗効果素子を提供するとともに、これを用いた高感度の磁気検出素子を提供することにある。またさらに、この磁気抵抗効果素子を用いた記録再生素子を提供することも目的とする。
【課題を解決するための手段】
上記目的を達成するため、本発明の一態様によれば、基板の主面上に設けられた磁性体エレメントを備え、前記磁性体エレメントは、前記主面の上に設けられた第1の導電領域と、前記主面の前記第1の導電領域が設けられた領域とは異なる領域の上に設けられた第2の導電領域と、前記第1の導電領域と前記第2の導電領域との間を流れる電流を狭窄するくびれ部と、を有し、前記くびれ部を介して前記第1の導電領域と前記第2の導電領域との間を流れる電流に対して略平行または略反平行な方向の印加磁場中において前記第1の導電領域と前記第2の導電領域との間の電気抵抗が減少することを特徴とする磁気抵抗効果素子が提供される。
【0006】
上記構成によれば、大きな磁気抵抗変化を示し、素子化可能でかつ制御性が良好、さらに作製容易な磁気抵抗効果素子を提供することができる。
【0007】
ここで、前記くびれ部の幅は、20nm以下であるものとすれば、顕著な磁気抵抗効果を得ることができる。
【0008】
また、前記磁性体エレメントは、前記くびれ部を形成するための高抵抗のくびれ形成領域をさらに有し、前記くびれ形成領域は、前記くびれ部とは組成及び結晶構造の少なくともいずれかが異なるものとすれば、くびれ部を確実且つ容易に形成可能とすることができる。
【0009】
また、前記くびれ部を介して前記第1の導電領域と前記第2の導電領域との間に電流を流した時に、前記磁性体エレメントの抵抗は5Ω以上50kΩ以下であり、20%以上の磁気抵抗変化率を示すものであることが望ましい。
【0010】
また、前記磁性体エレメントは、前記くびれ部を介して接続された第1及び第2の導電領域を有し、前記第1及び第2の導電領域のいずれか一方のみの磁化が一方向に固着されたものとすれば、外部磁気変化を確実且つ容易に検出できる。
【0011】
一方、本発明の磁気再生ヘッドは、上記のいずれか1つに記載の磁気抵抗効果素子を備え、磁気記録媒体から放出される磁束の経路上に前記第1及び第2の導電領域の少なくともいずれかを配置し、前記第1及び第2の導電領域の磁化方向の差異を前記くびれ部を挟んだ磁気抵抗変化として検出可能としたことを特徴とする。
【0012】
ここで、前記第1及び第2の導電領域のうちで、前記磁気記録媒体から相対的に遠くに設けられた導電領域の磁化が一方向に固着されてなるものとすれば、外部磁気を確実に検出できる。
【0013】
一方、本発明の磁気記録再生システムは、上記のいずれかの磁気抵抗効果素子を備え、前記第1及び第2の導電領域のいずれか一方の磁化は一方向に固着され、前記第1及び第2の導電領域のいずれか他方の磁化を記録すべき情報に応じた方向に固定することにより情報を記憶可能とし、前記くびれ部を挟んだ前記第1及び第2の導電領域の磁化方向の差異を磁気抵抗変化として検出することにより、記憶させた前記情報の読み出しを可能としたことを特徴とする。
【0014】
一方、本発明の磁気抵抗効果素子の製造方法は、磁性体エレメントの上面あるいは側面に、針状あるいは細線状の反応用電極を接近させ、この反応用電極と磁性体エレメントとの間に電圧を印加して前記磁性体エレメントの一部の組成あるいは結晶構造を変化させることにより、前記磁性体エレメントの一部に電流を狭窄するくびれ形成領域を設ける磁気抵抗効果素子の製造方法であって、前記くびれ形成領域を挟んで前記磁性体エレメントを流れる電流をモニタしつつこの値が所望の値に到達するまで前記変化を進めることを特徴とする。
【0015】
上記構成によれば、確実且つ容易に高い磁気抵抗効果を示す磁気抵抗効果素子を製造することができる。
【0016】
ここで、前記磁性体エレメントの一部の変化は、酸化、窒化、フッ化あるいは結晶と非晶質との間の変化のいずれかであるものとすることができる。
【0017】
なお本願明細書において、「磁気抵抗変化率」とは、磁場の印加による磁気抵抗効果素子の電気抵抗変化を磁場を印加した状態での電気抵抗で割った値と定義する。
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
【0018】
図1は、本発明の実施の形態にかかる磁気抵抗効果素子の要部構造を例示する平面図である。
【0019】
本発明の磁気抵抗効果素子は、基板Sの上に直接的あるいは間接的に形成された導電性の磁性体エレメント1を有する。この磁性体エレメント1は、くびれ部Cを有する。そして、電流Iが基板Sの面に対して平行に磁性体エレメント1を流れる際に、くびれ部Cの電気抵抗が、磁場印加により減少する点に特徴がある。図1は、基板Sを上から見たもの、膜状のエレメント1の中央部にくびれCが形成されている。本発明における、このくびれ部Cの幅の最大値は、20nm以下とすることが望ましい。
【0020】
なお、本願において、くびれ部Cの「幅」とは、くびれ部Cの断面形状が四角形あるいは多角形の場合には対角線のうちで最も長いもの、断面形状が円形の場合はその直径、扁平円などの非等方的な形状の場合にはその両端間距離の最も長いものをいうものとする。
【0021】
くびれ部Cのサイズを微細化すると、磁場の印加により電気抵抗が減少する。このような電気抵抗の減少が発現するサイズは、くびれ部Cの断面形状にもよるが、本発明者の検討の結果によれば、くびれ部Cの最大幅を概ね20nm以下とすると、電気抵抗の減少が顕著となることが判明した。このときに、磁気抵抗変化率が20%以上となる大きな磁気抵抗効果が発生する。ただし、くびれ部Cの断面形状が、極端に扁平な場合などは、その最大幅が20nmを超えても、磁場の印加による電気抵抗の減少が生ずる場合がある。このような素子は、本発明の範囲に包含される。
【0022】
図2は、本発明の磁気抵抗効果素子における印加磁場と電気抵抗との関係を例示するグラフ図である。すなわち、同図(a)は、くびれ部Cの最大幅を20nm以下とし、磁性体エレメント1を流れる電流Iに対して垂直方向に磁場を印加した場合に得られる電気抵抗の変化を表すグラフ図である。また、図2(b)は同様に、本発明の磁気抵抗効果素子において、電流Iに対して平行な方向に磁場を印加した場合に得られる電気抵抗の変化を表すグラフ図である。
【0023】
これらのグラフ図からわかるように、本発明の磁気抵抗効果素子の場合には、磁場の印加方向に依らずに、電気抵抗は大きな減少を示す。
【0024】
これに対して、くびれ部Cのサイズが大きくなると、通常の異方性磁気抵抗効果(Anisotropic Magnetoresistance Effect)による磁気抵抗効果を示す。この場合には、電気抵抗の変化は、印加する磁場の方向に応じて変化する。
【0025】
図3は、通常の異方性磁気抵抗効果による磁気抵抗変化を説明する概念図である。異方性磁気抵抗効果においては、電流Iに対して磁場を垂直に印加した場合には、図3(a)に表したように、磁場の印加により、わずかに電気抵抗が減少する。
【0026】
しかし、電流Iに対して平行な方向に磁場を印加した場合には、磁場に対して磁化がなかなか飽和せず、図3(b)に表したように、磁場勾配は小さいが磁場の印加により電気抵抗は増加する。但し、図3(a)及び(b)からも分かるように、通常の異方性磁気抵抗効果を示す場合には、磁気抵抗変化率は大きくても高々数%どまりである。
【0027】
これに対して、本発明の磁気抵抗効果素子の場合には、図2(a)及び(b)に例示したように、磁場の印加方向に依らず電気抵抗は減少し、しかもその磁気抵抗変化率は極めて大きいという特徴を有する。
なお、本発明の磁気抵抗効果素子の場合、磁場印加により電気抵抗は減少するが、ヒステリシスが存在する場合には、図2(a)及び(b)に例示したように抵抗最大がゼロ磁場からわずかにシフトする場合もある。この場合には、この抵抗の最大を越えると、さらなる磁場増加により素子の磁化が全て平行に揃うまで、電気抵抗は減少する。
【0028】
本発明の磁気抵抗効果素子において、このような大きな磁気抵抗効果が生ずるのは、磁化方向を異にする2つの部分の遷移領域である磁壁が、微細なくびれ部Cに生ずるためであると考えられる。すなわち、くびれ部Cの前後の磁性体エレメント1の部分における磁化配置の差異により、このような大きな磁気抵抗効果がおこると考えられる。
【0029】
本発明における磁性体エレメント1の材料としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)などの単体、または、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)の少なくともいずれかの元素を含む合金、または、「パーマロイ」と呼ばれるNiFe系合金、あるいは、CoNbZr系合金、FeTaC系合金、CoTaZr系合金、FeAlSi系合金、FeB系合金、CoFeB系合金などの軟磁性材料、ホイスラー合金やCrO、Fe、La1―XSrMnOなどのハーフメタル磁性体を用いることができる。すなわち、これらの材料のうちから用途に応じた磁気特性を有するものを適宜選択して用いればよい。
【0030】
このような微細なくびれ部Cの形成方法としては、いくつの方法を挙げることができる。
【0031】
まず第1の方法として、磁性体エレメント1の一部分を取り除くことによりくびれ部Cを形成できる。具体的には、リソグラフィや収束イオンビーム加工などの微細加工技術を用いることにより、磁性体エレメント1の一部を除去して微細なくびれ部Cを形成することができる。
【0032】
くびれ部Cを形成する第2の方法としては、磁性体エレメント1の一部を高抵抗化することにより、「くびれ形成領域」を設ける方法を挙げることができる。
【0033】
図4(a)及び(b)は、このようなくびれ形成領域を有する磁気抵抗効果素子を模式的に表す平面図及び正面図である。すなわち、磁性体エレメント1の両側に、くびれ形成領域1Fが設けられ、これらの間にくびれ部Cが形成されている。
【0034】
例えば、磁性体エレメント1の一部分について、磁性体エレメント1を構成する元素を含みながらその組成あるいは結晶構造を変化させることにより高抵抗化させた「くびれ形成領域」を設ければ、それらの間において、電気伝導的に、くびれ部Cを形成することができる。
【0035】
くびれ部Cを形成する「くびれ形成領域」1Fでは、磁性体エレメント1を構成する元素を含むが、その組成は磁性体エレメント1にない元素も含むことにより、あるいは結晶構造が変わることにより電気抵抗が高くなっている。組成を変化させる場合には、くびれ形成領域1Fにおいて、酸化物、窒化物あるいフッ化物などを形成することに電気抵抗を高くすることができる。
【0036】
また、結晶構造変化を利用する場合には、例えば、くびれ形成領域1Fにおいて、構造をアモルファス(非晶質)化すると、より高い抵抗が実現できる。ただし、必ずしもアモルファス化する必要はなく、単に結晶構造を変える、あるいは原子配列を規則化または不規則化させるだけでもよい。
【0037】
図5は、本発明の磁気抵抗効果素子の第2の具体例を表す模式図である。すなわち、同図(a)はその平面図、(b)はそのX−X線断面図、(c)及び(d)はそのY−Y線断面図である。
【0038】
本具体例の場合、くびれ形成領域1Fは、薄膜状の磁性体エレメント1の中央付近において、その上面に形成されている。そして、このくびれ形成領域1Fにより上方を狭窄されるようにして、くびれ部Cが形成されている。
【0039】
この具体例は、特に、磁性体エレメント1の幅Wが狭い場合に有効である。
【0040】
図6は、本発明の磁気抵抗効果素子の第3の具体例を表す模式図である。すなわち、同図(a)はその平面図、(b)はそのX−X線断面図、(c)及び(d)はそのY−Y線断面図である。
【0041】
本具体例の場合、くびれ形成領域1Fは、薄膜状の磁性体エレメント1の中央付近において、その上面及びその側面に連続的に形成されている。そして、これらのくびれ形成領域1Fに3方を取り囲まれるようにして、くびれ部Cが形成されている。
【0042】
図5及び図6に例示した具体例においても、くびれ形成領域1Fは、磁性体エレメント1に他の元素を導入したり、窒化、酸化あるいはフッ化させたり、あるいは、結晶構造を変化させるなどの方法により形成することができる。
【0043】
図4と図5の構成を比較すると、図4の磁気抵抗効果素子においては、磁性体エレメント1の側面にくびれ形成領域1Fが形成され、一方、図5においては上面にくびれ形成領域1Fが形成されている点が異なる。ただし、実際にはこれらの中間的な構造が形成されることも多いと考えられる。すなわち、図6のように磁性体エレメント1の側面にくびれ形成領域1Fを形成するに際して、その上面にもある程度のくびれ形成領域1Fが形成される場合も多いと考えられる。
【0044】
いずれにしても、本発明において20%以上の大きな磁気抵抗変化率を得るためには、図1乃至図6に関して前述した構造において、くびれ部Cの前後の両電極間の抵抗を50kΩ〜5Ωの範囲内とすることが望ましい。
【0045】
そして、大きな磁気抵抗変化を実現するためには、磁気異方性を磁性体エレメント1に導入することが効果的である。この場合の磁気異方性としては、磁性体エレメント1を細長く形成することにより導入される「形状磁気異方性」、あるいは結晶方位が揃すことにより発生する「結晶磁気異方性」、あるいは磁場中での熱処理で導入される磁気異方性などを用いることができる。
【0046】
また、磁性体エレメント1が基板Sの上に直接的あるいは間接的に形成された薄膜状のエレメントである場合には、磁場中でスパッタ蒸着などの薄膜形成を行うことによっても磁気異方性を導入することができる。
【0047】
さらに、反強磁性層や非磁性層と強磁性層とを積層させることで発生させた異方性バイアスを磁気異方性として用いることもできる。
【0048】
くびれ部Cを挟んだ磁性体エレメント1の2つの領域1Aと1Bにおいて、それらの磁気異方性の向きはお互いに平行あるいは反平行の時が最も大きな磁気抵抗効果を発生する。しかし、領域1Aと1Bの磁気異方性の方向が直角の関係を持つ場合も、用途によってはこの方が好ましい場合があり、デバイスへ適応することが可能である。また、このような異方性バイアスを含む磁気異方性は、くびれ部Cを挟んだ領域1Aあるいは1Bのいずれか一方のみ導入してもよい。
【0049】
本発明の磁気抵抗効果素子は、前述のような微細加工技術を用いた方法の他に、次のような作製方法で作製することができる。
【0050】
まず、磁性体エレメント1を形成する。磁性体エレメント1の形状は細線状でもよく、あるいは長方形、多角形、楕円形などの平面形状を有する薄膜などでもよい。
【0051】
この磁性体エレメント1には、くびれ部Cを設けようとする箇所を挟んだ2つの磁性金属部分に電極を設け、形成される予定のくびれ部Cを通過して電流の抵抗変化をモニタできるようにしておく。
【0052】
この磁性体エレメント1に、針状あるいは細線状の「反応用電極」を接近させる。
【0053】
図7は、針状の反応用電極20を接近させた状態を表す概念図である。
【0054】
また、図8及び図9は、細線状の反応用電極22を接近させた状態を表す概念図である。ここで、図8は基板Sの側面から眺めた図であり、図9は基板Sの主面上から眺めた図である。
【0055】
次に、加工用電圧源26を用いて、この反応用電極20、22と磁性体エレメント1との間に、パルス状あるいは一定の反応用バイアス電圧を印加する。すると、反応用電極20、22により発生させられた電場により、反応用電極の近くの磁性体エレメント1は状態が変化させられる。
【0056】
より具体的にいえば、雰囲気として大気中においてこのプロセスを行った場合、大気中の水が電場により分解し、その中の酸素によって磁性体エレメント1の一部を酸化することにより、酸化物のくびれ領域形成部1Fを形成することができる。また、窒素あるいは他のガス中でこれを行うことで、窒化物あるいは他の化合物からなるくびれ領域形成部1Fを形成することができる。
【0057】
さらにまた、瞬間に高いエネルギーを与えることにより、反応用電極20、22の近くの磁性体エレメント1は瞬時に温度が上がり、そのあと急冷され、その結果、アモルファス状のくびれ形成領域1Fを形成することも可能である。
【0058】
このようなプロセスにより、反応用電極20、22の近傍の磁性体エレメント1を高抵抗化させ、その結果としてその部分をくびれ形成領域1Fとして、電気伝導的にくびれ部Cを形成することができる。
【0059】
またここで、磁性体エレメント1の両端にモニタ用電源30を接続し、くびれ部Cの両端の抵抗値を電圧計または電流計32でモニタしながら、所定の値に到達するまで反応を続けることにより、制御性の極めて優れたくびれ部Cを形成することができる。
【0060】
一方、反応用電極20、22は、図8及び図9に例示した如く磁性体エレメント1とは独立して設けてもよいし、さらに、図10に平面構成を例示した如く、磁性体エレメント1と同一の基板S上に予め設けておいてもよい。
【0061】
図10に表した具体例においては、反応用電極20、22の形状は長方形であるが、かならずしもこの形状に限定されず、反応用電極20、22の先端部に電界集中が起こればよい。図10に表したように、基板Sの上で、磁性体エレメント1の横方向から加工用電極20、22を作用させた場合、図11に平面構成として表したような形状のくびれ形成領域1Fが形成される。
【0062】
また、くびれ部Cの形成を磁性細線を用いて行なう場合、図12(a)および(b)に表したように、ひとつの反応用電極22を用いて複数の磁性体エレメント1に対して同時に、くびれ部形成領域1Fを形成することも可能となる。すなわち、基板Sの上に複数の細線状の磁性体エレメント1を形成しておき、上方から細線状の反応用電極22を接触させることにより、これら複数の磁性体エレメント1に対して同時にくびれ形成領域1Fを形成することができる。
【0063】
以上説明したいずれの方法においても、針状あるいは細線状の反応用電極20、22の材料としては、耐酸化性や耐熱性などに優れたものが望ましい。このような材料としては、例えば、白金(Pt)、レニウム(Re)、あるいはこれらの合金などを挙げることができる。
【0064】
反応用電極と強磁性体エレメントとの間に印加する電圧は、雰囲気が大気の場合には、1ボルトから100ボルトの範囲の電圧を用いることかできる。くびれ部Cの作製時には、磁性体エレメント1の両端の抵抗をモニタし、結果としてくびれ部Cを介した抵抗が50kΩから5Ωの範囲内の所定の値になるまで、反応用電極と磁性体エレメントとの間の電流と時間とを調整すればよい。
【0065】
本発明の磁気抵抗効果素子は、デバイス化が容易な構造であるため、各種の用とにおいて用いることができる。
【0066】
図13は、本発明の磁気抵抗効果素子を磁気記録再生システムにおける磁気検出素子として適応した具体例を表す模式図である。同図には、いわゆるパターンド(patterned)媒体の再生のための再生ヘッドを例示したが、従来型の連続的な磁気記録媒体の再生に用いることももちろん可能である。
【0067】
磁気記録再生システムにおいて磁気検出素子として用いる場合、磁性体エレメント1のくびれ部Cの前後片側(領域1A)あるいは両側(領域1Aと1B)を、磁気記録媒体200の表面から放出される磁束を捕らえるための磁極として用いる。
【0068】
図13に例示したものは、例えば、図4に例示した磁気抵抗効果素子をひとつ搭載した磁気再生ヘッドを有する。この場合、磁気抵抗効果素子のくびれ部Cを通過する電流Iの方向が、磁気記録媒体200の表面から放出される磁束の方向と略平行とする。このようにすれば、磁束を捕らえた磁極(領域1A)の磁化方向を、くびれ部Cに電流を流すことにより、磁気抵抗効果を利用して検出することができる。
【0069】
この場合の検出は、磁束の向きにより変化した領域1Aあるいは領域1Bの磁化方向を、領域1Aと領域1Bの互いの磁化方向の相対的角度として検出する。この場合、領域1B、あるいは領域1Aと1Bとに、磁区制御を施すとよい。磁区制御の方法としては、次の2つの方法がある。
【0070】
まずひとつめの方法は、領域1Bの磁化を上向きあるいは下向きに固定するように領域1Bに接して反強磁性膜を形成する。または、非磁性層/強磁性層/反強磁性層からなる積層膜を形成する。この場合には、領域1Aの磁束による磁化方向変化(上向きあるいは下向き)を検出する。
【0071】
ふたつめの方法は、領域1Aに対して、右斜め上向き(図13において)の磁気異方性を設け、また、領域1Bには左斜め上向きの磁気異方性を設ける方法である。
【0072】
なお、領域1Aのさらに磁気記録媒体200の側には、マンガン亜鉛(MnZn)フェライトに代表されるフェライトなどの絶縁性軟磁性体をつけると、磁気検出素子が磁気記録媒体200に接触した場合にもノイズの発生を押さえることができる。
【0073】
一方、本発明の磁気抵抗効果素子において、くびれ部Cの片側の領域1Aあるいは1Bの磁化を固着させ、もう一方の領域1Bあるいは1Aの磁化方向を記録情報とすることができる。この場合、この記録情報を担う磁化方向は、くびれ部Cを利用した磁気抵抗効果により読み込むことができる。つまり、磁気記録再生素子として利用できる。この場合、記録情報としての磁化は、別途に設けられた導線からの電流磁界効果により、あるいはその磁気抵抗効果素子に流す電流により発生する電流磁界効果により書き込みが可能である。
【0074】
図14は、電流駆動により、さらに効果的に記録再生できる固体メモリ用記録再生素子に本発明を適応した例を示す。本発明による1Aと1Bを含むエレメントにさらにもう一つのくびれと領域1Cが接続されている。ここで、2つのくびれ部Cで区切られた磁性体エレメント1の3つの領域のうちで、外側の2つの領域(領域1Aおよび1C)は、互いに磁化配置が反平行となるように磁化固着されている。そして、中間の領域1Bの磁化の向きを記録情報とすると、この記録情報すなわち領域1Bの磁化の向きをくびれ部Cを利用した1A間での磁気抵抗効果により読み取ることが可能となる。
【0075】
記録部である領域1Bの磁化方向を、ここに流す電流の向き(領域1Aから流すか、あるいは領域1Cから流すか)、および大きさで変化させることによって所定の情報を記録させることができる。
【0076】
記録情報の読み込みは、本発明の1Aと1Bの磁化配置の違いによる磁気抵抗を読み込むことにより行う。領域1Aと領域1Bの間で磁化が平行ならば抵抗は小さく、反平行なら抵抗は大きい。このときの電流Iは、記録電流よりも弱い電流にして抵抗値を測定することより、領域1Bの磁化方向を変化させずに記録させた状態を認識することができる。
【0077】
領域1Aおよび1Cの磁化方向を反平行に制御して固着するためには、領域1Aおよび1Cに接するように、反強磁性層を積層すればよい。あるいは、非磁性層と強磁性層、あるいは非磁性層と強磁性層と反強磁性層との積層膜を積層させればよい。
【0078】
図15は、非磁性層と強磁性層と反強磁性層との積層膜を積層させた構造を例示する断面図である。
【0079】
すなわち、同図(a)〜(c)に例示した構成においては、領域1Aと1Cとに、それぞれ非磁性層2と強磁性層4と反強磁性層6がこの順に積層されている。そして、領域1Aと1Cの磁化の向きは、図15(a)〜(c)に例示したように3通りがある。すなわち、同図(a)においては、領域1Aと1Cの磁化Mは、面内で互いに向かい合う方向である。また、図15(b)においては、面内で互いに反平行である。さらに、図15(c)においては、面に対して垂直で互いに反平行である。
【0080】
図15(a)〜(c)のどれが好ましいかは、選択した磁性体エレメント1の磁気特性により異なる。磁化固着のための磁区制御材料としては、まず、非磁性層2の材料としては、銅(Cu)、金(Au)、銀(Ag)、レニウム(Re)、オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、パラジウム(Pd)、クロム(Cr)、マグネシウム(Mg)、アルミニウム(Al)、ロジウム(Rh)、白金(Pt)などを用いることができる。
【0081】
また、強磁性層4としては、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、または、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む合金、酸化物、窒化物あるいはホイスラー合金であるものとすれば、良好な特性が容易に得られる。
【0082】
一方、反強磁性層6としては、鉄マンガン(FeMn)、白金イリジウム・マンガン(PtIrMn)、イリジウム・マンガン(IrMn)、パラジウム・マンガン(PdMn)、パラジウム白金マンガン(PdPtMn)などを用いることができる。
【0083】
【実施例】
以下、実施例を参照しつつ本発明の実施の形態についてさらに具体的に説明する。
【0084】
(第1の実施例)
まず、本発明の第1の実施例として、ニッケル(Ni)を用いた磁性体エレメントにくびれ部Cを形成した磁気抵抗効果素子について説明する。
【0085】
本実施例は、図8及び図9に例示した方法により実施した。
【0086】
まず、基板S上に厚さ10nmのニッケル膜1をスパッタリング法にて形成した。そのニッケル膜1を、フォトリソグラフィ微細加工の手法によりパターニングして、20nm×500nmの長方形の磁性体エレメント1を形成した。このエレメント1の長手方向の両端に電極を設けた。
【0087】
次に、このエレメント1の上に、エレメント1と交差するように白金(Pt)細線からなる反応用電極22を設置した。この電極22は、ピエゾ素子にマウントされており、磁性体エレメント1との間の距離を精密かつ微小に調節することが可能である。
【0088】
そして、大気中においてニッケルからなるエレメント1と白金からなる反応用電極22とを接近させ、エレメント1と反応用電極22間に3ボルトのバイアス電圧を印加した状態で1nAの電流が得られるまで近づけた。この条件において、エレメント1の部分酸化を行った。エレメント1と反応用電極22との間でモニタされる電流が1nAを維持するように、必要に応じて、エレメント1と反応用電極22の間の距離は調節した。
【0089】
これと並行して、エレメント1の両端に設けた電極によりエレメント1の抵抗を時間とともに測定したところ、急激な上昇が確認された。そして、最終的にエレメント抵抗が3kΩになったところで反応用電極22を遠ざけて酸化を終了させた。
【0090】
このようにして、ニッケルからなる磁性体エレメント1の中央部に、酸化物としてのくびれ形成領域1Fを形成することにより、くびれ部Cを設けることができた。エレメント1の磁気抵抗をエレメント両端に設けた電極間に電流を流すことにより測定した結果、図16に表したような磁気抵抗特性が得られた。
【0091】
すなわち、プラスマイナス70ガウスの磁場を印加したところ、120%という極めて大きな磁気抵抗変化率が得られた。
【0092】
(第2の実施例)
次に、本発明の第2の実施例として、パーマロイの細線を用いて形成した磁気抵抗効果素子について説明する。
【0093】
すなわち、磁性体エレメント1の材料としてパーマロイを用い、厚さ10nm、線幅20nmの細線を形成した。細線の一部には、交換バイアスを付与するために、まずコバルト(Co)を積層した後、非磁性層としてルテニウム(Ru)、強磁性層としてコバルト(Co)、反強磁性層として白金イリジウム・マンガン(PtIrMn)からなる積層膜を積層した。これらは長手方向が交換バイアス方向になるように磁場中成膜により形成した。
【0094】
この交換バイアス層をくびれ部Cの片側の領域になるように位置決めして、反応用電極20として、白金(Pt)針を用いてくびれ部形成領域1Fを形成した。くびれ部形成領域1Fを形成する箇所は、あらかじめ二次電子顕微鏡を用いて確認した。白金(Pt)針20を細線の側面に近づけてくびれ部形成領域1Fを形成した。そして、最終的に細線の両端の抵抗が2kΩとなるようにした。
【0095】
このようにして作成した磁気抵抗効果素子に対して、その交換バイアス方向に対して平行な方向の磁場を印加して磁気抵抗変化を調べたところ、図17に表したような磁気抵抗特性が得られた。すなわち、交換バイアス方向と同じ方向に磁場を印加した場合には、素子抵抗はゼロ磁場時と同じく2.1kΩであったのに対し、逆方向に磁場を印加した時には抵抗値は1.2kΩと大きな変化が得られた。
【0096】
(第3の実施例)
次に、本発明の第3の実施例として、本発明の磁気抵抗効果素子を複数、並列配置して磁気検出素子として用いた磁気再生ヘッドを製作した。
【0097】
図18は、本実施例の磁気ヘッドを表す模式図である。すなわち、基板Sの上に本発明の磁気抵抗効果素子を複数、並列に配置してある。それぞれの磁気抵抗効果素子は、図5に例示したものと同様の構造を有し、磁性体エレメント1の上面からくびれ形成領域1Fを設けてある。
【0098】
この磁気ヘッドの製作にあたっては、図12に関して前述したように、基板Sの上に複数の細線状の磁性体エレメント1を並列状に形成しておき、これら磁性体エレメント1のそれぞれの両端に電極12を形成しておく。それらの上から細線状の反応用電極22を直交するように接触させて、くびれ形成領域1Fを形成した。このようにすれば、複数の磁性体エレメント1について同時にくびれ形成領域1Fを設けることができる。
【0099】
本実施例の磁気再生ヘッドは、高感度の磁気抵抗効果素子を並列に配置することにより、例えば、図18に例示したような「パターンド磁気記録媒体」200に形成されている記録ビットからの磁束Mを並列に読み取ることが可能である。
【0100】
(第4の実施例)
次に、本発明の第4の実施例として、本発明の磁気抵抗効果素子を用いた磁気記録再生素子を製作した。
【0101】
本実施例において製作した記録再生素子は、図15(a)に表したものと同様の構造を有する。すなわち、基板Sの上に、コバルト(Co)からなるサイズ20nm×300nmの磁性体エレメント1を形成した。そして、このエレメント1の2箇所に抵抗3kΩと50Ωの2つのくびれ部Cを形成して磁気抵抗効果素子とした。
【0102】
また、くびれ部Cの領域1Aと1Bには、それぞれルテニウム(Ru)/コバルト(Co)/白金イリジウム・マンガン(PtIrMn)からなる積層膜を堆積させた。この時、領域1Aと1Cとではルテニウム(Ru)の厚さを変えることにより、最終的に領域1Aと1Cの磁化Mの方向が、図15(a)に表したように反平行に磁区制御した。
【0103】
この記録再生素子において、電流を領域1Aから領域1Cへと流すことで領域1Bの磁化方向は右向きとなり(状態a)、これとは逆方向に流すことで領域1Bの磁化は、左向きとなった(状態b)。つまり、電流を流す方向に応じて領域1Bの磁化の方向を変化させることにより、2値情報を記録することができた。ここで、記録のための電流値としては10μAでは十分ではなく、500μAでは十分であった。
【0104】
一方、読み出しは電流の向きを問わず、書き込み以下の電流値を用いることで可能となり、状態aと状態bとでは前者の方が素子抵抗が小さいことから、領域1Bがどちらの状態であるか判断することができた。
【0105】
(第5の実施例)
次に、本発明の第5の実施例として、前述した第4実施例の磁気記録再生素子をアレイ状に並列させた磁気メモリを製作した。
【0106】
図19(a)は、本実施例の磁気メモリの平面構成を表す模式図である。但し、同図においては、製造工程において反応用電極22を接触させている状態を表した。
【0107】
また、図19(b)は、本実施例の磁気メモリの作成途中の状態を表すX−X線断面図である。同図に表したように、作製時には、もうひとつの基板S2上に形成された複数の反応用電極22を磁性体エレメント1に直交するように接触させて、くびれ形成領域1Fを同時に形成した。各素子の両側には、それぞれセル用配線101とセル用配線102をマトリクス状に接続した。これらセル用配線101とセル用配線102の番地を選ぶことにより、アレイ状に形成された記録再生素子のうちの目的の素子(セル)を選択することができる。このようにして、電流駆動の記録再生機能をもつ不揮発性の高密度固体メモリが得られた。
【0108】
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、磁気抵抗効果膜を構成する各要素の具体的な寸法関係や材料、その他、電極、バイアス印加膜、絶縁構造などの形状や材質に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
【0109】
また、磁気抵抗効果素子における磁性体エレメント、反強磁性層、強磁性層、非磁性中間層、絶縁層などの構成要素は、それぞれ単層として形成してもよく、あるいは2以上の層を積層した構造としてもよい。
【0110】
また、本発明の磁気抵抗効果素子を再生用磁気ヘッドに適用する際に、これと隣接して書き込み用の磁気ヘッドを設けることにより、記録再生一体型の磁気ヘッドが得られる。
【0111】
その他、本発明の実施の形態として上述した磁気ヘッド及び磁気記憶再生装置を基にして、当業者が適宜設計変更して実施しうるすべての磁気抵抗効果素子、磁気ヘッド及び磁気記憶再生装置も同様に本発明の範囲に属する。
【0112】
【発明の効果】
以上詳述したように、本発明によれば、極めて高い磁気抵抗効果を有し、素子化が容易でかつ制御性が良好な磁気抵抗効果素子を提供するとともに、これを用いた高感度の再生ヘッド用素子を提供することができる。
【0113】
またさらに、この磁気抵抗効果素子を用いた記録再生機能をもつ磁気記録再生素子を提供することもでき産業上のメリットは多大である。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる磁気抵抗効果素子の要部構造を例示する平面図である。
【図2】本発明の磁気抵抗効果素子における印加磁場と電気抵抗との関係を例示するグラフ図である。
【図3】通常の異方性磁気抵抗効果による磁気抵抗変化を説明する概念図である。
【図4】くびれ形成領域を有する磁気抵抗効果素子を模式的に表す平面図及び正面図である。
【図5】本発明の磁気抵抗効果素子の第2の具体例を表す模式図である。
【図6】本発明の磁気抵抗効果素子の第3の具体例を表す模式図である。
【図7】針状の反応用電極20を接近させた状態を表す概念図である。
【図8】細線状の反応用電極22を接近させた状態を表す概念図である。
【図9】細線状の反応用電極22を接近させた状態を表す概念図である。
【図10】磁性体エレメント1と同一の基板S上に予め設けておく場合を例示する模式図である。
【図11】くびれ形成領域1Fが形成された状態を表す模式図である。
【図12】ひとつの反応用電極22を用いて複数の磁性体エレメント1に対して同時にくびれ部形成領域1Fを形成する状態を表す模式図である。
【図13】本発明の磁気抵抗効果素子を磁気記録再生システムにおける磁気検出素子として適応した具体例を表す模式図である。
【図14】電流駆動により、さらに効果的に記録再生できる固体メモリ用記録再生素子を表す概念図である。
【図15】非磁性層と強磁性層と反強磁性層との積層膜を積層させた構造を例示する断面図である。
【図16】本発明の第1実施例により得られた磁気抵抗特性を表すグラフ図である。
【図17】本発明の第2実施例により得られた磁気抵抗特性を表すグラフ図である。
【図18】本発明の第4実施例の磁気ヘッドを表す模式図である。
【図19】本発明の第5実施例の磁気メモリの平面構成を表す模式図である。
【符号の説明】
1 磁性体エレメント
1A 導電領域
1B 導電領域
1C 導電領域
1F くびれ形成領域
2 非磁性層
4 強磁性層
12 電極
20、22 反応用電極
26 加工用電圧源
30 モニタ用電源
32 電流計
101 セル用配線
102 セル用配線
200 磁気記録媒体
C くびれ部
S 基板

Claims (16)

  1. 基板の主面上に設けられた磁性体エレメントを備え、
    前記磁性体エレメントは、前記主面の上に設けられた第1の導電領域と、前記主面の前記第1の導電領域が設けられた領域とは異なる領域の上に設けられた第2の導電領域と、前記第1の導電領域と前記第2の導電領域との間を流れる電流を狭窄するくびれ部と、を有し、
    前記くびれ部を介して前記第1の導電領域と前記第2の導電領域との間を流れる電流に対して略平行または略反平行な方向の印加磁場中において前記第1の導電領域と前記第2の導電領域との間の電気抵抗が減少することを特徴とする磁気抵抗効果素子。
  2. 前記くびれ部の幅は、20nm以下であることを特徴とする請求項1記載の磁気抵抗効果素子。
  3. 前記磁性体エレメントは、前記くびれ部を形成するための高抵抗のくびれ形成領域をさらに有し、
    前記くびれ形成領域は、前記くびれ部とは組成及び結晶構造の少なくともいずれかが異なることを特徴とする請求項1または2に記載の磁気抵抗効果素子。
  4. 前記くびれ形成領域は、酸化物、窒化物、フッ化物あるいは非晶質からなることを特徴とする請求項3記載の磁気抵抗効果素子。
  5. 前記くびれ部を介して前記第1の導電領域と前記第2の導電領域との間に電流を流した時に、前記磁性体エレメントの抵抗は5Ω以上50kΩ以下であり、20%以上の磁気抵抗変化率を示すことを特徴とする請求項1〜4のいずれか1つに記載の磁気抵抗効果素子。
  6. 前記磁性体エレメントは、前記くびれ部を介して接続された第1及び第2の導電領域を有し、
    前記第1及び第2の導電領域のいずれか一方のみの磁化が一方向に固着されたことを特徴とする請求項1〜5のいずれか1つに記載の磁気抵抗効果素子。
  7. 請求項1〜6のいずれか1つに記載の磁気抵抗効果素子を備え、
    磁気記録媒体から放出される磁束の経路上に前記第1及び第2の導電領域の少なくともいずれかを配置し、前記第1及び第2の導電領域の磁化方向の差異を前記くびれ部を挟んだ磁気抵抗変化として検出可能としたことを特徴とする磁気再生ヘッド。
  8. 前記第1及び第2の導電領域のうちで、前記磁気記録媒体から相対的に遠くに設けられた導電領域の磁化が一方向に固着されてなることを特徴とする請求項7記載の磁気再生ヘッド。
  9. 請求項1〜6のいずれか1つに記載の磁気抵抗効果素子を備え、
    前記第1及び第2の導電領域のいずれか一方の磁化は一方向に固着され、
    前記第1及び第2の導電領域のいずれか他方の磁化を記録すべき情報に応じた方向に固定することにより情報を記憶可能とし、
    前記くびれ部を挟んだ前記第1及び第2の導電領域の磁化方向の差異を磁気抵抗変化として検出することにより、記憶させた前記情報の読み出しを可能としたことを特徴とする磁気記録再生システム。
  10. 磁性体エレメントの上面あるいは側面に、針状あるいは細線状の反応用電極を接近させ、この反応用電極と磁性体エレメントとの間に電圧を印加して前記磁性体エレメントの一部の組成あるいは結晶構造を変化させることにより、前記磁性体エレメントの一部に電流を狭窄するくびれ形成領域を設ける磁気抵抗効果素子の製造方法であって、
    前記くびれ形成領域を挟んで前記磁性体エレメントを流れる電流をモニタしつつこの値が所望の値に到達するまで前記変化を進めることを特徴とする磁気抵抗効果素子の製造方法。
  11. 前記磁性体エレメントの一部の変化は、酸化、窒化、フッ化あるいは結晶と非晶質との間の変化のいずれかであることを特徴とする請求項10記載の磁気抵抗効果素子の製造方法。
  12. 基板の主面の上に設けられた第1の導電領域と、
    前記主面の前記第1の導電領域が設けられた領域とは異なる領域の上に設けられた第3の導電領域と、
    前記主面の上において前記第1の導電領域と前記第3の導電領域との間に設けられた第2の導電領域と、
    前記第1の導電領域と前記第2の導電領域との間を流れる電流を狭窄する第1のくびれ部と、
    前記第2の導電領域と前記第3の導電領域との間を流れる電流を狭窄する第2のくびれ部と、
    を備え、
    前記第1のくびれ部を介して前記第1の導電領域と前記第2の導電領域との間を流れる電流に対して略平行または略反平行な方向の印加磁場中において前記第1の導電領域と前記第2の導電領域との間の電気抵抗が減少するか、または前記第2のくびれ部を介して前記第2の導電領域と前記第3の導電領域との間を流れる電流に対して略平行または略反平行な方向の印加磁場中において前記第2の導電領域と前記第3の導電領域との間の電気抵抗が減少し、
    前記第1の導電領域の磁化と前記第3の導電領域の磁化とが互いに反平行に固着され、
    前記第1の導電領域または前記第3の導電領域から前記第2の導電領域に電流を流して前記第2の導電領域の磁化を変化させることによって情報を記憶可能とし、
    前記第1のくびれ部を挟んだ前記第1及び第2の導電領域の磁化方向の差異または前記第2のくびれ部を挟んだ前記第2及び第3の導電領域の磁化方向の差異を磁気抵抗効果として検出することにより、記憶させた前記情報の読み出しを可能としたことを特徴とする磁気記録再生素子。
  13. 前記第1及び第2のくびれ部の幅は、いずれも20nm以下であることを特徴とする請求項12記載の磁気記録再生素子。
  14. 前記第1及び第2のくびれ部を形成するための高抵抗のくびれ形成領域をさらに備え、
    前記くびれ形成領域は、前記第1及び第2のくびれ部とは組成及び結晶構造の少なくともいずれかが異なることを特徴とする請求項12または13に記載の磁気記録再生素子。
  15. 前記くびれ形成領域は、酸化物、窒化物、フッ化物あるいは非晶質からなることを特徴とする請求項14記載の磁気記録再生素子。
  16. 前記第1のくびれ部を介して前記第1の導電領域と前記第2の導電領域との間に電流を流した時に、前記第1の導電領域と前記第2の導電領域との間の抵抗は5Ω以上50kΩ以下であり、20%以上の磁気抵抗変化率を示し、
    前記第2のくびれ部を介して前記第2の導電領域と前記第3の導電領域との間に電流を流した時に、前記第2の導電領域と前記第3の導電領域との間の抵抗は5Ω以上50kΩ以下であり、20%以上の磁気抵抗変化率を示すことを特徴とする請求項12〜15のいずれか1つに記載の磁気記録再生素子。
JP2001295146A 2001-09-26 2001-09-26 磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子 Expired - Fee Related JP3655229B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295146A JP3655229B2 (ja) 2001-09-26 2001-09-26 磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295146A JP3655229B2 (ja) 2001-09-26 2001-09-26 磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子

Publications (2)

Publication Number Publication Date
JP2003101101A JP2003101101A (ja) 2003-04-04
JP3655229B2 true JP3655229B2 (ja) 2005-06-02

Family

ID=19116629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295146A Expired - Fee Related JP3655229B2 (ja) 2001-09-26 2001-09-26 磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子

Country Status (1)

Country Link
JP (1) JP3655229B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101122496B1 (ko) * 2004-01-15 2012-03-15 고쿠리츠다이가쿠호진 도호쿠다이가쿠 전류 주입 자벽 이동 소자
KR20070072522A (ko) * 2004-10-27 2007-07-04 각고호우징 게이오기주크 자기 저항 효과 소자 및 자기 메모리 장치
JP2006196708A (ja) * 2005-01-13 2006-07-27 Institute Of Physical & Chemical Research 磁気情報記録素子、磁気情報記録媒体および磁気情報記録素子の磁壁生成方法
JP4932275B2 (ja) * 2005-02-23 2012-05-16 株式会社日立製作所 磁気抵抗効果素子
JP2006287081A (ja) * 2005-04-04 2006-10-19 Fuji Electric Holdings Co Ltd スピン注入磁区移動素子およびこれを用いた装置
JP2006303159A (ja) * 2005-04-20 2006-11-02 Fuji Electric Holdings Co Ltd スピン注入磁区移動素子およびこれを用いた装置
JP4817148B2 (ja) * 2005-08-02 2011-11-16 独立行政法人科学技術振興機構 ナノ構造体を有する磁気及び電気エネルギーの相互変換素子
ITTO20050759A1 (it) * 2005-10-26 2007-04-27 Fiat Ricerche Rete magnetoresistiva nanostrutturata e relativo procedimento di rilevazione di campo magnetico
JP4932276B2 (ja) * 2006-02-24 2012-05-16 シャープ株式会社 磁気抵抗効果素子の製造方法
JP5370907B2 (ja) * 2008-04-03 2013-12-18 日本電気株式会社 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ

Also Published As

Publication number Publication date
JP2003101101A (ja) 2003-04-04

Similar Documents

Publication Publication Date Title
US7561385B2 (en) Magneto-resistive element in which a free layer includes ferromagnetic layers and a non-magnetic layer interposed therebetween
US6956766B2 (en) Magnetic cell and magnetic memory
JP4371781B2 (ja) 磁気セル及び磁気メモリ
JP3891540B2 (ja) 磁気抵抗効果メモリ、磁気抵抗効果メモリに記録される情報の記録再生方法、およびmram
JP3916908B2 (ja) 磁気抵抗効果素子、磁気メモリ及び磁気ヘッド
US20030179510A1 (en) Magnetic head, magnetic head gimbal assembly, magnetic recording and reproducing apparatus, and magnetic memory
JP2005109263A (ja) 磁性体素子及磁気メモリ
JP2007266498A (ja) 磁気記録素子及び磁気メモリ
KR20000023047A (ko) 자기 소자, 자기 메모리 디바이스, 자기저항 효과 헤드 및자기 저장 시스템
JP2004179667A (ja) 磁気抵抗効果素子および磁気抵抗効果記憶素子およびデジタル信号を記憶させる方法
JP2006303159A (ja) スピン注入磁区移動素子およびこれを用いた装置
US20040085681A1 (en) Magnetoresistance element, magnetic memory, and magnetic head
JP4406242B2 (ja) 磁気メモリ
US7385790B2 (en) CPP-type giant manetoresistance effect element and magnetic component and magnetic device using it
WO2002099906A1 (fr) Element magnetoresistant, element de memorisation par magnetoresistance et memoire magnetique
KR100702669B1 (ko) 나노 자기 메모리 소자와 그 제조방법
JP3655229B2 (ja) 磁気抵抗効果素子及びその製造方法、磁気検出素子並びに磁気記録再生素子
JP3868699B2 (ja) 磁気メモリ装置
JP3836779B2 (ja) 磁気抵抗効果素子及び磁気メモリ
US8049998B2 (en) Magnetoresistance effect device and method for manufacturing same, magnetic memory, magnetic head, and magnetic recording apparatus
JP5951401B2 (ja) 磁気記録素子及び磁気メモリ
US6778433B1 (en) High programming efficiency MRAM cell structure
JP2015038998A (ja) 磁気記録素子及び磁気メモリ
JPH11154389A (ja) 磁気抵抗素子、磁性薄膜メモリ素子および該メモリ素子の記録再生方法
JP2003197872A (ja) 磁気抵抗効果膜を用いたメモリ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050302

R151 Written notification of patent or utility model registration

Ref document number: 3655229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees