JP3644661B2 - 水素吸蔵合金を利用した熱利用システム - Google Patents
水素吸蔵合金を利用した熱利用システム Download PDFInfo
- Publication number
- JP3644661B2 JP3644661B2 JP28165197A JP28165197A JP3644661B2 JP 3644661 B2 JP3644661 B2 JP 3644661B2 JP 28165197 A JP28165197 A JP 28165197A JP 28165197 A JP28165197 A JP 28165197A JP 3644661 B2 JP3644661 B2 JP 3644661B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- water
- hydrogen
- output
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金の水素の吸蔵と放出とを繰り返して行わせて、水素の放出時に生じる吸熱作用を利用して冷熱を得る、あるいは水素の吸蔵時に生じる放熱作用を利用して温熱を得る水素吸蔵合金を利用した熱利用システムに関する。
【0002】
【従来の技術】
水素吸蔵合金を用いた従来の水素吸蔵合金を利用した熱利用システムを、図12を用いて説明する。水素吸蔵合金を用いたヒートポンプサイクルJ1 は、水素吸蔵合金J2 の加熱、放熱および冷熱出力を得るためにシェル&チューブタイプの熱交換器を用いていた。
この従来技術で示すヒートポンプサイクルJ1 は、4つのシェル&チューブタイプの熱交換器J3 〜J6 を用いたもので、各熱交換器J3 〜J6 は水素吸蔵合金J2 と熱媒体とが熱交換可能に設けられている。第1、第2熱交換器J3 、J4 の水素吸蔵合金J2 は水素通路を介して連通し、第3、第4熱交換器J5 、J6 の水素吸蔵合金J2 も水素通路を介して連通して設けられている。
【0003】
作動は、第1熱交換器J3 に加熱用の熱媒体を供給するとともに、第2熱交換器J4 に放熱用の熱媒体を供給する。すると、第1熱交換器J3 の水素が放出されて第2熱交換器J4 に吸蔵される。つまり、水素駆動が行われる。
次に、第1熱交換器J3 に供給していた加熱用の熱媒体を、放熱用の熱媒体に切り替えて供給するとともに、第2熱交換器J4 に供給していた放熱用の熱媒体を、冷熱出力用の熱媒体に切り替えて供給する。すると、第1熱交換器J3 が水素を吸蔵し、第2熱交換器J4 が水素を放出する。この第2熱交換器J4 が水素を放出する時、冷熱出力用の熱媒体が冷却される。つまり、冷熱出力が得られる。
そして、上記のサイクルを繰り返す。
【0004】
一方、第2熱交換器J4 から冷熱出力を得ている時は、第3熱交換器J5 に加熱用の熱媒体を供給するとともに、第4熱交換器J6 に放熱用の熱媒体を供給する。すると、第3熱交換器J5 の水素が放出されて第4熱交換器J6 に吸蔵される。つまり、第1、第2熱交換器J3 、J4 で冷熱出力を得ている時は、第3、第4熱交換器J5 、J6 で水素駆動が行われる。
次に、第3熱交換器J5 に供給していた加熱用の熱媒体を、放熱用の熱媒体に切り替えて供給するとともに、第4熱交換器J6 に供給していた放熱用の熱媒体を、冷熱出力用の熱媒体に切り替えて供給する。すると、第3熱交換器J5 が水素を吸蔵し、第4熱交換器J6 が水素を放出する。この第4熱交換器J6 が水素を放出する時、冷熱出力用の熱媒体が冷却される。つまり、第1、第2熱交換器J3 、J4 で水素駆動が行われている時は、第3、第4熱交換器J5 、J6 で冷熱出力が得られる。
そして、上記のサイクルを繰り返す。
【0005】
【発明が解決しようとする課題】
従来のヒートポンプサイクルJ1 では、各熱交換器J3 〜J6 に、加熱用の熱媒体と放熱用の熱媒体、あるいは放熱用の熱媒体と冷熱出力用の熱媒体を切り替えて供給するために、多数の切替バルブJ7 〜J14が必要になる。
この多数の切替バルブJ7 〜J14は、電磁弁であり、作動中比較的高頻度で切り替わるため、作動音が目立ち作動騒音となってしまう。また、切替バルブJ9 〜J16は、電磁弁であるため、切替時における熱媒体の圧力変化によるショックが大きく、特に家庭用等の小型のヒートポンプサイクルJ1 には不向きであった。
【0006】
【発明の目的】
本発明は、上記の事情に鑑みてなされたもので、その目的は熱媒体の切替時に生じる切替音の発生を抑えるとともに、切替時における熱媒体の圧力変化の小さい水素吸蔵合金を利用した熱利用システムの提供にある。
【0007】
【課題を解決するための手段】
本発明の水素吸蔵合金を利用した熱利用システムは、上記の目的を達成するために、次の技術的手段を採用した。
(請求項1の手段)
水素吸蔵合金を利用した熱利用システムは、水素吸蔵合金と熱媒体の熱交換を行う複数の熱交換器と、
温度の異なる熱媒体を前記複数の熱交換器に切り替えて供給する熱媒体切替供給手段と、を備え、
熱媒体と熱交換して水素吸蔵合金の水素の吸蔵と放出とを行わせ、水素の放出時に生じる吸熱作用や水素の吸蔵時に生じる放熱作用を利用して冷熱や温熱を得る水素吸蔵合金を利用した熱利用システムにおいて、
熱媒体切替供給手段は、
複数の熱媒体の供給を受ける複数の入力ポートおよび複数の出力ポートを備える固定筒と、
この固定筒の内部で回転し、前記複数の入水ポートから供給されたそれぞれの熱媒体を独立して受ける複数の環状外周溝、およびこの外周溝と内部で連通して設けられ、前記複数の出力ポートに同時に複数の熱媒体を供給する複数の傾斜溝を備える回転弁と、
この回転弁を前記固定筒の内部で回転させる駆動装置と、を備えることを特徴とする。
【0008】
(請求項2の手段)
請求項1の水素吸蔵合金を利用した熱利用システムにおいて、
前記複数の熱交換器は、水素吸蔵合金が封入された複数の室を水素通路で連通したセルを複数用いてなり、
前記熱媒体切替供給手段は、前記複数のセルの各室と熱交換する熱媒体の供給状態を、前記複数のセル毎においてそれぞれが異なった室に水素移動するように切り替えることを特徴とする。
【0009】
【発明の作用および効果】
熱媒体切替供給手段は、固定筒の内部で回転弁を回転させることで、複数の出力ポートと一致する複数の傾斜溝が変化し、結果的に複数の熱媒体が複数の熱交換器へ切り替えて供給されるものであるため、従来の多数の切替バルブの作動音のような切替騒音の発生がない。
また、回転弁の回転によって複数の熱媒体が切り替えられ、切り替えが瞬時に行われるものではないため、切替時における熱媒体の圧力変化によるショックが従来の切替バルブに比較して小さくできる。このように、圧力変化によるショックが従来に比較して小さいため、家庭用等の小型のヒートポンプサイクルに用いても耐久性を向上できる。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を、実施例および変形例に基づき説明する。
〔実施例の構成〕
実施例は、本発明の水素吸蔵合金を利用した熱利用システムを室内空調用の冷房装置に適用したもので、この実施例を図1ないし図8を用いて説明する。
【0011】
(冷房装置1の概略説明)
本実施例の冷房装置1の概略構成を、図1を用いて説明する。
本実施例の適用される冷房装置1は、大別して、水素吸蔵合金を用いたヒートポンプサイクル2と、水素吸蔵合金を加熱する加熱水(加熱用の熱媒体に相当する、本実施例では水)を作り出す燃焼装置3と、水素吸蔵合金を冷却する放熱水(放熱用の熱媒体に相当する、本実施例では水)を放熱によって冷却する放熱水冷却手段4と、水素吸蔵合金の水素放出作用によって生じた吸熱によって冷却された冷熱出力水(冷熱出力用の熱媒体に相当する、本実施例では水)で室内を空調する室内空調機5と、搭載された各電気機能部品を制御する制御装置6とから構成される。
【0012】
なお、ヒートポンプサイクル2、燃焼装置3、放熱水冷却手段4および制御装置6は、室外機7として室外に設置されるもので、室内には室内空調機5が配置される。また、本実施例に示す冷房装置1は、1つの室外機7に対して、複数の室内空調機5が接続可能な所謂マルチエアコンである。
【0013】
(ヒートポンプサイクル2の説明)
本実施例のヒートポンプサイクル2は、1サイクルで2度の冷熱出力を得る2段式サイクルを用いたもので、図2に示すように、上段熱交換器N1 、中段熱交換器N2 、下段熱交換器N3 を1モジュールとしたポンプユニットが3つ用いられている。
1つのモジュールは、水素吸蔵合金が封入された上段室S1 、この上段室S1 内に水素通路S4 を介して連通し、水素吸蔵合金が封入された中段室S2 、中段室S2 内に水素通路S4 を介して連通し、水素吸蔵合金が封入された下段室S3 を備えたセルSを備える。また、上、中、下段室S1 、S2 、S3 は、それぞれハウジング9によって覆われて、上、中、下段熱交換器N1 、N2 、N3 を構成している。
【0014】
水素吸蔵合金は、水素平衡圧力が異なる3種を用いたもので、上段室S1 内には同一平衡水素圧で水素平衡温度が最も高い高温度水素吸蔵合金(以下、高温合金HM)の粉末を封入し、中段室S2 内には中温度水素吸蔵合金(以下、中温合金MM)の粉末を封入し、下段室S3 内には同一平衡水素圧で水素平衡温度が最も低い低温度水素吸蔵合金(以下、低温合金LM)の粉末を封入したものである。
このことを図7のPT冷凍サイクルを用いて説明すると、水素吸蔵合金の特性が、相対的に高温側(図示左側)にあるのが高温合金HM、低温側にあるのが低温合金LM、両者の中間にあるのが中温合金MMである。
【0015】
1つのセルSは、図3ないし図5に示されるもので、ステンレスあるいは銅など、水素透過の無い金属を用いて偏平な上、中、下段室S1 、S2 、S3 を最中状に形成し、上、中、下段室S1 、S2 、S3 の一辺側を水素通路S4 が内部に形成された棒状の連結部S5 で連結した形状を呈する。
そして、各室の内部に粉末状の水素吸蔵合金を充填し、真空引きを行ったのち、活性化処理を施し、水素を高圧充填して開口部に金属蓋をして溶接により密封したものである。なお、各室の偏平方向の対向面は、図5に示すように、内部に挿入されたフィン8を介して接合されており、真空引き時の低圧下、および水素充填時の高圧下においてもフィン8による接合によって各室の変形が小さく抑えられている。
【0016】
ハウジング9は、上、中、下段室S1 、S2 、S3 を覆う略箱形状のものである。本実施例のハウジング9は、図5に示すように2重構造を採用しており、各室を覆う樹脂製のデバイダー9aと、このデバイダー9aを覆う樹脂製のケース9bとからなり、デバイダー9aとケース9bの間には断熱材9cが配置されている。
デバイダー9aは、各室内の水素吸蔵合金と熱媒体とを効率的に熱交換させるもので、各室とデバイダー9aとの間には熱媒体が流れる複数の熱媒体通路9dが形成されている。また、ハウジング9の両端には熱媒体通路9dへの熱媒体の給排を行う給排口9eが設けられている。
【0017】
2段式サイクルのヒートポンプサイクル2は、後述する熱媒体切替供給手段による熱媒体の切替供給によって、図2に示すように、上段室S1 内の水素を強制的に下段室S3 内に移動させる水素駆動αと、下段室S3 内に移動した水素を中段室S2 に移動させる第1冷熱出力βと、中段室S2 内に移動した水素を上段室S1 に移動させる第2冷熱出力γとに切り替わる。
【0018】
水素駆動αでは、上段熱交換器N1 に加熱水(例えば80℃ほど)が供給され、中段熱交換器N2 に昇圧水(例えば56℃ほど)が供給され、下段熱交換器N3 に放熱水(例えば28℃ほど)が供給される。
第1冷熱出力βでは、上段熱交換器N1 に昇圧水(例えば58℃ほど)が供給され、中段熱交換器N2 に放熱水(例えば28℃ほど)が供給され、下段熱交換器N3 に冷熱出力水(例えば13℃ほど)が供給される。
第2冷熱出力γでは、上段熱交換器N1 に放熱水(例えば28℃ほど)が供給され、中段熱交換器N2 に冷熱出力水(例えば13℃ほど)が供給される。なお、下段熱交換器N3 への熱媒体の温度は不問であり、この実施例では単に循環する不問水を下段熱交換器N3 へ供給するが、第2冷熱出力γでは下段熱交換器N3 へ何も供給しないように設けても良い。
【0019】
つまり、後述する分配器10と収集器11とからなる熱媒体の切替手段により、上段熱交換器N1 には加熱水→昇圧水→放熱水が順次切替供給されるものであり、中段熱交換器N2 には、昇圧水→放熱水→冷熱出力水が順次切替供給されるものであり、下段熱交換器N3 には、放熱水→冷熱出力水→不問水が順次切替供給されるものである。
【0020】
熱媒体の切替手段は、図1、図6に示すように、複数の熱媒体源から供給された熱媒体を分配して複数の熱交換器へ供給する分配器10(熱媒体切替供給手段に相当する)と、複数の熱交換器を通過した複数の熱媒体を収集して再び複数の熱媒体源へ戻す収集器11とからなる。なお、この分配器10と収集器11は、入力方向と出力方向が逆になるだけで、他は同一構成のものであり、分配器10を例に説明する。
分配器10は、筒形状を呈した固定筒12と、この固定筒12の内部を回転する回転弁13と、この回転弁13を回転駆動するモータ等からなる駆動装置(図示しない)とからなる。なお、この駆動装置は、回転弁13を120°づつ段階的に回転させるものである(例えば、3分間毎に120°づつの回転)。
【0021】
固定筒12の上半部には、加熱水、昇圧水、放熱水、冷熱出力水、不問水の供給を受ける5つの入力ポート12aが設けられている。この5つの入力ポート12aは水平方向に一致しないように上下方向(軸方向)にずらして設けられている。
また、固定筒12の下半部には、120°間隔で、且つ縦方向に3つづつの合計9つの出力ポート12bが設けられている。各縦列の内の上段の出力ポート12bはそれぞれ同じ高さに設けられ、中段の出力ポート12bもそれぞれ同じ高さに設けられ、下段の出力ポート12bもそれぞれ同じ高さに設けられている。そして縦方向に3つづつ並ぶ3列の出力ポート12bは、回転弁13の回転によって分配される加熱水−昇圧水−放熱水、昇圧水−放熱水−冷熱出力水、放熱水−冷熱出力水−不問水の3組の熱媒体を、3つのセルSに向けて出力するものである。
【0022】
回転弁13は、5つの入力ポート12aに合致して、5つの入力ポート12aから入力される5種類の熱媒体を受ける5つの環状の外周溝13aを備える。また、回転弁13は、120°間隔で縦方向に3組の熱媒体(加熱水−昇圧水−放熱水、昇圧水−放熱水−冷熱出力水、放熱水−冷熱出力水−不問水)を同時に出力するための5つの傾斜溝13bを備える。なお、各入力ポート12aの上下および各傾斜溝13bの周囲には図示しないシール用のパッキングが設けられている。
外周溝13aと傾斜溝13bとは回転弁13の内部で連通している。具体的には、回転弁13の内部には上下方向に伸びる5本の内部連通路が設けられており、5つの外周溝13a内には対応する内部連通路に熱媒体を導く連通穴がそれぞれ設けられている。また、傾斜溝13b内にも対応する内部連通路から熱媒体を導く連通穴がそれぞれ設けられており、各入力ポート12aから各外周溝13aに供給された熱媒体が、各外周溝13a内の連通穴→各内部連通路→各傾斜溝13b内の連通穴を通って各傾斜溝13bに導かれ、合致する出力ポート12bを介して熱交換器に供給されるように設けられている。
【0023】
このように設けられた分配器10は、次のように作動する。
まず、固定筒12に対して回転弁13が0°の位置の場合を説明する。
一番上の入力ポート12aに供給された加熱水は、一番上の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の0°位置にある上段の出力ポート12bから出力される。
上から2番目の入力ポート12aに供給された昇圧水は、上から2番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の0°位置にある中段の出力ポート12bと、固定筒12の120°位置にある上段の出力ポート12bとから出力される。
上から3番目の入力ポート12aに供給された放熱水は、上から3番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する3つの出力ポート12b、すなわち固定筒12の0°位置にある下段の出力ポート12bと、固定筒12の120°位置にある中段の出力ポート12bと、固定筒12の240°位置にある上段の出力ポート12bとから出力される。
上から4番目の入力ポート12aに供給された冷熱出力水は、上から4番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の120°位置にある下段の出力ポート12bと、固定筒12の240°位置にある中段の出力ポート12bとから出力される。
上から5番目の入力ポート12aに供給された不問水は、上から5番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の240°位置にある下段の出力ポート12bから出力される。
【0024】
次に、固定筒12に対して回転弁13が120°の位置へ移動した場合を説明する。
一番上の入力ポート12aに供給された加熱水は、一番上の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の120°位置にある上段の出力ポート12bから出力される。
上から2番目の入力ポート12aに供給された昇圧水は、上から2番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の120°位置にある中段の出力ポート12bと、固定筒12の240°位置にある上段の出力ポート12bとから出力される。
上から3番目の入力ポート12aに供給された放熱水は、上から3番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する3つの出力ポート12b、すなわち固定筒12の120°位置にある下段の出力ポート12bと、固定筒12の240°位置にある中段の出力ポート12bと、固定筒12の0°位置にある上段の出力ポート12bとから出力される。
上から4番目の入力ポート12aに供給された冷熱出力水は、上から4番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の240°位置にある下段の出力ポート12bと、固定筒12の0°位置にある中段の出力ポート12bとから出力される。
上から5番目の入力ポート12aに供給された不問水は、上から5番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の0°位置にある下段の出力ポート12bから出力される。
【0025】
さらに、固定筒12に対して回転弁13が240°の位置へ移動した場合を説明する。
一番上の入力ポート12aに供給された加熱水は、一番上の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の240°位置にある上段の出力ポート12bから出力される。
上から2番目の入力ポート12aに供給された昇圧水は、上から2番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の240°位置にある中段の出力ポート12bと、固定筒12の0°位置にある上段の出力ポート12bとから出力される。
上から3番目の入力ポート12aに供給された放熱水は、上から3番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する3つの出力ポート12b、すなわち固定筒12の240°位置にある下段の出力ポート12bと、固定筒12の0°位置にある中段の出力ポート12bと、固定筒12の120°位置にある上段の出力ポート12bとから出力される。
上から4番目の入力ポート12aに供給された冷熱出力水は、上から4番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の0°位置にある下段の出力ポート12bと、固定筒12の120°位置にある中段の出力ポート12bとから出力される。
上から5番目の入力ポート12aに供給された不問水は、上から5番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の120°位置にある下段の出力ポート12bから出力される。
【0026】
このように、固定筒12内で回転弁13が120°づつ回転することにより、分配器10と収集器11が、複数のセルSの各室と熱交換する熱媒体の供給状態を、複数のセル毎においてそれぞれが異なった室に水素移動するように切り替える。
つまり、固定筒12に対して回転弁13が0°の位置の時、図8の上段に示すように、3つのセルSの内、1列目(図示左側)のセルSが水素駆動αになり、2列目(図示中央)のセルSが第1冷熱出力βになり、3列目(図示右側)のセルSが第2冷熱出力γになる。
固定筒12に対して回転弁13が120°の位置の時は、図8の中段に示すように、3つのセルSの内、1列目のセルSが第1冷熱出力βになり、2列目のセルSが第2冷熱出力γになり、3列目のセルSが水素駆動αになる。
固定筒12に対して回転弁13が240°の位置の時は、図8の下段に示すように、3つのセルSの内、1列目のセルSが第2冷熱出力γになり、2列目のセルSが水素駆動αになり、3列目のセルSが第1冷熱出力βになる。
さらに、回転弁13が120°づつ回転することにより、上記が繰り返される。
【0027】
(ヒートポンプサイクル2における上記以外の構成部品の説明)
図1に示す符号14は、水素駆動αの中段熱交換器N2 および第1冷熱出力βの上段熱交換器N1 へ供給される昇圧水を循環する昇圧水循環路で、途中に設けられた昇圧水循環ポンプP1 ’によって昇圧水が循環する。なお、昇圧水は、水素駆動αで温度上昇した上段室S1 からの伝熱により温度上昇した水である。
また、図1に示す符号15は、第2冷熱出力γの下段熱交換器N3 へ供給される不問水を循環する不問水循環路で、途中に設けられた不問水循環ポンプP1 ”によって不問水が循環する。
【0028】
(燃焼装置3の説明)
本実施例の燃焼装置3は、燃料であるガスを燃焼して熱を発生させ、発生した熱によって加熱水を加熱するガス燃焼装置を用いたもので、ガスの燃焼を行うガスバーナ16、このガスバーナ16へガスの供給を行うガス量調節弁17およびガス開閉弁18を備えたガス供給回路19、ガスバーナ16へ燃焼用の空気を供給する燃焼ファン20、ガスの燃焼熱と加熱水とを熱交換する熱交換器21等から構成される。
そして、ガスバーナ16のガス燃焼で得られた熱で、加熱水を例えば80℃程に加熱し、加熱された加熱水を加熱水循環ポンプP1 を備えた加熱水循環路22を介して水素駆動αの上段熱交換器N1 に供給するものである。
なお、本実施例の加熱水循環ポンプP1 は、昇圧水循環ポンプP1 ’および不問水循環ポンプP1 ”を駆動する共通のモータによって駆動されるトリプルポンプである。このため、燃焼装置3から加熱水がヒートポンプサイクル2に供給される際は、昇圧水と不問水も循環作動するように設けられている。
【0029】
(室内空調機5の説明)
室内空調機5は、上述のように室内に配置されるもので、内部に室内熱交換器23、この室内熱交換器23に供給される冷熱出力水と室内空気とを強制的に熱交換し、熱交換後の空気を室内に吹き出させるための室内ファン24を備える。室内熱交換器23には、第1冷熱出力βの下段熱交換器N3 、第2冷熱出力γの中段熱交換器N2 から供給される冷熱出力水を循環させる冷熱出力水循環路25が接続され、この冷熱出力水循環路25の途中(室外機7内)には、冷熱出力水を循環させる冷熱出力水ポンプP2 が設けられている。
【0030】
(放熱水冷却手段4の説明)
放熱水冷却手段4は、開放型の水冷式冷却塔であり、この放熱水冷却手段4によって冷却された放熱水は、放熱水循環ポンプP3 を備えた放熱水循環路26、および熱媒体切替供給手段によって水素駆動αの下段熱交換器N3 、第1冷熱出力βの中段熱交換器N2 、第2冷熱出力γの上段熱交換器N1 に供給される。
また、放熱水冷却手段4は、水素駆動αの下段熱交換器N3 、第1冷熱出力βの中段熱交換器N2 、第2冷熱出力γの上段熱交換器N1 を通過した放熱水を、上方から下方へ流し、流れている間に外気と熱交換して放熱するとともに、流れている間に一部蒸発させて、蒸発時に流れている放熱水から気化熱を奪い、流れている放熱水を冷却するものである。また、この放熱水冷却手段4は、図示しない放熱ファンを備え、この放熱ファンの生じる空気流によって放熱水の蒸発および冷却を促進するように設けられている。
なお、この実施例では、放熱水冷却手段4として開放型の水冷式冷却塔を示したが、放熱水(放熱用の熱媒体)が空気に触れずに熱交換する密閉型の水冷式または空冷式冷却手段を用いても良い。
【0031】
ここで、上記に示す昇圧水循環路14、不問水循環路15、加熱水循環路22、冷熱出力水循環路25および放熱水循環路26は、それぞれシスターンT1 〜T5 を備えており、シスターンT1 〜T5 内の水位が所定水位以下に低下すると、それぞれに設けられた給水バルブT6 〜T10が開き、給水管27から供給される水道水をシスターンT1 〜T5 内に補充するように設けられている。
また、ヒートポンプサイクル2の下部にはドレンパンPが配置され、ヒートポンプサイクル2に発生したドレン水を排水管28から排水するように設けられている。なお、放熱水冷却手段4で溢れた水も排水管28から排水するように設けられている。
【0032】
(制御装置6の説明)
制御装置6は、室内空調機5に設けられたコントローラ(図示しない)からの操作指示や、複数設けられた各センサの入力信号に応じて、上述の加熱水循環ポンプP1 (昇圧水循環ポンプP1 ’、不問水循環ポンプP1 ”)、冷熱出力水ポンプP2 、放熱水循環ポンプP3 、給水バルブT6 〜T10、放熱水冷却手段4の放熱ファンなどの電気機能部品、および燃焼装置3の電気機能部品(燃焼ファン20、ガス量調節弁17、ガス開閉弁18、図示しない点火装置等)を制御するとともに、室内空調機5に室内ファン24の作動指示を与えるものである。
【0033】
(冷房運転の作動説明)
上記の冷房装置1による冷房運転の作動を、図7のPT冷凍サイクル線図を参照して説明する。
冷房運転が室内空調機5のコントローラによって指示されると、制御装置6によって、燃焼装置3、分配器10および収集器11の駆動装置、放熱ファンおよび加熱水循環ポンプP1 (昇圧水循環ポンプP1 ’、不問水循環ポンプP1 ”)、冷熱出力水ポンプP2 、放熱水循環ポンプP3 が作動するとともに、冷房が指示された室内空調機5の室内ファン24をONする。
【0034】
駆動装置によって、分配器10および収集器11が同期して120°づつ回転移動する。これによって、3つのセルSが、水素駆動α→第1冷熱出力β→第2冷熱出力γの順で移動する。
水素駆動αのセルSでは、上段室S1 が加熱水に触れ、中段室S2 が昇圧水に触れ、下段室S3 が放熱水に触れる。
上段室S1 が加熱水(80℃)に触れることにより、上段室S1 の内圧が上昇し、高温合金HMが水素を放出する。
中段室S2 が昇圧水(56℃)に触れることにより、中段室S2 の内圧が中温合金MMが水素を吸蔵しない圧力まで上昇する。
下段室S3 が放熱水(28℃)に触れることにより、下段室S3 の内圧が下がり、低温合金LMが水素を吸蔵する。
【0035】
このように、上段室S1 が加熱水に触れ、中段室S2 が昇圧水に触れ、下段室S3 が放熱水に触れることにより、上段室S1 内が80℃;1.0MPa、中段室S2 内が56℃;1.0MPa、下段室S3 内が28℃;0.9MPaとなり、上段室S1 の高温合金HMが水素を放出し(図7の▲1▼)、下段室S3 の低温合金LMが水素を吸蔵する(図7の▲2▼)。なお、中段室S2 は昇圧水によって加熱されて内圧が高く、中温合金MMは水素の吸蔵は行わない。
そして、水素駆動αが行われたセルSは、その後第1冷熱出力βへ移行する。
【0036】
第1冷熱出力βのセルSでは、上段室S1 が昇圧水に触れ、中段室S2 が放熱水に触れ、下段室S3 が冷熱出力水に触れる。
上段室S1 が昇圧水(58℃)に触れることにより、上段室S1 の内圧が高温合金HMが水素を吸蔵しない圧力まで上昇する。
中段室S2 が放熱水(28℃)に触れることにより、中段室S2 の内圧が下がり、中温合金MMが水素を吸蔵し、下段室S3 の低温合金LMが水素を放出する。
低温合金LMが水素を放出するため、下段室S3 内で吸熱が生じ、下段室S3 に触れる冷熱出力水が例えば13℃に冷やされる。
【0037】
このように、上段室S1 が昇圧水に触れ、中段室S2 が放熱水に触れ、下段室S3 が冷熱出力水に触れることにより、上段室S1 内が58℃;0.5MPa、中段室S2 内が28℃;0.4MPa、下段室S3 内が13℃;0.5MPaとなり、下段室S3 の低温合金LMが水素を放出し(図7の▲3▼)、中段室S2 の中温合金MMが水素を吸蔵する(図7の▲4▼)。下段室S3 の低温合金LMが水素を放出する際、吸熱作用により下段室S3 に触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下させる。なお、上段室S1 は、昇圧水によって加熱されて内圧が高く、高温合金HMは水素の吸蔵は行わない。
そして、第1冷熱出力βが行われたセルSは、その後第2冷熱出力γへ移行する。
【0038】
第2冷熱出力γのセルSでは、上段室S1 が放熱水に触れ、中段室S2 が冷熱出力水に触れ、下段室S3 が不問水に触れる。
上段室S1 が放熱水(28℃)に触れることにより、上段室S1 の内圧が下がり、高温合金HMが水素を吸蔵し、中段室S2 の中温合金MMが水素を放出する。
中温合金MMが水素を放出するため、中段室S2 内で吸熱が生じ、中段室S2 に触れる冷熱出力水が例えば13℃に冷やされる。
【0039】
このように、上段室S1 が放熱水に触れることにより、上段室S1 内が28℃;0.1MPa、中段室S2 内が13℃;0.2MPa、下段室S3 内は不問状態となり、中段室S2 の中温合金MMが水素を放出し(図7の▲5▼)、上段室S1 の高温合金HMが水素を吸蔵する(図7の▲6▼)。中段室S2 の中温合金MMが水素を放出する際、吸熱作用により中段室S2 に触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下させる。なお、下段室S3 の温度は無関係で、下段室S3 の低温合金LMは水素の吸蔵は行わない。
そして、第2冷熱出力γが行われたセルSは、その後水素駆動αへ移行する。
【0040】
なお、ヒートポンプサイクル2の第1冷熱出力βおよび第2冷熱出力γで熱を奪われた低温の冷熱出力水は、冷熱出力水循環路25を介して室内空調機5の室内熱交換器23に供給されて、室内に吹き出される空気と熱交換されて室内を冷房する。
【0041】
〔実施例の効果〕
分配器10および収集器11は、固定筒12の内部で回転弁13を回転させることで、縦方向に3つづつ別れた9つの出力ポート12bと一致する傾斜溝13bが変化し、結果的に上、中、下段熱交換器N1 、N2 、N3 へそれぞれ適した熱媒体を切り替えて供給することができる。このため、従来の多数の切替バルブの作動音のような切替騒音の発生がなく、室外機7の作動音を低く抑えることができる。
また、回転弁13の回転によって複数の熱媒体が切り替えられ、切り替えは瞬時に行われないため、切替時における熱媒体の圧力変化によるショックを小さく抑えることができる。このように、圧力変化によるショックを抑えることができるため、本実施例で示した小型のヒートポンプサイクルの耐久性を高めることができる。
【0042】
上、中、下段熱交換器N1 、N2 、N3 よりなる1つのモジュールは、1サイクル(水素駆動α、第1冷熱出力β、第2冷熱出力γ)において2度の冷熱出力を得ることができる。そして、この実施例では、3つのモジュールを用いることにより、連続的に安定した冷熱出力を得ることができる。
この1つのモジュールは、薄型や小型化が可能であり、複数用いる場合は配置の自由度が大きい。このため、従来のシェル&チューブタイプの熱交換器を用いたヒートポンプサイクルに比較して、設置の自由度が大変大きい。つまり、この実施例に示すように、3つのモジュールをブロック状に積層配置してコンパクト化したり、あるいは複数のモジュールを平らに並べて設置して、壁付けや壁埋込、あるいは床埋込可能にしても良い。
また、上、中、下段室S1 、S2 、S3 を偏平形状に設けたため、高、中、低温合金HM、MM、LMと熱交換しない熱媒体の割合が減り、ヒートロスが小さくなるため、ヒートポンプサイクル2の冷却効率が向上する。
【0043】
〔変形例〕
上記の実施例では、固定筒12および回転弁13がそれぞれ一体化の例を示したが、図9に示すように、分割された固定筒12を金具31で接合したり、分割された回転弁13をトルクロッド32を介して接合しても良い。図中の符号33は複数の外周溝13aのシール用のOリングである。なお、傾斜溝13bの周囲にも図示しないシール用のパッキングが設けられている。このように固定筒12および回転弁13を組み立てて構成することにより、加工性が良い。また、高温の熱媒体と低温の熱媒体とを分けることにより、高温の熱媒体と低温の熱媒体が固定筒12および回転弁13で熱交換することによるヒートロスを減らすことができる。
なお、図10に示すように、不問水の循環を廃止しても良い。図11は図10に示す分配器10を用いて1つのモジュールに熱媒体を切り替えて供給する例を示す斜視図である。
【0044】
上記の実施例では、分配器10(熱媒体切替供給手段)と同構成の収集器11を採用した例を示したが、各熱交換器を通過した熱媒体を再利用しない場合は収集器11を簡略化しても良い。つまり、例えば加熱用熱媒体の熱源として排熱等を利用して熱交換器加熱後に排出する場合は、複数の熱交換器に分配された加熱用熱媒体を1つに収集する必要がないため、収集器11を簡略化できる。
【0045】
上記の実施例では、冷房運転のみ行う例を示したが、燃焼装置3で加熱された加熱水を室内空調機5の室内熱交換器23に導いて温風吹出による室内暖房を行うように設けても良い。また、室内空調機5の他に、床暖房マット、浴室乾燥機などに加熱水を供給可能に設け、床暖房や浴室暖房などを行うように設けても良い。
【0046】
上記の実施例では、1つの室外機7に複数の室内空調機5が接続可能なマルチエアコンを示したが、1つの室外機7に1つの室内空調機5が接続されるエアコンに本発明を適用しても良い。
上記の実施例では、ヒートポンプサイクル2によって得られた冷熱出力用の熱媒体(実施例中では冷熱出力水)で室内を冷房する例を示したが、冷熱出力用の熱媒体で冷蔵運転や冷凍運転に用いるなど、本発明を他の冷却装置として用いても良い。
【0047】
上記の実施例では、説明を容易化するために、図面の上下に上段熱交換器N1 、中段熱交換器N2 、下段熱交換器N3 とした例を示したが、配置方向を変えても良い。
【0048】
上記の実施例では、昇圧用の熱媒体として、加熱水によって温度上昇した上段熱交換器N1 の熱を受けて昇温した熱媒体(実施例中では昇圧水)を用いた例を示したが、加熱手段(例えば、燃焼装置による昇温、電気ヒータによる昇温、排熱を利用した昇温など)によって昇温した熱媒体を用いても良い。
上記の実施例では、ヒートポンプサイクル2の一例として、2段式サイクルを用いた例を示したが、1段式サイクルに用いても良いし、3段式以上のサイクルとして用いても良い。
【0049】
上記の実施例では、3つのモジュールを組み合わせたヒートポンプサイクル2を例に示したが、モジュールの数を減らしたり、逆に数を増大させて冷却能力を増大させ、ビル用空調システムなど大きな冷却能力が要求される冷却装置に用いても良い。つまり、モジュールの数によって、冷却能力を容易に可変することができる。
【0050】
上記の実施例では、加熱用の熱媒体(実施例中では加熱水)を加熱する加熱手段として、ガスを燃焼するガス燃焼装置を用いたが、石油を燃焼する石油燃焼装置など、他の燃焼装置を用いても良いし、内燃機関の排熱によって加熱用の熱媒体を加熱する加熱手段、ボイラーによる蒸気、電気ヒータを用いた加熱手段など、他の加熱手段を用いても良い。なお、内燃機関の排熱を利用する際は、車両用に用いることもできる。
【0051】
上記の実施例では、各熱媒体の一例として、水道水を用いたが、不凍液やオイルなど他の液体の熱媒体を用いても良いし、空気など気体の熱媒体を用いても良い。
上記の実施例では、回転式の熱媒体切替供給手段を例に示したが、例えば従来技術で示したように、複数の電磁弁を切り替えて熱媒体を切り替えるように設けても良い。
上記の実施例では、水素吸蔵合金の水素の放出時に生じる吸熱作用を利用して冷熱を得る例を示したが、水素吸蔵合金の水素の吸蔵時に生じる放熱作用を利用して温熱を得る加熱装置(例えば暖房装置など)に本発明を適用しても良い。
【図面の簡単な説明】
【図1】冷房装置の概略構成図である(実施例)。
【図2】ヒートポンプサイクルの作動説明図である(実施例)。
【図3】セルの斜視図である(実施例)。
【図4】ハウジングに覆われた室の側面図である(実施例)。
【図5】図4のI−I線に沿う断面図である(実施例)。
【図6】分配器および収集器の斜視図である(実施例)。
【図7】PT冷凍サイクル線図である(実施例)。
【図8】作動説明図である(実施例)。
【図9】分配器の分解斜視図である(変形例)。
【図10】分配器の斜視図である(変形例)。
【図11】図10の分配器の使用例を示す斜視図である(変形例)。
【図12】冷房装置の概略構成図である(従来例)。
【符号の説明】
HM 高温合金(水素吸蔵合金)
MM 中温合金(水素吸蔵合金)
LM 低温合金(水素吸蔵合金)
S セル
S1 上段室
S2 中段室
S3 下段室
S4 水素通路
N1 上段熱交換器
N2 中段熱交換器
N3 下段熱交換器
10 分配器(熱媒体切替供給手段)
12 固定筒
12a 入力ポート
12b 出力ポート
13 回転弁
13a 外周溝
13b 傾斜溝
【発明の属する技術分野】
本発明は、水素吸蔵合金の水素の吸蔵と放出とを繰り返して行わせて、水素の放出時に生じる吸熱作用を利用して冷熱を得る、あるいは水素の吸蔵時に生じる放熱作用を利用して温熱を得る水素吸蔵合金を利用した熱利用システムに関する。
【0002】
【従来の技術】
水素吸蔵合金を用いた従来の水素吸蔵合金を利用した熱利用システムを、図12を用いて説明する。水素吸蔵合金を用いたヒートポンプサイクルJ1 は、水素吸蔵合金J2 の加熱、放熱および冷熱出力を得るためにシェル&チューブタイプの熱交換器を用いていた。
この従来技術で示すヒートポンプサイクルJ1 は、4つのシェル&チューブタイプの熱交換器J3 〜J6 を用いたもので、各熱交換器J3 〜J6 は水素吸蔵合金J2 と熱媒体とが熱交換可能に設けられている。第1、第2熱交換器J3 、J4 の水素吸蔵合金J2 は水素通路を介して連通し、第3、第4熱交換器J5 、J6 の水素吸蔵合金J2 も水素通路を介して連通して設けられている。
【0003】
作動は、第1熱交換器J3 に加熱用の熱媒体を供給するとともに、第2熱交換器J4 に放熱用の熱媒体を供給する。すると、第1熱交換器J3 の水素が放出されて第2熱交換器J4 に吸蔵される。つまり、水素駆動が行われる。
次に、第1熱交換器J3 に供給していた加熱用の熱媒体を、放熱用の熱媒体に切り替えて供給するとともに、第2熱交換器J4 に供給していた放熱用の熱媒体を、冷熱出力用の熱媒体に切り替えて供給する。すると、第1熱交換器J3 が水素を吸蔵し、第2熱交換器J4 が水素を放出する。この第2熱交換器J4 が水素を放出する時、冷熱出力用の熱媒体が冷却される。つまり、冷熱出力が得られる。
そして、上記のサイクルを繰り返す。
【0004】
一方、第2熱交換器J4 から冷熱出力を得ている時は、第3熱交換器J5 に加熱用の熱媒体を供給するとともに、第4熱交換器J6 に放熱用の熱媒体を供給する。すると、第3熱交換器J5 の水素が放出されて第4熱交換器J6 に吸蔵される。つまり、第1、第2熱交換器J3 、J4 で冷熱出力を得ている時は、第3、第4熱交換器J5 、J6 で水素駆動が行われる。
次に、第3熱交換器J5 に供給していた加熱用の熱媒体を、放熱用の熱媒体に切り替えて供給するとともに、第4熱交換器J6 に供給していた放熱用の熱媒体を、冷熱出力用の熱媒体に切り替えて供給する。すると、第3熱交換器J5 が水素を吸蔵し、第4熱交換器J6 が水素を放出する。この第4熱交換器J6 が水素を放出する時、冷熱出力用の熱媒体が冷却される。つまり、第1、第2熱交換器J3 、J4 で水素駆動が行われている時は、第3、第4熱交換器J5 、J6 で冷熱出力が得られる。
そして、上記のサイクルを繰り返す。
【0005】
【発明が解決しようとする課題】
従来のヒートポンプサイクルJ1 では、各熱交換器J3 〜J6 に、加熱用の熱媒体と放熱用の熱媒体、あるいは放熱用の熱媒体と冷熱出力用の熱媒体を切り替えて供給するために、多数の切替バルブJ7 〜J14が必要になる。
この多数の切替バルブJ7 〜J14は、電磁弁であり、作動中比較的高頻度で切り替わるため、作動音が目立ち作動騒音となってしまう。また、切替バルブJ9 〜J16は、電磁弁であるため、切替時における熱媒体の圧力変化によるショックが大きく、特に家庭用等の小型のヒートポンプサイクルJ1 には不向きであった。
【0006】
【発明の目的】
本発明は、上記の事情に鑑みてなされたもので、その目的は熱媒体の切替時に生じる切替音の発生を抑えるとともに、切替時における熱媒体の圧力変化の小さい水素吸蔵合金を利用した熱利用システムの提供にある。
【0007】
【課題を解決するための手段】
本発明の水素吸蔵合金を利用した熱利用システムは、上記の目的を達成するために、次の技術的手段を採用した。
(請求項1の手段)
水素吸蔵合金を利用した熱利用システムは、水素吸蔵合金と熱媒体の熱交換を行う複数の熱交換器と、
温度の異なる熱媒体を前記複数の熱交換器に切り替えて供給する熱媒体切替供給手段と、を備え、
熱媒体と熱交換して水素吸蔵合金の水素の吸蔵と放出とを行わせ、水素の放出時に生じる吸熱作用や水素の吸蔵時に生じる放熱作用を利用して冷熱や温熱を得る水素吸蔵合金を利用した熱利用システムにおいて、
熱媒体切替供給手段は、
複数の熱媒体の供給を受ける複数の入力ポートおよび複数の出力ポートを備える固定筒と、
この固定筒の内部で回転し、前記複数の入水ポートから供給されたそれぞれの熱媒体を独立して受ける複数の環状外周溝、およびこの外周溝と内部で連通して設けられ、前記複数の出力ポートに同時に複数の熱媒体を供給する複数の傾斜溝を備える回転弁と、
この回転弁を前記固定筒の内部で回転させる駆動装置と、を備えることを特徴とする。
【0008】
(請求項2の手段)
請求項1の水素吸蔵合金を利用した熱利用システムにおいて、
前記複数の熱交換器は、水素吸蔵合金が封入された複数の室を水素通路で連通したセルを複数用いてなり、
前記熱媒体切替供給手段は、前記複数のセルの各室と熱交換する熱媒体の供給状態を、前記複数のセル毎においてそれぞれが異なった室に水素移動するように切り替えることを特徴とする。
【0009】
【発明の作用および効果】
熱媒体切替供給手段は、固定筒の内部で回転弁を回転させることで、複数の出力ポートと一致する複数の傾斜溝が変化し、結果的に複数の熱媒体が複数の熱交換器へ切り替えて供給されるものであるため、従来の多数の切替バルブの作動音のような切替騒音の発生がない。
また、回転弁の回転によって複数の熱媒体が切り替えられ、切り替えが瞬時に行われるものではないため、切替時における熱媒体の圧力変化によるショックが従来の切替バルブに比較して小さくできる。このように、圧力変化によるショックが従来に比較して小さいため、家庭用等の小型のヒートポンプサイクルに用いても耐久性を向上できる。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を、実施例および変形例に基づき説明する。
〔実施例の構成〕
実施例は、本発明の水素吸蔵合金を利用した熱利用システムを室内空調用の冷房装置に適用したもので、この実施例を図1ないし図8を用いて説明する。
【0011】
(冷房装置1の概略説明)
本実施例の冷房装置1の概略構成を、図1を用いて説明する。
本実施例の適用される冷房装置1は、大別して、水素吸蔵合金を用いたヒートポンプサイクル2と、水素吸蔵合金を加熱する加熱水(加熱用の熱媒体に相当する、本実施例では水)を作り出す燃焼装置3と、水素吸蔵合金を冷却する放熱水(放熱用の熱媒体に相当する、本実施例では水)を放熱によって冷却する放熱水冷却手段4と、水素吸蔵合金の水素放出作用によって生じた吸熱によって冷却された冷熱出力水(冷熱出力用の熱媒体に相当する、本実施例では水)で室内を空調する室内空調機5と、搭載された各電気機能部品を制御する制御装置6とから構成される。
【0012】
なお、ヒートポンプサイクル2、燃焼装置3、放熱水冷却手段4および制御装置6は、室外機7として室外に設置されるもので、室内には室内空調機5が配置される。また、本実施例に示す冷房装置1は、1つの室外機7に対して、複数の室内空調機5が接続可能な所謂マルチエアコンである。
【0013】
(ヒートポンプサイクル2の説明)
本実施例のヒートポンプサイクル2は、1サイクルで2度の冷熱出力を得る2段式サイクルを用いたもので、図2に示すように、上段熱交換器N1 、中段熱交換器N2 、下段熱交換器N3 を1モジュールとしたポンプユニットが3つ用いられている。
1つのモジュールは、水素吸蔵合金が封入された上段室S1 、この上段室S1 内に水素通路S4 を介して連通し、水素吸蔵合金が封入された中段室S2 、中段室S2 内に水素通路S4 を介して連通し、水素吸蔵合金が封入された下段室S3 を備えたセルSを備える。また、上、中、下段室S1 、S2 、S3 は、それぞれハウジング9によって覆われて、上、中、下段熱交換器N1 、N2 、N3 を構成している。
【0014】
水素吸蔵合金は、水素平衡圧力が異なる3種を用いたもので、上段室S1 内には同一平衡水素圧で水素平衡温度が最も高い高温度水素吸蔵合金(以下、高温合金HM)の粉末を封入し、中段室S2 内には中温度水素吸蔵合金(以下、中温合金MM)の粉末を封入し、下段室S3 内には同一平衡水素圧で水素平衡温度が最も低い低温度水素吸蔵合金(以下、低温合金LM)の粉末を封入したものである。
このことを図7のPT冷凍サイクルを用いて説明すると、水素吸蔵合金の特性が、相対的に高温側(図示左側)にあるのが高温合金HM、低温側にあるのが低温合金LM、両者の中間にあるのが中温合金MMである。
【0015】
1つのセルSは、図3ないし図5に示されるもので、ステンレスあるいは銅など、水素透過の無い金属を用いて偏平な上、中、下段室S1 、S2 、S3 を最中状に形成し、上、中、下段室S1 、S2 、S3 の一辺側を水素通路S4 が内部に形成された棒状の連結部S5 で連結した形状を呈する。
そして、各室の内部に粉末状の水素吸蔵合金を充填し、真空引きを行ったのち、活性化処理を施し、水素を高圧充填して開口部に金属蓋をして溶接により密封したものである。なお、各室の偏平方向の対向面は、図5に示すように、内部に挿入されたフィン8を介して接合されており、真空引き時の低圧下、および水素充填時の高圧下においてもフィン8による接合によって各室の変形が小さく抑えられている。
【0016】
ハウジング9は、上、中、下段室S1 、S2 、S3 を覆う略箱形状のものである。本実施例のハウジング9は、図5に示すように2重構造を採用しており、各室を覆う樹脂製のデバイダー9aと、このデバイダー9aを覆う樹脂製のケース9bとからなり、デバイダー9aとケース9bの間には断熱材9cが配置されている。
デバイダー9aは、各室内の水素吸蔵合金と熱媒体とを効率的に熱交換させるもので、各室とデバイダー9aとの間には熱媒体が流れる複数の熱媒体通路9dが形成されている。また、ハウジング9の両端には熱媒体通路9dへの熱媒体の給排を行う給排口9eが設けられている。
【0017】
2段式サイクルのヒートポンプサイクル2は、後述する熱媒体切替供給手段による熱媒体の切替供給によって、図2に示すように、上段室S1 内の水素を強制的に下段室S3 内に移動させる水素駆動αと、下段室S3 内に移動した水素を中段室S2 に移動させる第1冷熱出力βと、中段室S2 内に移動した水素を上段室S1 に移動させる第2冷熱出力γとに切り替わる。
【0018】
水素駆動αでは、上段熱交換器N1 に加熱水(例えば80℃ほど)が供給され、中段熱交換器N2 に昇圧水(例えば56℃ほど)が供給され、下段熱交換器N3 に放熱水(例えば28℃ほど)が供給される。
第1冷熱出力βでは、上段熱交換器N1 に昇圧水(例えば58℃ほど)が供給され、中段熱交換器N2 に放熱水(例えば28℃ほど)が供給され、下段熱交換器N3 に冷熱出力水(例えば13℃ほど)が供給される。
第2冷熱出力γでは、上段熱交換器N1 に放熱水(例えば28℃ほど)が供給され、中段熱交換器N2 に冷熱出力水(例えば13℃ほど)が供給される。なお、下段熱交換器N3 への熱媒体の温度は不問であり、この実施例では単に循環する不問水を下段熱交換器N3 へ供給するが、第2冷熱出力γでは下段熱交換器N3 へ何も供給しないように設けても良い。
【0019】
つまり、後述する分配器10と収集器11とからなる熱媒体の切替手段により、上段熱交換器N1 には加熱水→昇圧水→放熱水が順次切替供給されるものであり、中段熱交換器N2 には、昇圧水→放熱水→冷熱出力水が順次切替供給されるものであり、下段熱交換器N3 には、放熱水→冷熱出力水→不問水が順次切替供給されるものである。
【0020】
熱媒体の切替手段は、図1、図6に示すように、複数の熱媒体源から供給された熱媒体を分配して複数の熱交換器へ供給する分配器10(熱媒体切替供給手段に相当する)と、複数の熱交換器を通過した複数の熱媒体を収集して再び複数の熱媒体源へ戻す収集器11とからなる。なお、この分配器10と収集器11は、入力方向と出力方向が逆になるだけで、他は同一構成のものであり、分配器10を例に説明する。
分配器10は、筒形状を呈した固定筒12と、この固定筒12の内部を回転する回転弁13と、この回転弁13を回転駆動するモータ等からなる駆動装置(図示しない)とからなる。なお、この駆動装置は、回転弁13を120°づつ段階的に回転させるものである(例えば、3分間毎に120°づつの回転)。
【0021】
固定筒12の上半部には、加熱水、昇圧水、放熱水、冷熱出力水、不問水の供給を受ける5つの入力ポート12aが設けられている。この5つの入力ポート12aは水平方向に一致しないように上下方向(軸方向)にずらして設けられている。
また、固定筒12の下半部には、120°間隔で、且つ縦方向に3つづつの合計9つの出力ポート12bが設けられている。各縦列の内の上段の出力ポート12bはそれぞれ同じ高さに設けられ、中段の出力ポート12bもそれぞれ同じ高さに設けられ、下段の出力ポート12bもそれぞれ同じ高さに設けられている。そして縦方向に3つづつ並ぶ3列の出力ポート12bは、回転弁13の回転によって分配される加熱水−昇圧水−放熱水、昇圧水−放熱水−冷熱出力水、放熱水−冷熱出力水−不問水の3組の熱媒体を、3つのセルSに向けて出力するものである。
【0022】
回転弁13は、5つの入力ポート12aに合致して、5つの入力ポート12aから入力される5種類の熱媒体を受ける5つの環状の外周溝13aを備える。また、回転弁13は、120°間隔で縦方向に3組の熱媒体(加熱水−昇圧水−放熱水、昇圧水−放熱水−冷熱出力水、放熱水−冷熱出力水−不問水)を同時に出力するための5つの傾斜溝13bを備える。なお、各入力ポート12aの上下および各傾斜溝13bの周囲には図示しないシール用のパッキングが設けられている。
外周溝13aと傾斜溝13bとは回転弁13の内部で連通している。具体的には、回転弁13の内部には上下方向に伸びる5本の内部連通路が設けられており、5つの外周溝13a内には対応する内部連通路に熱媒体を導く連通穴がそれぞれ設けられている。また、傾斜溝13b内にも対応する内部連通路から熱媒体を導く連通穴がそれぞれ設けられており、各入力ポート12aから各外周溝13aに供給された熱媒体が、各外周溝13a内の連通穴→各内部連通路→各傾斜溝13b内の連通穴を通って各傾斜溝13bに導かれ、合致する出力ポート12bを介して熱交換器に供給されるように設けられている。
【0023】
このように設けられた分配器10は、次のように作動する。
まず、固定筒12に対して回転弁13が0°の位置の場合を説明する。
一番上の入力ポート12aに供給された加熱水は、一番上の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の0°位置にある上段の出力ポート12bから出力される。
上から2番目の入力ポート12aに供給された昇圧水は、上から2番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の0°位置にある中段の出力ポート12bと、固定筒12の120°位置にある上段の出力ポート12bとから出力される。
上から3番目の入力ポート12aに供給された放熱水は、上から3番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する3つの出力ポート12b、すなわち固定筒12の0°位置にある下段の出力ポート12bと、固定筒12の120°位置にある中段の出力ポート12bと、固定筒12の240°位置にある上段の出力ポート12bとから出力される。
上から4番目の入力ポート12aに供給された冷熱出力水は、上から4番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の120°位置にある下段の出力ポート12bと、固定筒12の240°位置にある中段の出力ポート12bとから出力される。
上から5番目の入力ポート12aに供給された不問水は、上から5番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の240°位置にある下段の出力ポート12bから出力される。
【0024】
次に、固定筒12に対して回転弁13が120°の位置へ移動した場合を説明する。
一番上の入力ポート12aに供給された加熱水は、一番上の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の120°位置にある上段の出力ポート12bから出力される。
上から2番目の入力ポート12aに供給された昇圧水は、上から2番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の120°位置にある中段の出力ポート12bと、固定筒12の240°位置にある上段の出力ポート12bとから出力される。
上から3番目の入力ポート12aに供給された放熱水は、上から3番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する3つの出力ポート12b、すなわち固定筒12の120°位置にある下段の出力ポート12bと、固定筒12の240°位置にある中段の出力ポート12bと、固定筒12の0°位置にある上段の出力ポート12bとから出力される。
上から4番目の入力ポート12aに供給された冷熱出力水は、上から4番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の240°位置にある下段の出力ポート12bと、固定筒12の0°位置にある中段の出力ポート12bとから出力される。
上から5番目の入力ポート12aに供給された不問水は、上から5番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の0°位置にある下段の出力ポート12bから出力される。
【0025】
さらに、固定筒12に対して回転弁13が240°の位置へ移動した場合を説明する。
一番上の入力ポート12aに供給された加熱水は、一番上の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の240°位置にある上段の出力ポート12bから出力される。
上から2番目の入力ポート12aに供給された昇圧水は、上から2番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の240°位置にある中段の出力ポート12bと、固定筒12の0°位置にある上段の出力ポート12bとから出力される。
上から3番目の入力ポート12aに供給された放熱水は、上から3番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する3つの出力ポート12b、すなわち固定筒12の240°位置にある下段の出力ポート12bと、固定筒12の0°位置にある中段の出力ポート12bと、固定筒12の120°位置にある上段の出力ポート12bとから出力される。
上から4番目の入力ポート12aに供給された冷熱出力水は、上から4番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する2つの出力ポート12b、すなわち固定筒12の0°位置にある下段の出力ポート12bと、固定筒12の120°位置にある中段の出力ポート12bとから出力される。
上から5番目の入力ポート12aに供給された不問水は、上から5番目の外周溝13a→その外周溝13a内の連通穴→内部連通路→傾斜溝13b内の連通穴→傾斜溝13bを介して、その傾斜溝13bに合致する固定筒12の120°位置にある下段の出力ポート12bから出力される。
【0026】
このように、固定筒12内で回転弁13が120°づつ回転することにより、分配器10と収集器11が、複数のセルSの各室と熱交換する熱媒体の供給状態を、複数のセル毎においてそれぞれが異なった室に水素移動するように切り替える。
つまり、固定筒12に対して回転弁13が0°の位置の時、図8の上段に示すように、3つのセルSの内、1列目(図示左側)のセルSが水素駆動αになり、2列目(図示中央)のセルSが第1冷熱出力βになり、3列目(図示右側)のセルSが第2冷熱出力γになる。
固定筒12に対して回転弁13が120°の位置の時は、図8の中段に示すように、3つのセルSの内、1列目のセルSが第1冷熱出力βになり、2列目のセルSが第2冷熱出力γになり、3列目のセルSが水素駆動αになる。
固定筒12に対して回転弁13が240°の位置の時は、図8の下段に示すように、3つのセルSの内、1列目のセルSが第2冷熱出力γになり、2列目のセルSが水素駆動αになり、3列目のセルSが第1冷熱出力βになる。
さらに、回転弁13が120°づつ回転することにより、上記が繰り返される。
【0027】
(ヒートポンプサイクル2における上記以外の構成部品の説明)
図1に示す符号14は、水素駆動αの中段熱交換器N2 および第1冷熱出力βの上段熱交換器N1 へ供給される昇圧水を循環する昇圧水循環路で、途中に設けられた昇圧水循環ポンプP1 ’によって昇圧水が循環する。なお、昇圧水は、水素駆動αで温度上昇した上段室S1 からの伝熱により温度上昇した水である。
また、図1に示す符号15は、第2冷熱出力γの下段熱交換器N3 へ供給される不問水を循環する不問水循環路で、途中に設けられた不問水循環ポンプP1 ”によって不問水が循環する。
【0028】
(燃焼装置3の説明)
本実施例の燃焼装置3は、燃料であるガスを燃焼して熱を発生させ、発生した熱によって加熱水を加熱するガス燃焼装置を用いたもので、ガスの燃焼を行うガスバーナ16、このガスバーナ16へガスの供給を行うガス量調節弁17およびガス開閉弁18を備えたガス供給回路19、ガスバーナ16へ燃焼用の空気を供給する燃焼ファン20、ガスの燃焼熱と加熱水とを熱交換する熱交換器21等から構成される。
そして、ガスバーナ16のガス燃焼で得られた熱で、加熱水を例えば80℃程に加熱し、加熱された加熱水を加熱水循環ポンプP1 を備えた加熱水循環路22を介して水素駆動αの上段熱交換器N1 に供給するものである。
なお、本実施例の加熱水循環ポンプP1 は、昇圧水循環ポンプP1 ’および不問水循環ポンプP1 ”を駆動する共通のモータによって駆動されるトリプルポンプである。このため、燃焼装置3から加熱水がヒートポンプサイクル2に供給される際は、昇圧水と不問水も循環作動するように設けられている。
【0029】
(室内空調機5の説明)
室内空調機5は、上述のように室内に配置されるもので、内部に室内熱交換器23、この室内熱交換器23に供給される冷熱出力水と室内空気とを強制的に熱交換し、熱交換後の空気を室内に吹き出させるための室内ファン24を備える。室内熱交換器23には、第1冷熱出力βの下段熱交換器N3 、第2冷熱出力γの中段熱交換器N2 から供給される冷熱出力水を循環させる冷熱出力水循環路25が接続され、この冷熱出力水循環路25の途中(室外機7内)には、冷熱出力水を循環させる冷熱出力水ポンプP2 が設けられている。
【0030】
(放熱水冷却手段4の説明)
放熱水冷却手段4は、開放型の水冷式冷却塔であり、この放熱水冷却手段4によって冷却された放熱水は、放熱水循環ポンプP3 を備えた放熱水循環路26、および熱媒体切替供給手段によって水素駆動αの下段熱交換器N3 、第1冷熱出力βの中段熱交換器N2 、第2冷熱出力γの上段熱交換器N1 に供給される。
また、放熱水冷却手段4は、水素駆動αの下段熱交換器N3 、第1冷熱出力βの中段熱交換器N2 、第2冷熱出力γの上段熱交換器N1 を通過した放熱水を、上方から下方へ流し、流れている間に外気と熱交換して放熱するとともに、流れている間に一部蒸発させて、蒸発時に流れている放熱水から気化熱を奪い、流れている放熱水を冷却するものである。また、この放熱水冷却手段4は、図示しない放熱ファンを備え、この放熱ファンの生じる空気流によって放熱水の蒸発および冷却を促進するように設けられている。
なお、この実施例では、放熱水冷却手段4として開放型の水冷式冷却塔を示したが、放熱水(放熱用の熱媒体)が空気に触れずに熱交換する密閉型の水冷式または空冷式冷却手段を用いても良い。
【0031】
ここで、上記に示す昇圧水循環路14、不問水循環路15、加熱水循環路22、冷熱出力水循環路25および放熱水循環路26は、それぞれシスターンT1 〜T5 を備えており、シスターンT1 〜T5 内の水位が所定水位以下に低下すると、それぞれに設けられた給水バルブT6 〜T10が開き、給水管27から供給される水道水をシスターンT1 〜T5 内に補充するように設けられている。
また、ヒートポンプサイクル2の下部にはドレンパンPが配置され、ヒートポンプサイクル2に発生したドレン水を排水管28から排水するように設けられている。なお、放熱水冷却手段4で溢れた水も排水管28から排水するように設けられている。
【0032】
(制御装置6の説明)
制御装置6は、室内空調機5に設けられたコントローラ(図示しない)からの操作指示や、複数設けられた各センサの入力信号に応じて、上述の加熱水循環ポンプP1 (昇圧水循環ポンプP1 ’、不問水循環ポンプP1 ”)、冷熱出力水ポンプP2 、放熱水循環ポンプP3 、給水バルブT6 〜T10、放熱水冷却手段4の放熱ファンなどの電気機能部品、および燃焼装置3の電気機能部品(燃焼ファン20、ガス量調節弁17、ガス開閉弁18、図示しない点火装置等)を制御するとともに、室内空調機5に室内ファン24の作動指示を与えるものである。
【0033】
(冷房運転の作動説明)
上記の冷房装置1による冷房運転の作動を、図7のPT冷凍サイクル線図を参照して説明する。
冷房運転が室内空調機5のコントローラによって指示されると、制御装置6によって、燃焼装置3、分配器10および収集器11の駆動装置、放熱ファンおよび加熱水循環ポンプP1 (昇圧水循環ポンプP1 ’、不問水循環ポンプP1 ”)、冷熱出力水ポンプP2 、放熱水循環ポンプP3 が作動するとともに、冷房が指示された室内空調機5の室内ファン24をONする。
【0034】
駆動装置によって、分配器10および収集器11が同期して120°づつ回転移動する。これによって、3つのセルSが、水素駆動α→第1冷熱出力β→第2冷熱出力γの順で移動する。
水素駆動αのセルSでは、上段室S1 が加熱水に触れ、中段室S2 が昇圧水に触れ、下段室S3 が放熱水に触れる。
上段室S1 が加熱水(80℃)に触れることにより、上段室S1 の内圧が上昇し、高温合金HMが水素を放出する。
中段室S2 が昇圧水(56℃)に触れることにより、中段室S2 の内圧が中温合金MMが水素を吸蔵しない圧力まで上昇する。
下段室S3 が放熱水(28℃)に触れることにより、下段室S3 の内圧が下がり、低温合金LMが水素を吸蔵する。
【0035】
このように、上段室S1 が加熱水に触れ、中段室S2 が昇圧水に触れ、下段室S3 が放熱水に触れることにより、上段室S1 内が80℃;1.0MPa、中段室S2 内が56℃;1.0MPa、下段室S3 内が28℃;0.9MPaとなり、上段室S1 の高温合金HMが水素を放出し(図7の▲1▼)、下段室S3 の低温合金LMが水素を吸蔵する(図7の▲2▼)。なお、中段室S2 は昇圧水によって加熱されて内圧が高く、中温合金MMは水素の吸蔵は行わない。
そして、水素駆動αが行われたセルSは、その後第1冷熱出力βへ移行する。
【0036】
第1冷熱出力βのセルSでは、上段室S1 が昇圧水に触れ、中段室S2 が放熱水に触れ、下段室S3 が冷熱出力水に触れる。
上段室S1 が昇圧水(58℃)に触れることにより、上段室S1 の内圧が高温合金HMが水素を吸蔵しない圧力まで上昇する。
中段室S2 が放熱水(28℃)に触れることにより、中段室S2 の内圧が下がり、中温合金MMが水素を吸蔵し、下段室S3 の低温合金LMが水素を放出する。
低温合金LMが水素を放出するため、下段室S3 内で吸熱が生じ、下段室S3 に触れる冷熱出力水が例えば13℃に冷やされる。
【0037】
このように、上段室S1 が昇圧水に触れ、中段室S2 が放熱水に触れ、下段室S3 が冷熱出力水に触れることにより、上段室S1 内が58℃;0.5MPa、中段室S2 内が28℃;0.4MPa、下段室S3 内が13℃;0.5MPaとなり、下段室S3 の低温合金LMが水素を放出し(図7の▲3▼)、中段室S2 の中温合金MMが水素を吸蔵する(図7の▲4▼)。下段室S3 の低温合金LMが水素を放出する際、吸熱作用により下段室S3 に触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下させる。なお、上段室S1 は、昇圧水によって加熱されて内圧が高く、高温合金HMは水素の吸蔵は行わない。
そして、第1冷熱出力βが行われたセルSは、その後第2冷熱出力γへ移行する。
【0038】
第2冷熱出力γのセルSでは、上段室S1 が放熱水に触れ、中段室S2 が冷熱出力水に触れ、下段室S3 が不問水に触れる。
上段室S1 が放熱水(28℃)に触れることにより、上段室S1 の内圧が下がり、高温合金HMが水素を吸蔵し、中段室S2 の中温合金MMが水素を放出する。
中温合金MMが水素を放出するため、中段室S2 内で吸熱が生じ、中段室S2 に触れる冷熱出力水が例えば13℃に冷やされる。
【0039】
このように、上段室S1 が放熱水に触れることにより、上段室S1 内が28℃;0.1MPa、中段室S2 内が13℃;0.2MPa、下段室S3 内は不問状態となり、中段室S2 の中温合金MMが水素を放出し(図7の▲5▼)、上段室S1 の高温合金HMが水素を吸蔵する(図7の▲6▼)。中段室S2 の中温合金MMが水素を放出する際、吸熱作用により中段室S2 に触れる冷熱出力水から熱を奪い冷熱出力水の温度を低下させる。なお、下段室S3 の温度は無関係で、下段室S3 の低温合金LMは水素の吸蔵は行わない。
そして、第2冷熱出力γが行われたセルSは、その後水素駆動αへ移行する。
【0040】
なお、ヒートポンプサイクル2の第1冷熱出力βおよび第2冷熱出力γで熱を奪われた低温の冷熱出力水は、冷熱出力水循環路25を介して室内空調機5の室内熱交換器23に供給されて、室内に吹き出される空気と熱交換されて室内を冷房する。
【0041】
〔実施例の効果〕
分配器10および収集器11は、固定筒12の内部で回転弁13を回転させることで、縦方向に3つづつ別れた9つの出力ポート12bと一致する傾斜溝13bが変化し、結果的に上、中、下段熱交換器N1 、N2 、N3 へそれぞれ適した熱媒体を切り替えて供給することができる。このため、従来の多数の切替バルブの作動音のような切替騒音の発生がなく、室外機7の作動音を低く抑えることができる。
また、回転弁13の回転によって複数の熱媒体が切り替えられ、切り替えは瞬時に行われないため、切替時における熱媒体の圧力変化によるショックを小さく抑えることができる。このように、圧力変化によるショックを抑えることができるため、本実施例で示した小型のヒートポンプサイクルの耐久性を高めることができる。
【0042】
上、中、下段熱交換器N1 、N2 、N3 よりなる1つのモジュールは、1サイクル(水素駆動α、第1冷熱出力β、第2冷熱出力γ)において2度の冷熱出力を得ることができる。そして、この実施例では、3つのモジュールを用いることにより、連続的に安定した冷熱出力を得ることができる。
この1つのモジュールは、薄型や小型化が可能であり、複数用いる場合は配置の自由度が大きい。このため、従来のシェル&チューブタイプの熱交換器を用いたヒートポンプサイクルに比較して、設置の自由度が大変大きい。つまり、この実施例に示すように、3つのモジュールをブロック状に積層配置してコンパクト化したり、あるいは複数のモジュールを平らに並べて設置して、壁付けや壁埋込、あるいは床埋込可能にしても良い。
また、上、中、下段室S1 、S2 、S3 を偏平形状に設けたため、高、中、低温合金HM、MM、LMと熱交換しない熱媒体の割合が減り、ヒートロスが小さくなるため、ヒートポンプサイクル2の冷却効率が向上する。
【0043】
〔変形例〕
上記の実施例では、固定筒12および回転弁13がそれぞれ一体化の例を示したが、図9に示すように、分割された固定筒12を金具31で接合したり、分割された回転弁13をトルクロッド32を介して接合しても良い。図中の符号33は複数の外周溝13aのシール用のOリングである。なお、傾斜溝13bの周囲にも図示しないシール用のパッキングが設けられている。このように固定筒12および回転弁13を組み立てて構成することにより、加工性が良い。また、高温の熱媒体と低温の熱媒体とを分けることにより、高温の熱媒体と低温の熱媒体が固定筒12および回転弁13で熱交換することによるヒートロスを減らすことができる。
なお、図10に示すように、不問水の循環を廃止しても良い。図11は図10に示す分配器10を用いて1つのモジュールに熱媒体を切り替えて供給する例を示す斜視図である。
【0044】
上記の実施例では、分配器10(熱媒体切替供給手段)と同構成の収集器11を採用した例を示したが、各熱交換器を通過した熱媒体を再利用しない場合は収集器11を簡略化しても良い。つまり、例えば加熱用熱媒体の熱源として排熱等を利用して熱交換器加熱後に排出する場合は、複数の熱交換器に分配された加熱用熱媒体を1つに収集する必要がないため、収集器11を簡略化できる。
【0045】
上記の実施例では、冷房運転のみ行う例を示したが、燃焼装置3で加熱された加熱水を室内空調機5の室内熱交換器23に導いて温風吹出による室内暖房を行うように設けても良い。また、室内空調機5の他に、床暖房マット、浴室乾燥機などに加熱水を供給可能に設け、床暖房や浴室暖房などを行うように設けても良い。
【0046】
上記の実施例では、1つの室外機7に複数の室内空調機5が接続可能なマルチエアコンを示したが、1つの室外機7に1つの室内空調機5が接続されるエアコンに本発明を適用しても良い。
上記の実施例では、ヒートポンプサイクル2によって得られた冷熱出力用の熱媒体(実施例中では冷熱出力水)で室内を冷房する例を示したが、冷熱出力用の熱媒体で冷蔵運転や冷凍運転に用いるなど、本発明を他の冷却装置として用いても良い。
【0047】
上記の実施例では、説明を容易化するために、図面の上下に上段熱交換器N1 、中段熱交換器N2 、下段熱交換器N3 とした例を示したが、配置方向を変えても良い。
【0048】
上記の実施例では、昇圧用の熱媒体として、加熱水によって温度上昇した上段熱交換器N1 の熱を受けて昇温した熱媒体(実施例中では昇圧水)を用いた例を示したが、加熱手段(例えば、燃焼装置による昇温、電気ヒータによる昇温、排熱を利用した昇温など)によって昇温した熱媒体を用いても良い。
上記の実施例では、ヒートポンプサイクル2の一例として、2段式サイクルを用いた例を示したが、1段式サイクルに用いても良いし、3段式以上のサイクルとして用いても良い。
【0049】
上記の実施例では、3つのモジュールを組み合わせたヒートポンプサイクル2を例に示したが、モジュールの数を減らしたり、逆に数を増大させて冷却能力を増大させ、ビル用空調システムなど大きな冷却能力が要求される冷却装置に用いても良い。つまり、モジュールの数によって、冷却能力を容易に可変することができる。
【0050】
上記の実施例では、加熱用の熱媒体(実施例中では加熱水)を加熱する加熱手段として、ガスを燃焼するガス燃焼装置を用いたが、石油を燃焼する石油燃焼装置など、他の燃焼装置を用いても良いし、内燃機関の排熱によって加熱用の熱媒体を加熱する加熱手段、ボイラーによる蒸気、電気ヒータを用いた加熱手段など、他の加熱手段を用いても良い。なお、内燃機関の排熱を利用する際は、車両用に用いることもできる。
【0051】
上記の実施例では、各熱媒体の一例として、水道水を用いたが、不凍液やオイルなど他の液体の熱媒体を用いても良いし、空気など気体の熱媒体を用いても良い。
上記の実施例では、回転式の熱媒体切替供給手段を例に示したが、例えば従来技術で示したように、複数の電磁弁を切り替えて熱媒体を切り替えるように設けても良い。
上記の実施例では、水素吸蔵合金の水素の放出時に生じる吸熱作用を利用して冷熱を得る例を示したが、水素吸蔵合金の水素の吸蔵時に生じる放熱作用を利用して温熱を得る加熱装置(例えば暖房装置など)に本発明を適用しても良い。
【図面の簡単な説明】
【図1】冷房装置の概略構成図である(実施例)。
【図2】ヒートポンプサイクルの作動説明図である(実施例)。
【図3】セルの斜視図である(実施例)。
【図4】ハウジングに覆われた室の側面図である(実施例)。
【図5】図4のI−I線に沿う断面図である(実施例)。
【図6】分配器および収集器の斜視図である(実施例)。
【図7】PT冷凍サイクル線図である(実施例)。
【図8】作動説明図である(実施例)。
【図9】分配器の分解斜視図である(変形例)。
【図10】分配器の斜視図である(変形例)。
【図11】図10の分配器の使用例を示す斜視図である(変形例)。
【図12】冷房装置の概略構成図である(従来例)。
【符号の説明】
HM 高温合金(水素吸蔵合金)
MM 中温合金(水素吸蔵合金)
LM 低温合金(水素吸蔵合金)
S セル
S1 上段室
S2 中段室
S3 下段室
S4 水素通路
N1 上段熱交換器
N2 中段熱交換器
N3 下段熱交換器
10 分配器(熱媒体切替供給手段)
12 固定筒
12a 入力ポート
12b 出力ポート
13 回転弁
13a 外周溝
13b 傾斜溝
Claims (2)
- 水素吸蔵合金と熱媒体の熱交換を行う複数の熱交換器と、
温度の異なる熱媒体を前記複数の熱交換器に切り替えて供給する熱媒体切替供給手段と、を備え、
熱媒体と熱交換して水素吸蔵合金の水素の吸蔵と放出とを行わせ、水素の放出時に生じる吸熱作用や水素の吸蔵時に生じる放熱作用を利用して冷熱や温熱を得る水素吸蔵合金を利用した熱利用システムにおいて、
熱媒体切替供給手段は、
複数の熱媒体の供給を受ける複数の入力ポートおよび複数の出力ポートを備える固定筒と、
この固定筒の内部で回転し、前記複数の入水ポートから供給されたそれぞれの熱媒体を独立して受ける複数の環状外周溝、およびこの外周溝と内部で連通して設けられ、前記複数の出力ポートに同時に複数の熱媒体を供給する複数の傾斜溝を備える回転弁と、
この回転弁を前記固定筒の内部で回転させる駆動装置と、
を備えることを特徴とする水素吸蔵合金を利用した熱利用システム。 - 請求項1の水素吸蔵合金を利用した熱利用システムにおいて、
前記複数の熱交換器は、水素吸蔵合金が封入された複数の室を水素通路で連通したセルを複数用いてなり、
前記熱媒体切替供給手段は、前記複数のセルの各室と熱交換する熱媒体の供給状態を、前記複数のセル毎においてそれぞれが異なった室に水素移動するように切り替える
ことを特徴とする水素吸蔵合金を利用した熱利用システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28165197A JP3644661B2 (ja) | 1997-10-15 | 1997-10-15 | 水素吸蔵合金を利用した熱利用システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28165197A JP3644661B2 (ja) | 1997-10-15 | 1997-10-15 | 水素吸蔵合金を利用した熱利用システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11118286A JPH11118286A (ja) | 1999-04-30 |
JP3644661B2 true JP3644661B2 (ja) | 2005-05-11 |
Family
ID=17642079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28165197A Expired - Fee Related JP3644661B2 (ja) | 1997-10-15 | 1997-10-15 | 水素吸蔵合金を利用した熱利用システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3644661B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006011410A1 (de) * | 2005-12-07 | 2007-06-14 | Sortech Ag | Adsorptionsmaschine |
US8806883B2 (en) | 2005-12-14 | 2014-08-19 | Behr Gmbh & Co. Kg | Heat pump |
DE102008060698A1 (de) * | 2008-02-22 | 2009-08-27 | Behr Gmbh & Co. Kg | Rotationsventil und Wärmepumpe |
RU2547546C2 (ru) * | 2009-11-06 | 2015-04-10 | Бер Гмбх Унд Ко. Кг | Тепловой насос адсорбционного типа |
-
1997
- 1997-10-15 JP JP28165197A patent/JP3644661B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11118286A (ja) | 1999-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3644661B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3694577B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3911364B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3534560B2 (ja) | 水素吸蔵式冷却装置 | |
JP3911357B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3872913B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3734983B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3838801B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3594436B2 (ja) | 水素吸蔵式冷却装置 | |
JP3850558B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3850587B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP2000111194A (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3734984B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JPH11294888A (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3694571B2 (ja) | 水素吸蔵合金を使用した冷却システム | |
JP3694575B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3734950B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP2000320921A (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3813340B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3734960B2 (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP3734949B2 (ja) | 水素吸蔵合金を利用した熱利用システムの容器、およびその容器への水素充填方法 | |
JP3534559B2 (ja) | 水素吸蔵式冷却装置 | |
JP2000205694A (ja) | 水素吸蔵合金を利用した熱利用システム | |
JP2000320924A (ja) | 水素吸蔵合金を利用した熱利用システム | |
JPH10220908A (ja) | 水素吸蔵式冷却装置およびその装置に用いられるセル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050131 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |