JP3639383B2 - 光伝送システム - Google Patents

光伝送システム Download PDF

Info

Publication number
JP3639383B2
JP3639383B2 JP18916096A JP18916096A JP3639383B2 JP 3639383 B2 JP3639383 B2 JP 3639383B2 JP 18916096 A JP18916096 A JP 18916096A JP 18916096 A JP18916096 A JP 18916096A JP 3639383 B2 JP3639383 B2 JP 3639383B2
Authority
JP
Japan
Prior art keywords
optical
standby
wavelength
active
connect device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18916096A
Other languages
English (en)
Other versions
JPH104418A (ja
Inventor
智司 黒柳
一夫 廣西
哲也 西
卓二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18916096A priority Critical patent/JP3639383B2/ja
Priority to US08/816,078 priority patent/US6072610A/en
Priority to EP97104700A priority patent/EP0802697B1/en
Priority to DE69740015T priority patent/DE69740015D1/de
Priority to CN97110518A priority patent/CN1118983C/zh
Publication of JPH104418A publication Critical patent/JPH104418A/ja
Application granted granted Critical
Publication of JP3639383B2 publication Critical patent/JP3639383B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5625Operations, administration and maintenance [OAM]
    • H04L2012/5627Fault tolerance and recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0011Construction using wavelength conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0013Construction using gating amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0043Fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0047Broadcast; Multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光パスクロスコネクト装置(OPXC)と電気クロスコネクト装置(EXC)からなる光伝送システムに係わり、特に、無瞬断で伝送路切り替えが可能な光伝送システムに関する。
【0002】
【従来の技術】
情報の高速化、大容量化に伴い、光技術を用いた伝送システムが将来の広帯域伝送システムとして期待されている。
図39は光ネットワークの説明図、図40は光パスクロスコネクト装置(OPXC)と電気クロスコネクト装置(EXC)間の接続関係図である。51は光パスクロスコネクト装置(OPXC)、52は波長λ0の光信号を伝送する光伝送路、53は電気クロスコネクト装置(EXC)、54は交換機(SW)、55は電気信号あるいは光信号の伝送路である。光パスクロスコネクト装置51は、複数の現用系光伝送路(k1)と複数の予備系光伝送路(k2)と電気クロスコネクト装置との間の複数のインタフェースリンク(k3)を収容している。電気クロスコネクト装置53と交換機54はそれぞれ論理パスVP(Virtual Path)、論理チャネルVC(Virtual Channel)単位でスイッチングを行う。
光パスクロスコネクト装置51は通常、光伝送路及びインタフェースリンクから入力された光信号の出方路を切り換えて出力すると共に、自ノード宛ての光信号を電気クロスコネクト装置53に分岐する。
【0003】
かかる光ネットワークにおいては、伝送路障害時に予備系へパスを切り替えた後(障害復旧後)に元の現用系に無瞬断で切り戻す機能、トラヒックに応じて現用系パスを無瞬断で切り替える機能等が要求される。また、網の保守・運用の観点からも、無瞬断伝送路切り替えの機能が要求される。電気クロスコネクト装置(EXC)ではすでに無瞬断で伝送路を切り替える機能が実現されており、当然、電気クロスコネクト装置からの光信号をネットワーク上でルーチングする光パスクロスコネクト装置(OPXC)でも、電気クロスコネクト装置と同様に無瞬断で伝送路を切り換えるようにする必要がある。
【0004】
図41は光パスにおける無瞬断伝送路切り替えを考慮した従来の光パスクロスコネクト装置の構成図であり、51は光パスクロスコネクト装置(OPXC)、53は電気クロスコネクト装置(EXC)である。光パスクロスコネクト装置51には現用系光伝送路52a1,52a2と予備系光伝送路52b1,52b2が収容され、更には電気クロスコネクト装置53との間に現用系インタフェースリンク55,56が収容されている。光パスクロスコネクト装置51は、空間光スイッチ51aと多数の光位相調整用バッファ51bを備えている。電気クロスコネクト装置53は電気信号を光信号に変換して現用インタフェースリンク55に送出する電/光変換機能と、光パスクロスコネクト装置51からインタフェースリンク56を介して入力される光信号を電気信号に変換してATMスイッチ部(図示せず)に入力する光/電変換機能を具備している。
【0005】
図42は従来の無瞬断伝送路切替の動作説明図であり、図41に示す構成の装置OA1,OA2が2組あり、それぞれの装置間でデータ伝送を行なう場合を示している。電気クロスコネクト装置EXC1と光パスクロスコネクト装置OPXC1よりなる第1の装置OA1と、電気クロスコネクト装置EXC2と光パスクロスコネクト装置OPXC2よりなる第2の装置OA2とは現用系光伝送路52aと予備系光伝送路52bで接続されている。
【0006】
各光パスクロスコネクト装置OPXC1,OPXC2は光伝送路から入力された光信号を所望の出力伝送路或いは電気クロスコネクト装置EXC1,EXC2にルーチングし、また、電気クロスコネクト装置EXC1,EXC2からの光信号を所望の出力伝送路にルーチングする。例えば、第1の装置OA1の電気クロスコネクト装置EXC1から入力インタフェースリンク55を介して入力された光信号は、光パスクロスコネクト装置OPXC1で2分岐され、現用系光伝送路52a及び予備系光伝送路52bに出力され、第2の装置OA2に至る。第2の装置OA2の光パスクロスコネクト装置OPXC2は現用系光伝送路52aから入力された光信号を電気クロスコネクト装置EXC2への出力インタフェースリンク56にルーチングする。以上により、第1の装置OA1の電気クロスコネクト装置EXC1からの信号が第2の装置OA2の電気クロスコネクト装置EXC2に送信される。
【0007】
かかる状態において、現用系伝送路52aに流れている信号を予備系光伝送路52bに切替える場合、光パスクロスコネクト装置OPXC2は、現用/予備の切替を行い、予備系光伝送路52bから入力された光信号を電気クロスコネクト装置EXC2への出力インタフェースリンク56にルーチングする。これにより、無瞬断で伝送路の切替が行われ、電気クロスコネクト装置EXC1からの信号は電気クロスコネクト装置EXC2に途切れることなく送信される。
【0008】
【発明が解決しようとする課題】
ところで、現用/予備の切替前と切替後において、2系路間の光路長を等しくする必要がある。このため、従来は光パスクロスコネクト装置OPXC2に設けられた光位相調整用バッファ51bで光路長が等しくなるように位相調整し、送受の光パスクロスコネクト装置で現用/予備を同期して切り替えるようにしている。かかる従来の光伝送路の切り替え方法では、光パスクロスコネクト装置OPXCにおいて光のままで光信号の位相調整をする必要があり、また光信号に対して符号に誤りがない程度に高速に切り替える必要があり、その実現が非常に困難であった。
【0009】
以上から、本発明の目的は、光信号のままで位相調整をする必要がない光伝送システムを提供することである。
本発明の別の目的は、電気処理により光伝送路の無瞬断切り替えができる光伝送システムを提供することである。
本発明の目的は、光伝送路の無瞬断切替において、光パスクロスコネクト装置に光位相調整機能や高速の切り替え動作が不要な光伝送システムを提供することである。
本発明の目的は、伝送路が波長多重されている場合であっても、電気処理により光伝送路の無瞬断切り替えができ、しかも、光パスクロスコネクト装置に光位相調整機能や高速の切り替え動作が不要な光伝送システムを提供することである。
【0010】
【課題を解決するための手段】
(a)本発明の第1の解決手段
図1は本発明の第1の原理説明図であり、1,2は光伝送システムであり、それぞれ光パスクロスコネクト装置10(OPXC1,OPXC2)及び電気クロスコネクト装置20(EXC1,EXC2)を備えている。光パスクロスコネクト装置10(OPXC1,OPXC2)はそれぞれ1対1型空間光スイッチ或いは1対N型空間光スイッチで構成され、入出力現用系光伝送路13、15、入出力予備系光伝送路14、16、電気クロスコネクト装置20との間の入出力現用インタフェースリンク21a,22a、入出力予備系インタフェースリンク21b,22bをそれぞれ収容している。
【0011】
電気クロスコネクト装置20(EXC1,EXC2)は、現用系及び予備系のインタフェースリンク22a、22bから入力される光信号を電気信号に変換する光電変換部(O/E変換部)20a、現用系び予備系の両経路間の遅延時間差を検出し、信号位相が一致するように光電変換部から出力される電気信号の位相を調整する位相調整部20b、現用系及び予備系の一方の電気信号をセレクトするセレクタ20c、光パスクロスコネクト装置(OPXC)10や他の電気クロスコネクト装置(EXC)20及び交換機(SW)より入力されるATMセルを所定の出線にルーチングするATMスイッチ20d、光パスクロスコネクト装置へ送信する電気信号を現用系/予備系に分配する分配回路20e、現用系及び予備系の電気信号を光信号に変換して現用系及び予備系のインタフェースリンク21a,21bに出力する電光変換部(E/O変換部)20fを備えている。
【0012】
第1の光伝送システム1の電気クロスコネクト装置(EXC1)より第2の光伝送システム2の電気クロスコネクト装置(EXC2)に信号を伝送する場合、電気クロスコネクト装置(EXC1)は現用系/予備系の光信号を現用系/予備系のインタフェースリンク21a,21bに分配し、光パスクロスコネクト装置OPXC1は現用系インタフェースリンク21aから入力した光信号を現用系光伝送路31にルーチングし、予備系インタフェースリンク21bから入力した光信号を予備系光伝送路32にルーチングする。第2の光伝送システム2の光パスクロスコネクト装置OPXC2は現用系光伝送路31から入力した光信号を現用系インタフェースリンク22aにルーチングし、予備系光伝送路32から入力した光信号を予備系インタフェースリンク22bにルーチングし、これにより電気クロスコネクト装置EXC2に入力する。電気クロスコネクト装置EXC2は現用系インタフェースリンク22aから入力された信号を選択し、ATMスイッチ20dで所望の出線にルーチングする。
【0013】
かかる状態で、現用系光伝送路31に流れている信号を予備系光伝送路32に切替える場合、第2の光伝送システム2の電気クロスコネクト装置EXC2は切替指示に基づいて予備系インタフェースリンク22bより入力された信号を選択し、該信号をATMスイッチ20dで所望の出線にルーチングする。この場合、位相調整部20bにおいて常時、現用系と予備系の信号位相が一致するように位相調整されているから、セルロスなく無瞬断で現用/予備の切り替えができる。
【0014】
図1では隣接する光伝送システム1、2の一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に信号を伝送する場合であるが、第1、第2の光伝送システム1,2間に他の光伝送システムが存在する場合であっても、信号を受け取る側の電気クロスコネクト装置の位相調整部20bは常に現用系及び予備系の信号位相が一致するように位相調整しているため、いずれかの現用系光伝送路を切替える場合、上述のようにセルロスなく無瞬断で現用/予備の切り替えができる。
以上のように、光パスクロスコネクト装置10は、無瞬断切り替えを行わず、電気クロスコネクト装置が無瞬断切り替えを行えるように現用系と予備系のパス張っておくだけでよい。このため、光パスクロスコネクト装置には光位相調整機能や高速な切り替え動作が不要となる。
又、光パスクロスコネクト装置10を空間光スイッチを用いて構成し、該空間光スイッチを現用系と予備系に分割するようにすれば、光パスクロスコネクト装置内のスイッチ数を減らすことができる。
【0015】
図1では電気クロスコネクト装置20において、光パスクロスコネクト装置10への現用系及び予備系の光信号を作成して現用系及び予備系インタフェースリンク21a、21bに分配した場合である。しかし、光信号を電気クロスコネクト装置10で現用系及び予備系に分配せず、インタフェースリンクに光分配器又は光分配スイッチを設け、該光分配器あるいは光分配スイッチで光信号を現用系及び予備系インタフェースリンク21a、21bに分配するように構成することもできる。
【0016】
図1では電気クロスコネクト装置20において、光パスクロスコネクト装置10への現用系及び予備系の光信号を作成して現用系及び予備系インタフェースリンク21a、21bに分配した場合である。しかし、光信号を電気クロスコネクト装置10で現用系及び予備系に分配せず、光パスクロスコネクト装置10を分配機能を持った空間光スイッチで構成し、該空間スイッチの分配機能により電気クロスコネクト装置20から入ってきた光信号を現用系及び予備系光伝送路31,32に同時にルーチングするように構成することもできる。
【0017】
(b)本発明の第2の解決手段
図2は本発明の第2の解決手段の原理説明図であり、100,200は波長多重光伝送システムであり、それぞれ光パスクロスコネクト装置101(OPXC1,OPXC2)及び電気クロスコネクト装置201(EXC1,EXC2)を備え、現用系及び予備系の光伝送路131、132により相互に接続されている。
光パスクロスコネクト装置101(OPXC1,OPXC2)は図示しないが、波長多重光信号λ1〜λn(図ではn=2)を個々の波長の光信号λ1、λ2に分波する分波器と、分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、スイッチングされた光信号の波長を所定の波長に変換する波長変換器と、同一出方路向けの光信号を合流する合波器を備え、更に、複数の波長多重光信号入出力用の現用系光伝送路130,150と、波長多重光信号入出力用の予備系光伝送路140,160と、電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の現用系インタフェースリンク121a,122aと、電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の予備系インタフェースリンク121b,122bをそれぞれ収容している。
【0018】
電気クロスコネクト装置201は、受信側に現用系及び予備系のインタフェースリンク122a,122bから入力される波長多重光信号を個々の波長λ1,λ2の光信号に分波する分波器301と各光信号を電気信号に変換する複数の光電変換部302と、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整用バッファ303と、現用系及び予備系の信号を切り替えるセレクタ304と、光パスクロスコネクト装置(OPXC)や他の電気クロスコネクト装置(EXC)及び交換機(SW)より入力されるATMセルを所定の出線にルーチングするATMスイッチ305と、光パスクロスコネクト装置への電気信号を現用系/予備系に分配する分配回路306と、分配された各現用系及び予備系の電気信号を波長λ1〜λ2の光信号にそれぞれ変換する出力波長が固定の複数の電光変換部307と、現用系の各電光変換部から出力される光信号及び予備系の各電光変換部から出力される光信号をそれぞれ合流して現用系及び予備系のインタフェースリンク121a,121bに送出する光合流器308を備えている。
【0019】
光パスクロスコネクト装置101は、分波、スイッチング、波長変換、合波を適宜行い、1)現用系光伝送路130から入ってきた波長多重光信号を波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、2)予備系光伝送路140から入ってきた波長多重光信号を波長毎に予備系光伝送路160や予備系インタフェースリンク122bにルーチングし、3)現用系インタフェースリンク121aから入ってきた波長多重光信号を波長毎に現用系光伝送路150にルーチングし、4)予備系インタフェースリンク121bから入ってきた波長多重光信号を波長毎に予備系光伝送路160にそれぞれルーチングし、電気クロスコネクト装置201は切替指示に基づいてセレクタ304により現用及び予備の無瞬断伝送路切替を行う。
【0020】
例えば、第1の光伝送システム100の電気クロスコネクト装置(EXC1)より第2の光伝送システム200の電気クロスコネクト装置(EXC2)に波長多重光信号を伝送する場合、電気クロスコネクト装置(EXC1)は現用系/予備系の波長多重光信号を現用系/予備系のインタフェースリンク121a,121bに分配し、光パスクロスコネクト装置OPXC1は現用系インタフェースリンク121aから入力した光信号を現用系光伝送路131にルーチングし、予備系インタフェースリンク121bから入力した光信号を予備系光伝送路132にルーチングする。第2の光伝送システム200の光パスクロスコネクト装置OPXC2は現用系光伝送路131から入力した光信号を現用系インタフェースリンク122aにルーチングし、予備系光伝送路132から入力した光信号を予備系インタフェースリンク122bにルーチングし、これにより電気クロスコネクト装置EXC2に入力する。電気クロスコネクト装置EXC2は現用系インタフェースリンク122aから入力された波長多重光信号を選択し、ATMスイッチ305で所望の出線にルーチングする。
【0021】
かかる状態で、現用系光伝送路131に流れている信号を予備系光伝送路132に切替える場合、第2の光伝送システム200の電気クロスコネクト装置EXC2は予備系インタフェースリンク122bより入力された波長多重光信号を選択し、該信号をATMスイッチ305で所望の出線にルーチングする。この場合、位相調整用バッファ303において常時、現用系と予備系の信号位相が一致するように位相調整されているから、セルロスなく無瞬断で現用/予備の切り替えができる。
以上のように、波長多重光信号を送信する場合であっても、光パスクロスコネクト装置101は電気クロスコネクト装置201が無瞬断切り替えを行えるように現用系と予備系のパス張っておくだけでよい。このため、光パスクロスコネクト装置101には光位相調整機能や高速な切り替え動作が不要となる。
又、光パスクロスコネクト装置101を現用系と予備系に分割するようにすれば、光パスクロスコネクト装置内の空間スイッチを構成するスイッチ数を減らすことができる。
【0022】
図2では光パスクロスコネクト装置101を、必要に応じて波長変換するVWP(Virtual Wavelength Path)方式を採用して構成しているが、入力光信号の波長変換を行わないWP(Wavelength Path)方式を採用することができる。かかるWP方式ではどの波長で送信するかは、その時のネットワークの状況によるので、電気クロスコネクト装置201の送信側で波長変換できるようにし、このため電光変換部307を出力波長が可変の電光変換器で構成する。又、光パスクロスコネクト装置101から電気クロスコネクト装置201への現用系及び予備系のインタフェースリンク122a,122bに送出する現用系及び予備系光信号の波長が異なる場合がある。そこで、予備系インタフェースリンク122bに分波器301に替えて分岐器と各分岐出力より所定の波長の光信号を抽出する可変波長フィルタを設ける。このようにすれば、予備系の光信号は光電変換部で正しく電気信号に変換され、ブロッキングが防止される。
【0023】
図2では電気クロスコネクト装置201において、光パスクロスコネクト装置101へ送信する現用系及び予備系の波長多重光信号を作成して現用系及び予備系インタフェースリンク121a、121bに分配した場合である。しかし、波長多重光信号を電気クロスコネクト装置201で現用系及び予備系に分配せず、インタフェースリンクに光分配器又は光分配スイッチを設け、該光分配器あるいは光分配スイッチで波長多重光信号を現用系及び予備系インタフェースリンク121a、121bに分配するように構成することもできる。
【0024】
図2では電気クロスコネクト装置201において、光パスクロスコネクト装置101へ送信する現用系及び予備系の光信号を作成して現用系及び予備系インタフェースリンク121a、121bに分配した場合である。しかし、光信号を電気クロスコネクト装置201で現用系及び予備系に分配せず、光パスクロスコネクト装置101を分配機能を持った空間光スイッチで構成し、該空間スイッチの分配機能により電気クロスコネクト装置201から入ってきた光信号を現用系及び予備系光伝送路に同時にルーチングするように構成することもできる。
【0025】
【発明の実施の形態】
(A)第1実施例
(a)光伝送システム
図3は本発明の光伝送システムの実施例を示す構成図であり、10は光パスクロスコネクト装置(OPXC)、20は電気クロスコネクト装置(EXC)である。光パスクロスコネクト装置10は1対1型空間光スイッチ或いは1対N型空間光スイッチで構成され、入出力の現用系光伝送路13、15、入出力の予備系光伝送路14、16、電気クロスコネクト装置20との間の入出力の現用インタフェースリンク21a,22a、入出力の予備系インタフェースリンク21b,22bをそれぞれ収容している。光信号の波長は何れもλ0である。
【0026】
光パスクロスコネクト装置10は、▲1▼現用系光伝送路13から入ってきた光信号を、現用系の出力光伝送路15や現用系の出力インタフェースリンク22aにルーチングし、▲2▼同様に、予備系光伝送路14から入ってきた光信号を、予備系の出力光伝送路16や予備系の出力インタフェースリンク22bにルーチングし、▲3▼また、現用系のインタフェースリンク21aから入ってきた光信号を現用系の出力光伝送路15にルーチングし、▲4▼予備系インタフェースリンク21bから入ってきた光信号を予備系の出力光伝送路16にルーチングする。
【0027】
(b)空間光スイッチ
図4は光パスクロスコネクト装置10を構成する1対1型空間光スイッチの構成図であり、m入力、m出力(m=4)の場合が示されている。S00〜S33は4×4に配列されたクロスバー型の光スイッチ素子であり、各光スイッチ素子は通常状態ではクロス状態になっている。光路交換する場合には所定の1つの光スイッチ素子が制御されてバー状態(スルー状態)とされる。例えば、入力光路#iからの光情報を出力光路#jより出力する場合には光スイッチ素子Sijを制御してスルー状態にする。図では入力光路#0からの光情報を出力光路#2より出力する場合が示されており、光スイッチ素子S02が制御されて点線で示すようにスルー状態にされ、光情報は一点鎖線で示す経路を通って出力光路#2に出力される。
【0028】
図5は光パスクロスコネクト装置10を構成する1対N型空間光スイッチの構成図であり、40は光分岐部、41は光ゲートスイッチ、42は光合流器である。各光分岐部41は対応する入力光路(チャネル)から入ってきた信号を4方向に分岐して各ゲートスイッチ41に入力する。各ゲートスイッチ41は、ある期間に必ず1個の信号のみを出力するようにスイッチ制御を行い、合流器42を介して対応の出力光路に光信号を送出する。
【0029】
(c)電気クロスコネクト装置の構成
図6は電気クロスコネクト装置の構成図であり、20a1,20a2はそれぞれ現用系及び予備系のインタフェースリンク22a、22bから入力される現用系光信号及び予備系光信号をそれぞれ電気信号に変換する光電変換部(O/E変換部)、20bは現用系び予備系の両経路間の遅延時間差を検出し、現用系及び予備系の信号位相が一致するようにそれぞれの位相を調整する位相調整部、20cは現用系及び予備系の一方の電気信号をセレクトするセレクタである。位相調整部20bは、現用系の位相調整用バッファ20b-1、予備系の位相調整用バッファ20b-2及び制御部20b-3で構成されており、制御部20b-3は位相調整用バッファ20b-1,20b-2の位相を比較し、両方の位相が揃うように、これらバッファの読み出しタイミングを制御し、位相が揃った時点でセレクタ20cに切替を指示する。これにより、セレクタ20cはビット誤りがない程度に高速に切り替える。20dは光パスクロスコネクト装置(OPXC)10、他の電気クロスコネクト装置(EXC)20及び交換機(SW)より入力されるATMセルを所定の出線にルーチングするATMスイッチ、20eは光パスクロスコネクト装置への電気信号を現用系/予備系に分配する分配回路、20f1,20f2はそれぞれ現用系及び予備系の電気信号を光信号に変換して現用系及び予備系のインタフェースリンク21a,21bに出力する電光変換部(E/O変換部)である。
【0030】
(d)伝送路切替動作
図7は第1実施例における伝送路切替動作説明図であり、1,2はそれぞれ図3に示す構成を備えた光伝送システムであり、光パスクロスコネクト装置10(OPXC1,OPXC2)及び電気クロスコネクト装置20(EXC1,EXC2)を備えている。光伝送システム1,2の光パスクロスコネクト装置OPXC1,OPXC2間は現用系光伝送路31及び予備系光伝送路32により接続されている。
【0031】
・通常動作
第1の光伝送システム1の電気クロスコネクト装置(EXC1)より第2の光伝送システムの電気クロスコネクト装置(EXC2)に信号を伝送する場合について説明する。尚、コネクション制御により現用系及び予備系のパスはすでに確立されて固定されている。
電気クロスコネクト装置(EXC1)は現用系/予備系の光信号を現用系/予備系のインタフェースリンク21a,21bに分配し、光パスクロスコネクト装置OPXC1は現用系インタフェースリンク21aから入力した光信号を現用系光伝送路31にルーチングし、予備系インタフェースリンク21bから入力した光信号を予備系光伝送路32にルーチングする。
【0032】
第2の光伝送システム2の光パスクロスコネクト装置OPXC2は現用系光伝送路31から入力した電気クロスコネクト装置EXC1からの光信号を現用系インタフェースリンク22aにルーチングし、又、予備系光伝送路32から入力した電気クロスコネクト装置EXC1からの光信号を予備系インタフェースリンク22bにルーチングし、これによりそれぞれを電気クロスコネクト装置EXC2に入力する。
電気クロスコネクト装置EXC2は現用系インタフェースリンク22aから入力された現用系信号をセレクタ20c(図6)で選択し、ATMスイッチ20dで所望の出線にルーチングする。
【0033】
・切替動作
かかる状態で、現用系光伝送路31に流れている信号を予備系光伝送路32に切替える場合、第2の光伝送システム2の電気クロスコネクト装置EXC2は切替指示に基づいて予備系インタフェースリンク22bより入力された予備系の信号を選択し、該信号をATMスイッチ20dで所望の出線にルーチングする。この場合、位相調整部20bにおいて常時、現用系と予備系の信号位相が一致するように位相調整されているから、セルロスなく無瞬断で現用/予備の切り替えができる。
【0034】
図7では隣接する光伝送システム1、2の一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に信号を伝送する場合であるが、第1、第2の光伝送システム1,2間に他の光伝送システムが存在する場合であっても、信号を受け取る側の電気クロスコネクト装置の位相調整部20bは常に現用系及び予備系の信号位相が一致するように位相調整している。このため、いずれかの現用系光伝送路に障害が発生しても、上述のようにセルロスなく無瞬断で現用/予備の切り替えができる。
第1実施理例によれば、光パスクロスコネクト装置10は、無瞬断切り替えを行わず、電気クロスコネクト装置20が無瞬断切り替えができるように現用系と予備系のパス張っておくだけでよい。このため、光パスクロスコネクト装置10には光位相調整機能や高速な切り替え動作が不要となる。
【0035】
(d)変形例
(d-1) 第1変形例
図8は本発明の光伝送システムの第1変形例であり、図3と同一部分には同一の符号を付している。図8に示す光伝送システムでは、光パスクロスコネクト装置10の光スイッチを現用系光スイッチ10Aと予備系光スイッチ10Bに分割し、現用系光信号は光スイッチ10Aに、予備系光信号は光スイッチ10Bにそれぞれ入ってスイッチングされるようになっている。
【0036】
光パスクロスコネクト装置10は、現用系光伝送路13から入ってきた光信号を光スイッチ10Aにより現用系光伝送路15や現用系インタフェースリンク22aにルーチングする。光スイッチ10Aとして、例えば1対1型空間光スイッチ又は1対N型空間光スイッチが用いられる。同様に、光パスクロスコネクト装置10は、予備系光伝送路14から入ってきた光信号を、光スイッチ10Bにより予備系光伝送路16や予備系の出力インタフェースリンク22bにルーチングする。また、光パスクロスコネクト装置10は、現用系のインタフェースリンク21aから入ってきた光信号を光スイッチ10Aにより現用系光伝送路15に、予備系インタフェースリンク21bから入ってきた光信号を光スイッチ10Bにより予備系光伝送路16にそれぞれルーチングする。
この第1変形例によれば、光スイッチの素子数を減らすことができる。例えば、図3に示す第1実施例において光スイッチが12入力、12出力であるとすると、必要な光スイッチの数は12×12=144(個)となるが、変形例では、6×6×2=72(個)となり、光スイッチの数を減らすことができる。
【0037】
図9は第1変形例の動作説明図であり、1,2はそれぞれ図8に示す構成を備えた光伝送システムであり、光パスクロスコネクト装置10(OPXC1,OPXC2)及び電気クロスコネクト装置20(EXC1,EXC2)を備えている。光伝送システム1,2の光パスクロスコネクト装置OPXC1,OPXC2間は現用系光伝送路31及び予備系光伝送路32により接続されている。
図9に示すシステムにおいて、一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に伝送される現用系及び予備系のパスは、すでにコネクション制御により確立されて固定されている。かかる状態で、第1実施例の場合と同様に信号受信側の電気クロスコネクト装置EXC2のセレクタ20c(図6参照)が切替指示に基づいて現用系と予備系の切り替えを行うと、ATMスイッチの出力口で現用系と予備系が入れ替り、系の無瞬断切り替えができる。
【0038】
(d-2) 第2変形例
図3の第1実施例では電気クロスコネクト装置20において、光パスクロスコネクト装置10への現用系及び予備系の光信号を作成して現用系及び予備系インタフェースリンク21a、21bに分配した場合である。しかし、光信号を電気クロスコネクト装置20で現用系及び予備系に分配せず、インタフェースリンクに光分配器又は光分配スイッチを設け、該光分配器あるいは光分配スイッチで光信号を現用系及び予備系インタフェースリンクに分配するように構成することもできる。
【0039】
図10は本発明の光伝送システムの第2変形例であり、図3と同一部分には同一の符号を付している。図中、25は光分配器又は光分配スイッチであり、電気クロスコネクト装置20に接続された現用系インタフェースリンク21aに設けられ、電気クロスコネクト装置20からの光信号を現用系及び予備系インタフェースリンク21a、21bに分配する。第2変形例において、光パスクロスコネクト装置10から電気クロスコネクト装置20へのインタフェースリンクは、第1実施例と同様に現用系と予備系のペアで接続されている。
【0040】
図11は第2変形例における電気クロスコネクト装置20の構成図であり、図6の構成と同一部分には同一符号を付している。図6と異なる点は、分配回路20e及び予備系の電光変換器(E/O)20f2を削除した点である。
光パスクロスコネクト装置10は、第1実施例と同様に、▲1▼現用系光伝送路13から入ってきた光信号を、現用系光伝送路15や現用系インタフェースリンク22aにルーチングし、▲2▼予備系光伝送路14から入ってきた光信号を、予備系光伝送路16や予備系インタフェースリンク22bにルーチングし、▲3▼また、光分配器又は光分配スイッチ25により2つに分配され、現用系インタフェースリンク21aより入ってきた光信号を現用系光伝送路15にルーチングし、▲4▼他方の予備系インタフェースリンク21bから入ってきた光信号を予備系光伝送路16にそれぞれルーチングする。
【0041】
図12は本発明の第2変形例の動作説明図である。1,2はそれぞれ図10に示す構成を備えた光伝送システムであり、光パスクロスコネクト装置10(OPXC1,OPXC2)及び電気クロスコネクト装置20(EXC1,EXC2)を備えている。光伝送システム1,2の光パスクロスコネクト装置OPXC1,OPXC2間は現用系光伝送路31及び予備系光伝送路32により接続されている。図12に示すシステムにおいて、一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に伝送される現用系及び予備系のパスは、すでにコネクション制御により確立されて固定されている。かかる状態で、第1実施例の場合と同様に信号受信側の電気クロスコネクト装置EXC2のセレクタ20c(図11参照)が切替指示に基づいて現用系と予備系の切り替えを行うと、ATMスイッチ20dの出力口で現用系と予備系が入れ替り、系の無瞬断切り替えができる。
【0042】
(d-3) 第3変形例
図13は本発明の光伝送システムの第3変形例であり、図10の第2変形例と同一部分には同一の符号を付している。図13に示す第3変形例の光伝送システムでは、光パスクロスコネクト装置10の光スイッチを現用系光スイッチ10Aと予備系光スイッチ10Bに分割し、現用系光信号は光スイッチ10Aに、予備系光信号は光スイッチ10Bにそれぞれ入ってスイッチングされるようになっている。
【0043】
光パスクロスコネクト装置10は、現用系光伝送路13から入ってきた光信号を光スイッチ10Aにより現用系光伝送路15や現用系インタフェースリンク22aにルーチングする。光スイッチ10Aとして、1対1型空間光スイッチ又は1対N型空間光スイッチが用いられる。同様に、光パスクロスコネクト装置10は、予備系光伝送路14から入ってきた光信号を、光スイッチ10Bにより予備系光伝送路16や予備系の出力インタフェースリンク22bにルーチングする。また、光パスクロスコネクト装置10は、光分配器25に分配されて現用系のインタフェースリンク21aから入ってきた光信号を光スイッチ10Aにより現用系光伝送路15に、予備系インタフェースリンク21bから入ってきた光信号を光スイッチ10Bにより予備系光伝送路16にそれぞれルーチングする。
この第3変形例によれば、光スイッチの素子数を減らすことができる。例えば、図10に示す第2変形例において光スイッチが12入力、12出力であるとすると、必要な光スイッチの数は12×12=144(個)となるが、第3変形例では、6×6×2=72(個)となり、光スイッチの数を減らすことができる。
【0044】
図14は第3変形例の動作説明図であり、1,2はそれぞれ図13に示す構成を備えた光伝送システムであり、光パスクロスコネクト装置10(OPXC1,OPXC2)及び電気クロスコネクト装置20(EXC1,EXC2)を備えている。光伝送システム1,2の光パスクロスコネクト装置OPXC1,OPXC2間は現用系光伝送路31及び予備系光伝送路32により接続されている。
図14に示すシステムにおいて、一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に伝送される現用系及び予備系のパスは、コネクション制御によりすでに確立されて固定されている。かかる状態で、第1実施例の場合と同様に信号受信側の電気クロスコネクト装置EXC2のセレクタ20c(図11参照)が切替指示に基づいて現用系と予備系の切り替えを行うと、ATMスイッチ20dの出力口で現用系と予備系が入れ替り、系の無瞬断切り替えができる。
【0045】
(d-4) 第4変形例
図3の第1実施例は電気クロスコネクト装置20において、光パスクロスコネクト装置10への現用系及び予備系の光信号を作成して現用系及び予備系インタフェースリンク21a、21bに分配した場合である。しかし、光信号を電気クロスコネクト装置10で現用系及び予備系に分配せず、光パスクロスコネクト装置10を分配機能を持った空間光スイッチで構成し、該空間スイッチにより電気クロスコネクト装置20から入ってきた光信号を現用系及び予備系光伝送路に同時にルーチングするように構成することもできる。
図15はかかる光伝送システムの第4変形例であり、図3の第1実施例と同一部分には同一の符号を付している。第1実施例と異なる点は、(1) 電気クロスコネクト装置20から光パスクロスコネクト装置10への予備系インタフェースリンク21bを削除した点、(2) 光パスクロスコネクト装置10を分配機能を持った空間光スイッチで構成した点、(3) 電気クロスコネクト装置20を図11に示す構成とした点である。
【0046】
電気クロスコネクト装置20から光パスクロスコネクト装置10へ光信号を入力するインタフェースリンクは、現用系インタフェースリンク21aのみであり、光パスクロスコネクト装置10から電気クロスコネクト装置20へ光信号を入力するインタフェースリンクは、現用系インタフェースリンク22aと予備系インタフェースリンク22bのペアである。
光パスクロスコネクト装置10は、現用系光伝送路13から入ってきた光信号を、現用系光伝送路15や現用系インタフェースリンク22aにルーチングする。同様に、予備系光伝送路14から入ってきた光信号を、予備系光伝送路16や予備系の出力インタフェースリンク22bにルーチングする。また、現用系のインタフェースリンク21aから入ってきた光信号を分配機能により現用系光伝送路15や予備系光伝送路16にルーチングする。
【0047】
図16は本発明の第4変形例の動作説明図であり、1,2はそれぞれ図15に示す構成を備えた光伝送システムであり、光パスクロスコネクト装置10(OPXC1,OPXC2)及び電気クロスコネクト装置20(EXC1,EXC2)を備えている。光伝送システム1,2の光パスクロスコネクト装置OPXC1,OPXC2間は現用系光伝送路31及び予備系光伝送路32により接続されている。図16に示すシステムにおいて、一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に伝送される現用系及び予備系のパスは、コネクション制御によりすでに確立されて固定されている。かかる状態で、第1実施例の場合と同様に信号受信側の電気クロスコネクト装置EXC2のセレクタ20c(図11参照)が切替指示に基づいてで現用系と予備系の切り替えを行うと、ATMスイッチ20dの出力口で現用系と予備系が入れ替り、系の無瞬断切り替えができる。
【0048】
(B)第2実施例
(a)概略構成
第1実施例及び第1変形例乃至第4変形例の光伝送システムにおいては、光信号の波長は多重されておらず1つの波長λ0を使用するものであった。第2実施例は伝送路が波長多重された場合に無瞬断伝送路切替を実現するものであり、基本的には第1実施例及び第1変形例乃至第4変形例の構成と同様の構成を備え、波長多重に対応できるように光パスクロスコネクト装置及び電気クロスコネクト装置の構成に工夫を加えている。
図17〜図20は本発明の第2実施例における波長多重光伝送システムの概略構成図であり、それぞれ第1実施例及び第1変形例乃至第4変形例の光伝送システムに対応している。
【0049】
(a-1) タイプA
図17に示すタイプAの波長多重光伝送システムは、図3の第1実施例に対応するものであり、電気クロスコネクト装置EXCから光パスクロスコネクト装置OPCX及び光パスクロスコネクト装置OPXCから電気クロスコネクト装置ECXへのインタフェースリンクをそれぞれ現用系と予備系の2本のペアで複数リンク相互接続する構成を備えている。
【0050】
図17において、101は光パスクロスコネクト装置(OPXC)、201は電気クロスコネクト装置(EXC)である。光パスクロスコネクト装置101(OPXC)は複数の波長多重光信号入出力用の現用系光伝送路130,150と、波長多重光信号入出力用の予備系光伝送路140,160と、電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の現用系インタフェースリンク121a,122aと、電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の予備系インタフェースリンク121b,122bをそれぞれ収容している。光パスクロスコネクト装置100は、(1) 現用系光伝送路130から入ってきた波長λ1〜λnの波長多重光信号を波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、(2) 予備系光伝送路140から入ってきた波長λ1〜λnの波長多重光信号を波長毎に予備系光伝送路160や予備系インタフェースリンク122bにルーチングし、(3) 現用系インタフェースリンク121aから入ってきた波長多重光信号を波長毎に現用系光伝送路150にルーチングし、(4) 予備系インタフェースリンク121bから入ってきた波長多重光信号を波長毎に予備系光伝送路160にそれぞれルーチングする。
【0051】
(a-2) タイプB
図18に示すタイプBの波長多重光伝送システムは図8の第1変形例に対応するものであり、図17のタイプAと同一部分には同一の符号を付している。
タイプBの波長多重光伝送システムでは、光パスクロスコネクト装置101を現用系101aと予備系101bに分割し、現用系の波長多重光信号は現用系の光パスクロスコネクト装置101aに、予備系の波長多重光信号は予備系の光パスクロスコネクト装置101bにそれぞれ入ってスイッチングされるようになっている。
【0052】
現用系の光パスクロスコネクト装置101aは、現用系光伝送路130から入ってきた波長多重光信号を現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、又、現用系のインタフェースリンク121aから入ってきた波長多重光信号を現用系光伝送路150にルーチングする。予備系の光パスクロスコネクト装置101bは、予備系光伝送路140から入ってきた波長多重光信号を予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングし、予備系インタフェースリンク121bから入ってきた波長多重光信号を予備系光伝送路160にそれぞれルーチングする。
このタイプBの波長多重光伝送システムによれば、光パスクロスコネクト装置を構成する光空間スイッチの素子数を減らすことができる。
【0053】
(a-3) タイプC
図19に示すタイプCの波長多重光伝送システムは図10の第2変形例に対応するものであり図17と同一部分には同一の符号を付している。
図17のタイプAの波長多重光システムでは電気クロスコネクト装置201において、光パスクロスコネクト装置101への現用系及び予備系の波長多重光信号を作成して現用系及び予備系インタフェースリンク121a、121bに分配する。しかし、図19のタイプCでは、波長多重光信号を電気クロスコネクト装置201で現用系及び予備系に分配せず、インタフェースリンク121に光分配器又は光分配スイッチ125を設け、該光分配器あるいは光分配スイッチ125で波長多重光信号を現用系及び予備系インタフェースリンク121a,121bに分配する。他の構成はタイプAと同一である。
【0054】
光パスクロスコネクト装置101は、(1) 現用系光伝送路130から入ってきた波長多重光信号を波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、(2) 予備系光伝送路140から入ってきた波長多重光信号を波長毎に予備系光伝送路160や予備系インタフェースリンク122aにルーチングし、(3) 光分配器125を介して現用系インタフェースリンク121aから入ってきた波長多重光信号を波長毎に現用系光伝送路150にルーチングし、(4) 光分配器125を介して予備系インタフェースリンク121bから入ってきた波長多重光信号を波長毎に予備系光伝送路160にそれぞれルーチングする。
【0055】
(a-4) タイプD
図20に示すタイプDの波長多重光伝送システムは図13の第3変形例に対応するものであり、図19と同一部分には同一の符号を付している。
図20に示すタイプDの波長多重光伝送システムでは、光パスクロスコネクト装置101を現用系101aと予備系101bに分割し、現用系の波長多重光信号は現用系の光パスクロスコネクト装置101aに、予備系の波長多重光信号は予備系の光パスクロスコネクト装置101bにそれぞれ入ってスイッチングされるようになっている。
【0056】
現用系の光パスクロスコネクト装置101aは、現用系光伝送路130から入ってきた波長多重光信号を現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、又、光分配器125を介して現用系のインタフェースリンク121aから入ってきた波長多重光信号を現用系光伝送路150にルーチングする。予備系の光パスクロスコネクト装置101bは、予備系光伝送路140から入ってきた波長多重光信号を予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングし、光分配器125を介して予備系インタフェースリンク121bから入ってきた波長多重光信号を予備系光伝送路160にそれぞれルーチングする。
このタイプDの波長多重光伝送システムによれば、光パスクロスコネクト装置を構成する光空間スイッチの素子数を減らすことができる。
【0057】
(a-5) タイプE
図21に示すタイプEの波長多重光伝送システムは図15の第4変形例に対応するものであり、図17のタイプAと同一部分には同一の符号を付している。
タイプAの波長多重光システムでは電気クロスコネクト装置201において、光パスクロスコネクト装置101への現用系及び予備系の波長多重光信号を作成して現用系及び予備系インタフェースリンク121a、121bに分配する。しかし、図21のタイプEでは、波長多重光信号を電気クロスコネクト装置201で現用系及び予備系に分配せず、光パスクロスコネクト装置101を分配機能を持った空間光スイッチで構成し、該空間スイッチにより電気クロスコネクト装置201から入ってきた波長多重光信号を現用系及び予備系光伝送路に同時にルーチングするようにしている。
【0058】
図21において、図17のタイプAと異なる点は、(1) 電気クロスコネクト装置201から光パスクロスコネクト装置101への予備系インタフェースリンク121bを削除した点、(2) 光パスクロスコネクト装置101を分配機能を持った空間光スイッチで構成した点である。すなわち、電気クロスコネクト装置201から光パスクロスコネクト装置101へ波長多重光信号を入力するインタフェースリンクは、現用系インタフェースリンク121aのみであり、光パスクロスコネクト装置101から電気クロスコネクト装置201へのインタフェースリンクは、現用系インタフェースリンク122aと予備系インタフェースリンク122bのペアである。
光パスクロスコネクト装置101は、(1) 現用系光伝送路130から入ってきた波長多重光信号を波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、(2) 予備系光伝送路140から入ってきた波長多重光信号を波長毎に予備系光伝送路160や予備系インタフェースリンク122bにルーチングし、(3) 現用系インタフェースリンク121aから入ってきた波長多重光信号を分配機能により波長毎に現用系光伝送路150と予備系光伝送路160にそれぞれルーチングする。
【0059】
(b)光パスクロスコネクト装置の構成
光パスクロスコネクト装置(OPXC)の構成法としては、入力光信号の波長の変換を行わないWP(Wavelength path)方式と必要に応じて波長の変換を行うVWP(Virtual Wavelength Path)方式の2種類がある。
(b-1) WP方式の光パスクロスコネクト装置
図22はWP方式の光パスクロスコネクト装置OPXCの構成図であり、複数の光伝送路#1〜#kのそれぞれから入力する波長多重光信号を個々の波長λ1〜λnの光信号に分波する分波器10111〜1011kと、分波された波長λ1〜λnの光信号を所定の出方路にスイッチングする空間光スイッチ10121〜1012kと、同一出方路向けの波長λ1〜λnの光信号を合流して光伝送路#1〜#kに送出する合波器10131〜1013kを備えている。
【0060】
空間光スイッチ10121には各分波器10111〜1011kより波長λ1の光信号が入力され、該空間光スイッチ10121でスイッチングされて各合波器に入力される。又、空間光スイッチ10122には各分波器10111〜1011kより波長λ2の光信号が入力され、該空間光スイッチ10122でスイッチングされて各合波器に入力される。他の空間スイッチも同様である。合波器10131は各空間スイッチ10121〜1012kから入力された波長λ1〜λnの光信号を合波して#1の光伝送路に送出し、合波器10132は各空間スイッチ10121〜1012kから入力された波長λ1〜λnの光信号を合波して#2の光伝送路に送出し、同様に合波器1013kは各空間スイッチ10121〜1012kから入力された波長λ1〜λnの光信号を合波して#kの光伝送路に送出する。
【0061】
(b-2) VWP方式の光パスクロスコネクト装置
図23はVWP方式の光パスクロスコネクト装置OPXCの構成図であり、複数の光伝送路#1〜#kのそれぞれから入力する波長多重光信号を個々の波長λ1〜λnの光信号に分波する分波器10111〜1011kと、各分波器で分波された波長λ1〜λnの光信号を所定の出方路にスイッチングする空間光スイッチ1014と、スイッチングされた光信号の波長を所定の波長に変換する波長変換器10151〜1015kと、同一出方路向けの波長λ1〜λnの光信号を合流して光伝送路#1〜#kに送出する合波器10131〜1013kを備えている。
VW方式、VWP方式の空間光スイッチとしては、図4及び図5に示す1:1型空間光スイッチ、分配機能を備えた1:N型空間光スイッチを用いることができる。この場合、タイプA〜タイプD(図17〜図20)の波長多重光伝送システムは、空間光スイッチとしてどちらの空間スイッチをも使用することができる。しかし、タイプEの波長多重光伝送システムにおては光パスクロスコネクト装置101に分配機能が要求されるので分配機能を備えた1:N型空間光スイッチを使用する必要がある。
【0062】
(c)電気クロスコネクト装置の送信側の構成
電気クロスコネクト装置201の送信側には波長多重光信号を処理する為の機能が付加される。
図24は電気クロスコネクト装置201の送信側の構成図であり、4つの送信タイプS−1〜S−4がある。第1,第2の送信タイプS−1,S−2はそれぞれタイプC〜Eの波長多重光伝送システム(図19〜図21)に適用できるものであり、第3、第4の送信タイプS−3,S−4はそれぞれタイプA〜Bの波長多重光伝送システム(図17〜図18)に適用できるものである。
【0063】
(c-1) 第1の送信タイプS−1
第1の送信タイプS−1は、ATMスイッチ部(図示せず)から出力される光パスクロスコネクト装置101向けの個々の電気信号を波長λ1〜λnに変換する出力波長固定の電光変換部(E/O変換部)307a1〜307anと、各E/O変換部から出力される波長λ1〜λnの光信号を合流して現用系インタフェースリンク121aに送出する光合流器308aを有している。
第1の送信タイプS−1は光パスクロスコネクト装置101への波長を任意に変更できない。このため第1の送信タイプS−1は、タイプC〜タイプDの波長多重光伝送システムであって、光パスクロスコネクト装置OPXCをVWP方式の空間光スイッチで構成した波長多重光伝送システムに適用できる。
【0064】
(c-2) 第2の送信タイプS−2
第2の送信タイプS−2は、ATMスイッチ部(図示せず)から出力される光パスクロスコネクト装置101向けの個々の電気信号を波長λ1〜λnに変換する出力波長が可変の電光変換部(E/O変換部)307a1′〜307an′と、各E/O変換部から出力される波長λ1〜λnの光信号を合流して現用系インタフェースリンク121aに送出する光合流器308aを有している。
第2の送信タイプS−2は光パスクロスコネクト装置101への波長を任意に変更できる。このため第2の送信タイプS−2は、タイプC〜タイプDの波長多重光伝送システムであって、光パスクロスコネクト装置OPXCをWP方式の空間光スイッチで構成した波長多重光伝送システムに適用できる。
【0065】
(c-3) 第3の送信タイプS−3
第3の送信タイプS−3は、ATMスイッチ部(図示せず)から出力される光パスクロスコネクト装置101向けの個々の電気信号を現用系及び予備系に分配する分配回路306a,306bと、現用系の個々の電気信号を波長λ1〜λnに変換する出力波長固定の電光変換部(E/O変換部)307a1〜307anと、予備系の個々の電気信号を波長λ1〜λnに変換する出力波長固定の電光変換部(E/O変換部)307b1〜307bnと、現用系の各E/O変換部から出力される波長λ1〜λnの光信号を合流して現用系インタフェースリンク121aに送出する光合流器308aと、予備系の各E/O変換部から出力される波長λ1〜λnの光信号を合流して予備系インタフェースリンク121bに送出する光合流器308bを有している。
第3の送信タイプS−3は光パスクロスコネクト装置101への波長を任意に変更できない。このため第3の送信タイプS−3は、タイプA〜タイプBの波長多重光伝送システムであって、光パスクロスコネクト装置OPXCをVWP方式の空間光スイッチで構成した波長多重光伝送システムに適用できる。
【0066】
(c-4) 第4の送信タイプS−4
第4の送信タイプS−4は、ATMスイッチ部(図示せず)から出力される光パスクロスコネクト装置101向けの個々の電気信号を現用系及び予備系に分配する分配回路306a,306bと、現用系の個々の電気信号を波長λ1〜λnに変換する出力波長可変の電光変換部(E/O変換部)307a1′〜307an′と、予備系の個々の電気信号を波長λ1〜λnに変換する出力波長可変の電光変換部(E/O変換部)307b1′〜307bn′と、現用系の各E/O変換部から出力される波長λ1〜λnの光信号を合流して現用系インタフェースリンク121aに送出する光合流器308aと、予備系の各E/O変換部から出力される波長λ1〜λnの光信号を合流して予備系インタフェースリンク121bに送出する光合流器308bを有している。
【0067】
第4の送信タイプS−4は光パスクロスコネクト装置101への波長を任意に変更できる。このため第4の送信タイプS−4は、タイプA〜タイプBの波長多重光伝送システムであって、光パスクロスコネクト装置OPXCをWP方式の空間光スイッチで構成した波長多重光伝送システムに適用できる。
尚、各送信タイプともこれらリンクを複数本電気クロスコネクト装置と光パスクロスコネクト装置間に配設される。
【0068】
(d)電気クロスコネクト装置の受信側の構成
電気クロスコネクト装置201の受信側には波長多重光信号を処理する為の機能が付加される。図25は電気クロスコネクト装置201の受信側の構成図であり、2つの受信タイプR−1,R−2がある。
(d-1) 第1の受信タイプR−1
第1の受信タイプR−1は、光パスクロスコネクト装置101から現用系及び予備系のインタフェースリンク122a、122bを介して送られてくる波長多重光信号を個々の波長λ1〜λnの光信号に分波する301a、301bと、現用系及び予備系の各光信号を電気信号に変換する複数の光電変換部(O/E変換部)302a1〜302an,302b1〜302bnと、各光電変換器出力に接続され、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整用バッファ303a1〜303an,303b1〜303bnと、現用系及び予備系の光信号を切り替え、図示しないATMスイッチ部に入力するセレクタ304a1〜304anを備えている。
第1の受信タイプR−1は全タイプA〜Eの波長多重光伝送システム(図17〜図21)に適用できる。
【0069】
(d-2) 第2の受信タイプR−2
第2の受信タイプR−2は、光パスクロスコネクト装置101から現用系インタフェースリンク122aを介して入力される波長多重光信号を個々の波長λ1〜λnの光信号に分波する分波器301aと、光パスクロスコネクト装置101から予備系系インタフェースリンク122bを介して入力される波長多重光信号を分岐する分岐器309bと、分岐器309bから分岐された各波長多重光信号より所定の波長λ1〜λnの光信号を抽出する可変波長フィルタ310b1〜310bnと、現用系及び予備系の各光信号を電気信号に変換する複数の光電変換部(O/E変換部)302a1〜302an,302b1〜302bnと、各光電変換器出力に接続され、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整用バッファ303a1〜303an,303b1〜303bnと、現用系及び予備系の光信号を切り替え、図示しないATMスイッチ部に入力するセレクタ304a1〜304anを備えている。
【0070】
全タイプA〜Eの波長多重光伝送システム(図17〜図21)の電気クロスコネクト装置201の受信側構成として、基本的に第1の受信タイプR−1を適用できる。しかし、送信側に第4の送信タイプS−4を用いた場合は、光パスクロスコネクト装置101が現用系と予備系に送出する光信号の波長が異なる場合があり(現用系に送出した波長と同じ波長で予備系に送出しようとした時に、その波長が既に予備系で使われていた場合)、かかる場合において第2の受信タイプR−2を用いることによりブロッキングを防ぐことができる。すなわち、可変波長フィルタ310b1〜310bnはそれぞれ予備系の波長多重光信号より所定の波長の光信号を抽出して出力するため、予備系の各光信号は光電変換部302b1〜302bnで正しく光電変換され、ブロッキングされることがない。
【0071】
(e)送信タイプ及び受信タイプが適用できる構成:
図26は光パスクロスコネクト装置OPXCのタイプA〜Eと光パス(WP方式/VWP方式)並びに電気クロスコネクト装置EXCにおける送信タイプS−1〜S−4及び受信タイプR−1〜R−2の関係説明図表である。
光パスクロスコネクト装置OPXCのタイプA〜Eと光パスの違い(WP方式/VWP方式)により電気クロスコネクト装置EXCに適用する送信部と受信部のタイプが異なってくる。
【0072】
(e-1) 送信タイプが適用できる構成
タイプC、D、Eの波長多重光伝送システム(図19〜図21)では、電気クロスコネクト装置EXCより波長多重光信号を予備系に送出する必要がない。このため、電気クロスコネクト装置EXCの送信部として送信タイプS−1もしくはS−2を使用する。この場合、どの波長で光信号を送出するかはその時のネットワークの状況によるので、波長変換をしないWP方式の光パスクロスコネクト装置OPXCを使用する時は、送信部のE/O変換部に波長可変機能が要求される。このため、送信タイプS−2を使用する。一方、波長変換するVWP方式の光パスクロスコネクト装置OPXCを使用する時は、送信部のE/O変換部に波長可変機能が不要であるから送信タイプS−1を使用する。
【0073】
タイプA、Bの波長多重光伝送システム(図17〜図18)では、電気クロスコネクト装置EXCより波長多重光信号を現用系、予備系の両方に送出する必要がある。このため、電気クロスコネクト装置EXCの送信部として送信タイプS−3もしくはS−4を使用する。また、上述した理由によりWPの方式では、送信部のE/O変換部に波長可変機能を有する送信タイプS−4を使用し、VWP方式では、送信部のE/O変換部に波長可変機能を有しない送信タイプS−3を使用する。
【0074】
(e-2) 受信タイプが適用できる構成
タイプA〜Eの波長多重光伝送システムの電気クロスコネクト装置EXCに適用する受信部は基本的には受信タイプR−1でよい。しかし、送信部に送信タイプS−4を用いると前述のように現用系と予備系に送出する光信号の波長が異なる場合がある。かかる場合には受信タイプR−2を用いるとブロッキングを防ぐことができる。
【0075】
(f)波長多重光伝送システムの構成
図26の図表より明らかなように、送信タイプ、受信タイプの組み合わせによりトータル12種類の波長多重光伝送システムの構成が考えられる。
第1の波長多重光伝送システムはタイプA(図17参照)におけるVWP方式であり、送信タイプがS−3、受信タイプがR−1の場合である。
第2の波長多重光伝送システムはタイプAにおけるWP方式であり、送信タイプがS−4、受信タイプがR−1の場合である。
第3の波長多重光伝送システムはタイプAにおけるWP方式であり、送信タイプがS−4、受信タイプがR−2の場合である。
第4の波長多重光伝送システムはタイプB(図18参照)におけるVWP方式であり、送信タイプがS−3、受信タイプがR−1の場合である。
第5の波長多重光伝送システムはタイプBにおけるWP方式であり、送信タイプがS−4、受信タイプがR−1の場合である。
第6の波長多重光伝送システムはタイプBにおけるWP方式であり、送信タイプがS−4、受信タイプがR−2の場合である。
【0076】
第7の波長多重光伝送システムはタイプC(図19)におけるVWP方式であり、送信タイプがS−1、受信タイプがR−1の場合である。
第8の波長多重光伝送システムはタイプCにおけるWP方式であり、送信タイプがS−2、受信タイプがR−1の場合である。
第9の波長多重光伝送システムはタイプD(図20)におけるVWP方式であり、送信タイプがS−1、受信タイプがR−1の場合である。
第10の波長多重光伝送システムはタイプDにおけるWP方式であり、送信タイプがS−2、受信タイプがR−1の場合である。
第11の波長多重光伝送システムはタイプE(図21)におけるVWP方式であり、送信タイプがS−1、受信タイプがR−1の場合である。
第12の波長多重光伝送システムはタイプEにおけるWP方式であり、送信タイプがS−2、受信タイプがR−1の場合である。
【0077】
(f-1) 第1の波長多重光伝送システムの動作
図27は第1の波長多重光伝送システムの動作説明である。
100、200は波長多重光伝送システムであり、光パスクロスコネクト装置OPXCとしてVWP方式のタイプA(図17)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−3、受信タイプR−1を有している。
波長多重光伝送システム100,200は、それぞれ光パスクロスコネクト装置101(OPXC1,OPXC2)及び電気クロスコネクト装置201(EXC1,EXC2)を備え、現用系及び予備系の波長多重光伝送路131、132により接続されている。
【0078】
光パスクロスコネクト装置101(OPXC1,OPXC2)は図23に示すVWP方式の構成を有し、複数の波長多重光信号入出力用の現用系光伝送路130,150と、波長多重光信号入出力用の予備系光伝送路140,160と、電気クロスコネクト装置201との間に設けられた複数の波長多重光信号入出力用の現用系インタフェースリンク121a,122aと、電気クロスコネクト装置201との間に設けられた複数の波長多重光信号入出力用の予備系インタフェースリンク121b,122bをそれぞれ収容している。
【0079】
電気クロスコネクト装置201は、現用系及び予備系の受信側のそれぞれに現用系及び予備系のインタフェースリンク122a,122bから入力される波長多重光信号λ1〜λn(図ではn=2)を個々の波長信号λ1,λ2に分波する分波器301a,301bと各波長信号を電気信号に変換する複数の光電変換部302a1〜302a2,302b1〜302b2と、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整用バッファ303a1〜303a2,303b1〜303b2と、現用系及び予備系の光電変換部から出力される現用系及び予備系信号を切り替えるセレクタ304a,304bと、光パスクロスコネクト装置(OPXC)や他の電気クロスコネクト装置(EXC)及び交換機(SW)より入力されるATMセルを所定の出線にルーチングするATMスイッチ305と、光パスクロスコネクト装置へ送出する電気信号を現用系/予備系に分配する分配回路306a,306bと、分配された各現用系及び予備系の電気信号を波長λ1〜λ2の光信号にそれぞれ変換する出力波長が固定の複数の電光変換部307a1〜307a2,307b1〜307b2と、現用系の各電光変換部から出力される光信号及び予備系の各電光変換部から出力される光信号をそれぞれ合流して現用系及び予備系のインタフェースリンク121a,121bに送出する光合流器308a,308bを備えている。
【0080】
光パスクロスコネクト装置101は、▲1▼現用系光伝送路130から入ってきた波長多重光信号を波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、▲2▼予備系光伝送路140から入ってきた波長多重光信号を波長毎に予備系光伝送路160や予備系インタフェースリンク122bにルーチングし、▲3▼現用系インタフェースリンク121aから入ってきた波長多重光信号を波長毎に現用系光伝送路150にルーチングし、▲4▼予備系インタフェースリンク121bから入ってきた波長多重光信号を波長毎に予備系光伝送路160にそれぞれルーチングし、電気クロスコネクト装置201は切替指示に基づいてセレクタ304a〜304bにより現用及び予備の無瞬断伝送路切替を行う。光パスクロスコネクト装置101は必要に応じて波長変換を実行する。
【0081】
例えば、第1の光伝送システム100の電気クロスコネクト装置(EXC1)より第2の光伝送システム200の電気クロスコネクト装置(EXC2)に光信号を伝送する場合、電気クロスコネクト装置(EXC1)は現用系/予備系の波長多重光信号を現用系/予備系のインタフェースリンク121a,121bに分配し、光パスクロスコネクト装置OPXC1は現用系インタフェースリンク121aから入力した光信号を現用系光伝送路131にルーチングし、予備系インタフェースリンク121bから入力した光信号を予備系光伝送路132にルーチングする。第2の光伝送システム200の光パスクロスコネクト装置OPXC2は現用系光伝送路131から入力した光信号を現用系インタフェースリンク122aにルーチングし、予備系光伝送路132から入力した光信号を予備系インタフェースリンク122bにルーチングし、これにより電気クロスコネクト装置EXC2に入力する。電気クロスコネクト装置EXC2は現用系インタフェースリンク122aから入力された波長多重光信号を選択し、ATMスイッチ305で所望の出線にルーチングする。
【0082】
かかる状態で、現用系光伝送路131に流れている信号を予備系光伝送路132に切替える場合、第2の光伝送システム200の電気クロスコネクト装置EXC2におけるセレクタ304a〜304bは切替指示に基づいて予備系インタフェースリンク122bより入力された波長多重光信号を選択し、該信号をATMスイッチ305で所望の出線にルーチングする。この場合、位相調整用バッファ303a1〜303a2,303b1〜303b2において常時、現用系と予備系の信号位相が一致するように位相調整されているから、セルロスなく無瞬断で現用/予備の切り替えができる。
【0083】
図27では隣接する光伝送システム100、200の一方の電気クロスコネクト装置EXC1から他方の電気クロスコネクト装置EXC2に信号を伝送する場合であるが、第1、第2の光伝送システム100,200間に他の光伝送システムが存在する場合であっても、信号を受け取る側の電気クロスコネクト装置の位相調整用バッファ303a1〜303a2,303b1〜303b2は常に現用系及び予備系の信号位相が一致するように位相調整しているため、いずれかの現用系光伝送路に障害が発生しても上述のようにセルロスなく無瞬断で現用/予備の切り替えができる。
以上のように、光パスクロスコネクト装置101は、無瞬断切り替えを行わず、電気クロスコネクト装置201が無瞬断切り替えを行えるように現用系と予備系のパス張っておくだけでよい。このため、光パスクロスコネクト装置には光位相調整機能や高速な切り替え動作が不要となる。
【0084】
(f-2) 第2の波長多重光伝送システムの動作
図28は第2の波長多重光伝送システムの動作説明であり、図27と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプA(図17)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−4、受信タイプR−1を有している。
電気クロスコネクト装置201の分配回路306a,306bで分配した電気信号を波長可変の電光変換部(E/O変換部)307a1′〜307a2′,307b1′〜307b2′で所定の波長の光信号に変換して送出する以外は図27と同様に動作する。
【0085】
(f-3) 第3の波長多重光伝送システムの動作
図29は第3の波長多重光伝送システムの動作説明図であり、図27と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプA(図17)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−4、受信タイプR−2を有している。
▲1▼電気クロスコネクト装置201の分配回路306a,306bで分配した予備系及び現用系の電気信号を波長可変の電光変換部(E/O変換部)307a1′〜307a2′,307b1′〜307b2′で所定の波長の光信号に変換して送出する点、及び、▲2▼光パスクロスコネクト装置101から予備系インタフェースリンク122bを介して入力される波長多重光信号を分岐器309bで分岐する点、▲3▼可変波長フィルタ310b1〜310b2で分岐器309bから分岐された各波長多重光信号より所定の波長λ1〜λ2の光信号を抽出して光電変換部303b1〜303b2に入力している点を除けば、図27と同様に動作する。
【0086】
(f-4) 第4の波長多重光伝送システムの動作
図30は第4の波長多重光伝送システムの動作説明図であり、図27と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてVWP方式のタイプB(図18)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−3、受信タイプR−1を有している。
【0087】
図27の第1の波長多重光伝送システムと異なる点は、光パスクロスコネクト装置101が現用系光パスクロスコネクト装置101aと予備系光パスクロスコネクト装置101bに分割されている点である。光パスクロスコネクト装置101は、現用系光伝送路130から入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングする。同様に、光パスクロスコネクト装置101は、予備系光伝送路140から入ってきた波長多重光信号を、光スイッチ101bにより波長毎に予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングする。また、光パスクロスコネクト装置101は、現用系のインタフェースリンク121aから入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150に、予備系インタフェースリンク121bから入ってきた波長多重光信号を光スイッチ101bにより波長毎に予備系光伝送路160にそれぞれルーチングする。他の動作は図27の場合と同様である。
【0088】
(f-5) 第5の波長多重光伝送システムの動作
図31は第5の波長多重光伝送システムの動作説明図であり、図28と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプB(図18)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−4、受信タイプR−1を有している。
【0089】
図28の第2の波長多重光伝送システムと異なる点は、光パスクロスコネクト装置101が現用系光パスクロスコネクト装置101aと予備系光パスクロスコネクト装置101bに分割されている点である。光パスクロスコネクト装置101は、現用系光伝送路130から入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングする。同様に、光パスクロスコネクト装置101は、予備系光伝送路140から入ってきた波長多重光信号を、光スイッチ101bにより波長毎に予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングする。また、光パスクロスコネクト装置101は、現用系のインタフェースリンク121aから入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150に、予備系インタフェースリンク121bから入ってきた波長多重光信号を光スイッチ101bにより波長毎に予備系光伝送路160にそれぞれルーチングする。他の動作は図28の場合と同様である。
【0090】
(f-6) 第6の波長多重光伝送システムの動作
図32は第6の波長多重光伝送システムの動作説明図であり、図29と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプB(図18)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−4、受信タイプR−2を有している。
【0091】
図29の第3の波長多重光伝送システムと異なる点は、光パスクロスコネクト装置101が現用系光パスクロスコネクト装置101aと予備系光パスクロスコネクト装置101bに分割されている点である。光パスクロスコネクト装置101は、現用系光伝送路130から入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングする。同様に、光パスクロスコネクト装置101は、予備系光伝送路140から入ってきた波長多重光信号を、光スイッチ101bにより波長毎に予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングする。また、光パスクロスコネクト装置101は、現用系のインタフェースリンク121aから入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150に、予備系インタフェースリンク121bから入ってきた波長多重光信号を光スイッチ101aにより波長毎に予備系光伝送路160にそれぞれルーチングする。他の動作は図29の場合と同様である。
【0092】
(f-7) 第7の波長多重光伝送システムの動作
図33は第7の波長多重光伝送システムの動作説明図であり、図27と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてVWP方式のタイプC(図19)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−1、受信タイプR−1を有している。
【0093】
光パスクロスコネクト装置101は、▲1▼現用系光伝送路130から入ってきた波長多重光信号を波長毎に、現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、▲2▼予備系光伝送路140から入ってきた波長多重光信号を波長毎に、予備系光伝送路160や予備系インタフェースリンク122bにルーチングし、▲3▼また、光分配器又は光分配スイッチ125により分配された後、現用系インタフェースリンク121aより入ってきた波長多重光信号を波長毎に現用系光伝送路150にルーチングし、▲4▼光分配器又は光分配スイッチ125により分配された後、予備系インタフェースリンク121bから入ってきた波長多重光信号を波長毎に予備系光伝送路160にそれぞれルーチングする。又、光パスクロスコネクト装置101は必要に応じて波長変換を実行する。電気クロスコネクト装置201はセレクタ304a〜304bにより現用及び予備の無瞬断伝送路切替を行う。
【0094】
例えば、第1の光伝送システム100の電気クロスコネクト装置(EXC1)より第2の光伝送システム200の電気クロスコネクト装置(EXC2)に信号を伝送する場合、電気クロスコネクト装置(EXC1)は波長多重光信号をインタフェースリンク121aに送出し、光分波器125は波長多重光信号を現用系及び予備系に分岐して現用系及び予備系インタフェースリンク121a、121bに送出する。
【0095】
光パスクロスコネクト装置OPXC1は現用系インタフェースリンク121aから入力した波長多重光信号を波長毎に現用系光伝送路131にルーチングし、予備系インタフェースリンク121bから入力した波長多重光信号を波長毎に予備系光伝送路132にルーチングする。第2の光伝送システム200の光パスクロスコネクト装置OPXC2は現用系光伝送路131から入力した波長多重光信号を波長毎に現用系インタフェースリンク122aにルーチングし、予備系光伝送路132から入力した波長多重光信号を波長毎に予備系インタフェースリンク122bにルーチングし、これにより電気クロスコネクト装置EXC2に入力する。電気クロスコネクト装置EXC2は現用系インタフェースリンク122aから入力された波長多重光信号を選択し、ATMスイッチ(図示せず)で所望の出線にルーチングする。
【0096】
かかる状態で、現用系光伝送路131に流れていた信号を予備系光伝送路132に切替える場合、第2の光伝送システム200の電気クロスコネクト装置EXC2におけるセレクタ304a〜304bは切替指示に基づいて予備系インタフェースリンク122bより入力された波長多重光信号を選択し、該信号をATMスイッチで所望の出線にルーチングする。この場合、位相調整用バッファ303a1〜303a2,303b1〜303b2において常時、現用系と予備系の信号位相が一致するように位相調整されているから、セルロスなく無瞬断で現用/予備の切り替えができる。
【0097】
(f-8) 第8の波長多重光伝送システムの動作
図34は第8の波長多重光伝送システムの動作説明であり、図33と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプC(図19)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−2、受信タイプR−1を有している。
電気クロスコネクト装置201のATMスイッチ部(図示せず)より出力される電気信号を波長可変の電光変換部(E/O変換部)307a1′〜307a2′で所定の波長の光信号に変換し、光合流器308aで合流してインタフェースリンク121aに送出する以外は図33と同様に動作する。
【0098】
(f-9) 第9の波長多重光伝送システムの動作
図35は第9の波長多重光伝送システムの動作説明図であり、図33と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてVWP方式のタイプD(図20)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−1、受信タイプR−1を有している。
【0099】
図35において図33と異なる点は、光パスクロスコネクト装置101が現用系光パスクロスコネクト装置101aと予備系光パスクロスコネクト装置101bに分割されている点である。光パスクロスコネクト装置101は、現用系光伝送路130から入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングする。同様に、光パスクロスコネクト装置101は、予備系光伝送路140から入ってきた波長多重光信号を、光スイッチ101bにより波長毎に予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングする。また、光パスクロスコネクト装置101は、現用系のインタフェースリンク121aから入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150に、予備系インタフェースリンク121bから入ってきた波長多重光信号を光スイッチ101bにより波長毎に予備系光伝送路160にそれぞれルーチングする。他の動作は図33の場合と同様である。
【0100】
(f-10) 第10の波長多重光伝送システムの動作
図36は第10の波長多重光伝送システムの動作説明図であり、図34と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプD(図20)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−2、受信タイプR−1を有している。
【0101】
図36におて図34と異なる点は、光パスクロスコネクト装置101が現用系光パスクロスコネクト装置101aと予備系光パスクロスコネクト装置101bに分割されている点である。光パスクロスコネクト装置101は、現用系光伝送路130から入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150や現用系インタフェースリンク122aにルーチングする。同様に、光パスクロスコネクト装置101は、予備系光伝送路140から入ってきた波長多重光信号を、光スイッチ101bにより波長毎に予備系光伝送路160や予備系の出力インタフェースリンク122bにルーチングする。また、光パスクロスコネクト装置101は、現用系のインタフェースリンク121aから入ってきた波長多重光信号を光スイッチ101aにより波長毎に現用系光伝送路150に、予備系インタフェースリンク121bから入ってきた波長多重光信号を光スイッチ101bにより波長毎に予備系光伝送路160にそれぞれルーチングする。他の動作は図34の場合と同様である。
【0102】
(f-11) 第11の波長多重光伝送システムの動作
図37は第11の波長多重光伝送システムの動作説明図であり、図27と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてVWP方式のタイプE(図21)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−1、受信タイプR−1を有している。
【0103】
光パスクロスコネクト装置101は、▲1▼現用系光伝送路130から入ってきた波長多重光信号を波長毎に、現用系光伝送路150や現用系インタフェースリンク122aにルーチングし、▲2▼予備系光伝送路140から入ってきた波長多重光信号を波長毎に、予備系光伝送路160や予備系インタフェースリンク122bにルーチングし、▲3▼また、現用系インタフェースリンク121aより入ってきた波長多重光信号を分配機能により波長毎に現用系光伝送路150及び予備系光伝送路160にルーチングする。又、光パスクロスコネクト装置101は必要に応じて波長変換を実行する。電気クロスコネクト装置201は切替指示に基づいてセレクタ304a〜304bにより現用及び予備の無瞬断伝送路切替を行う。
【0104】
例えば、第1の光伝送システム100の電気クロスコネクト装置(EXC1)より第2の光伝送システム200の電気クロスコネクト装置(EXC2)に信号を伝送する場合、電気クロスコネクト装置(EXC1)は波長多重光信号をインタフェースリンク121a送出する。光パスクロスコネクト装置OPXC1は、分配機能により現用系インタフェースリンク121aから入力した波長多重光信号を波長毎に現用系光伝送路131及び予備系光伝送路132にそれぞれにルーチングする。第2の光伝送システム200の光パスクロスコネクト装置OPXC2は現用系光伝送路131から入力した波長多重光信号を波長毎に現用系インタフェースリンク122aにルーチングし、予備系光伝送路132から入力した波長多重光信号を波長毎に予備系インタフェースリンク122bにルーチングして電気クロスコネクト装置EXC2に入力する。電気クロスコネクト装置EXC2は現用系インタフェースリンク122aから入力された波長多重光信号を選択し、ATMスイッチ(図示せず)で所望の出線にルーチングする。
【0105】
かかる状態で、現用系光伝送路131に流れていた信号を予備系光伝送路132に切替える場合、第2の光伝送システム200の電気クロスコネクト装置EXC2におけるセレクタ304a〜304bは切替指示に基づいて予備系インタフェースリンク122bより入力された波長多重光信号を選択し、該信号をATMスイッチで所望の出線にルーチングする。この場合、位相調整用バッファ303a1〜303a2,303b1〜303b2において常時、現用系と予備系の信号位相が一致するように位相調整されているから、セルロスなく無瞬断で現用/予備の切り替えができる。
【0106】
(f-12) 第12の波長多重光伝送システムの動作
図38は第12の波長多重光伝送システムの動作説明であり、図37と同一部分には同一符号を付している。波長多重光伝送システム100,200は、光パスクロスコネクト装置OPXCとしてWP方式のタイプE(図21)の構成を有し、電気クロスコネクト装置EXCとして送信タイプS−2、受信タイプR−1を有している。
電気クロスコネクト装置201のATMスイッチ部(図示せず)より出力される電気信号を波長可変の電光変換部(E/O変換部)307a1′〜307a2′で所定の波長の光信号に変換し、光合流器308aで合流してインタフェースリンク121aに送出する以外は図38と同様に動作する。
【0107】
以上では無瞬断による現用/予備の切替動作について説明したが、具体的には保守時における現用/予備の切り替え制御、伝送路障害の復旧をした後に予備系から現用系への切り戻し制御等に適用できるものである。
以上、本発明を実施例により説明したが、本発明は請求の範囲に記載した本発明の主旨に従い種々の変形が可能であり、本発明はこれらを排除するものではない。
【0108】
【発明の効果】
以上、本発明によれば、光パスクロスコネクト装置と電気クロスコネクト装置間を、現用系と予備系の複数の入出力インタフェースリンクで接続し、該現用系及び予備系のインタフェースリンクを介して光パスクロスコネクト装置から電気クロスコネクト装置にそれぞれ現用系及び予備系の光信号を入力し、電気クロスコネクト装置で現用及び予備の無瞬断伝送路切り替えを行うようにしたから、電気処理により光伝送路の無瞬断切り替えができ、しかも、光パスクロスコネクト装置は無瞬断切り替えを行えるように現用系と予備系のパス張っておくだけでよいため、光位相調整機能や高速切り替え動作が不要となる。
【0109】
本発明によれば、光パスクロスコネクト装置を空間光スイッチを用いて構成し、該空間光スイッチを現用系と予備系に分割するようにしたから、光パスクロスコネクト装置内のスイッチ素子数を減らすことができる。
本発明によれば、光信号を電気クロスコネクト装置で現用系及び予備系に分配せず、インタフェースリンクに光分配器又は光分配スイッチを設け、該光分配器あるいは光分配スイッチで光信号を現用系及び予備系インタフェースリンクに分配するように構成したから、電気クロスコネクト装置の構成を簡単にすることができる。
【0110】
本発明によれば、光信号を電気クロスコネクト装置で現用系及び予備系に分配せず、光パスクロスコネクト装置を分配機能を持った空間光スイッチで構成し、該空間スイッチの分配機能により電気クロスコネクト装置から入ってきた光信号を現用系及び予備系光伝送路にルーチングするように構成したから、電気クロスコネクト装置と光パスクロスコネクト装置間のインタフェースリンク数を少なくすることができる。
本発明によれば、光信号が波長多重されている場合であっても、電気クロスコネクト装置と光パスクロスコネクト装置との間のインタフェースリンクを現用系と予備系を用いて相互接続することにより、電気処理による無瞬断伝送路切替が適用でき、光パスクロスコネクト装置に光位相調整機能や高速な切替動作が不要となるといった効果を奏し、この光パスクロスコネクト装置を用いた波多重光伝送システムの性能向上に寄与するところが大きい。
【図面の簡単な説明】
【図1】本発明の第1の原理説明図である。
【図2】本発明の第2の原理説明図である。
【図3】本発明の第1実施例の光伝送システムの構成図である。
【図4】1対1型空間光スイッチの構成図である。
【図5】1対N型空間光スイッチの構成図である。
【図6】電気クロスコネクト装置の構成図である。
【図7】本発明の第1実施例の伝送路切替動作説明図である。
【図8】第1変形例の光伝送システムの構成図である。
【図9】第1変形例の動作説明図である。
【図10】第2変形例の光伝送システムの構成図である。
【図11】電気クロスコネクト装置の構成図である。
【図12】第2変形例の動作説明図である。
【図13】第3変形例の光伝送システムの構成図である。
【図14】第3変形例の動作説明図である。
【図15】第4変形例の光伝送システムの構成図である。
【図16】第4変形例の動作説明図である。
【図17】本発明の第1の波長多重光伝送システムの構成図である。
【図18】本発明の第2の波長多重光伝送システムの構成図である。
【図19】本発明の第3の波長多重光伝送システムの構成図である。
【図20】本発明の第4の波長多重光伝送システムの構成図である。
【図21】本発明の第5の波長多重光伝送システムの構成図である。
【図22】光パスクロスコネクト装置(WP方式)の構成図である。
【図23】光パスクロスコネクト装置(VWP方式)の構成図である。
【図24】電気クロスコネクト装置の送信側の構成図である。
【図25】電気クロスコネクト装置の受信側の構成図である。
【図26】光パスクロスコネクト装置OPXCのタイプA〜Eと光パス(WP方式/VWP方式)並びに電気クロスコネクト装置EXCにおける送信タイプS−1〜S−4及び受信タイプR−1〜R−2の関係説明図表である。
【図27】第1の波長多重光伝送システムの動作説明図である。
【図28】第2の波長多重光伝送システムの動作説明図である。
【図29】第3の波長多重光伝送システムの動作説明図である。
【図30】第4の波長多重光伝送システムの動作説明図である。
【図31】第5の波長多重光伝送システムの動作説明図である。
【図32】第6の波長多重光伝送システムの動作説明図である。
【図33】第7の波長多重光伝送システムの動作説明図である。
【図34】第8の波長多重光伝送システムの動作説明図である。
【図35】第9の波長多重光伝送システムの動作説明図である。
【図36】第10の波長多重光伝送システムの動作説明図である。
【図37】第11の波長多重光伝送システムの動作説明図である。
【図38】第12の波長多重光伝送システムの動作説明図である。
【図39】光ネットワークの説明図である。
【図40】OPXCとEXC間の接続関係図である。
【図41】従来装置の構成例を示すブロック図である。
【図42】従来装置の動作説明図である。
【符号の説明】
1,2・・光伝送システム
10・・光パスクロスコネクト装置
13,15・・現用系光伝送路
14,16・・予備系光伝送路
20・・電気クロスコネクト
20a・・光電変換部
20b・・位相調整部
20c・・セレクタ
20d・・ATMスイッチ
20e・・分配回路
20f・・電光変換部
21a,22a・・現用系インタフェースリンク
21b,22b・・予備系インタフェースリンク

Claims (25)

  1. 光パスクロスコネクト装置(OPXC)と電気クロスコネクト装置(EXC)からなる光伝送システムにおいて、
    光パスクロスコネクト装置と電気クロスコネクト装置間を、現用系と予備系の複数の入出力インタフェースリンクで接続し、
    現用系及び予備系のインタフェースリンクを介して光パスクロスコネクト装置から電気クロスコネクト装置にそれぞれ現用系及び予備系の光信号を入力し、電気クロスコネクト装置で現用及び予備の無瞬断伝送路切り替えを行うことを特徴とする光伝送システム。
  2. 電気クロスコネクト装置は、前記インタフェースリンクを介してそれぞれ入力される現用系光信号及び予備系光信号を電気信号に変換する光電変換部、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部、位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行う切り替え手段を備えたことを特徴とする請求項1記載の光伝送システム。
  3. 光パスクロスコネクト装置は空間光スイッチを備えると共に、複数の入出力現用系光伝送路と複数の入出力予備系光伝送路と電気クロスコネクト装置との間に設けられた複数の入出力現用系インタフェースリンク及び電気クロスコネクト装置との間に設けられた複数の入出力予備系インタフェースリンクを収容し、現用系光伝送路から入ってきた光信号を現用系光伝送路や現用系インタフェースリンクにルーチングし、予備系光伝送路から入ってきた光信号を予備系光伝送路や予備系インタフェースリンクにルーチングし、現用系インタフェースリンクから入ってきた光信号を現用系光伝送路にルーチングし、予備系インタフェースリンクから入ってきた光信号を予備系光伝送路にそれぞれルーチングすることを特徴とする請求項1記載の光伝送システム。
  4. 前記光パスクロスコネクト装置を構成する空間光スイッチを現用系と予備系に分割して構成することを特徴とする請求項3記載の光伝送システム。
  5. 電気クロスコネクト装置の出力用のインタフェースリンクに光信号を現用系及び予備系に分配する光分配器又は光分配スイッチを設け、
    光パスクロスコネクト装置は空間光スイッチを備えると共に、複数の入出力現用系光伝送路と複数の入出力予備系光伝送路と電気クロスコネクト装置への複数の出力用現用系及び予備系インタフェースリンクと光分配器又は光分配スイッチに接続された複数の入力用現用系及び予備系インタフェースリンクを収容し、現用系光伝送路から入ってきた光信号を現用系光伝送路や現用系インタフェースリンクにルーチングし、予備系光伝送路から入ってきた光信号を予備系光伝送路や予備系インタフェースリンクにルーチングし、前記光分配器又は光分配スイッチに接続された現用系インタフェースリンクより入力された光信号を現用系光伝送路にルーチングし、前記光分配器又は光分配スイッチに接続された予備系インタフェースリンクから入ってきた光信号を予備系光伝送路にそれぞれルーチングすることを特徴とする請求項1記載の光伝送システム。
  6. 前記光パスクロスコネクト装置を構成する空間光スイッチを現用系と予備系に分割して構成することを特徴とする請求項5記載の光パスクロスコネクト装置。
  7. 光パスクロスコネクト装置は分配機能を持った空間光スイッチを備えると共に、複数の入出力現用系光伝送路、複数の入出力予備系光伝送路、電気ククロスコネクト装置との間に設けられた複数の入出力現用系インタフェースリンク、電気クロスコネクト装置への複数の出力用の予備系インタフェースリンクを収容し、現用系光伝送路から入ってきた光信号を現用系光伝送路や現用系インタフェースリンクにルーチングし、予備系光伝送路から入ってきた光信号を予備系光伝送路や予備系インタフェースリンクにルーチングし、現用系インタフェースリンクから入ってきた光信号を現用系及び予備系光伝送路にルーチングすることを特徴とする請求項1記載の光伝送システム。
  8. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と複数の波長多重光信号入出力用の予備系光伝送路と電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の現用系インタフェースリンクと電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の予備系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、現用系及び予備系の送信側のそれぞれに出力波長が可変の複数の電光変換部と各電光変換部から出力される光信号を合流して前記入力用の現用系及び予備系インタフェースリンクに送出する光合流器を備え、又、現用系及び予備系の受信側のそれぞれに光パスクロスコネクト装置より前記現用系及び予備系インタフェースリンクを介して入力される波長多重光信号を個々の波長の光信号に分波する分波器と各光信号を電気信号に変換する複数の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を波長毎に現用系光伝送路にルーチングし、4)予備系インタフェースリンクから入ってきた波長多重光信号を波長毎に予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  9. 前記現用系及び予備系の光電変換部と現用/予備切替手段の間に、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部を設け、現用/予備切替手段は位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行うことを特徴とする請求項8記載の光伝送システム。
  10. 光パスクロスコネクト装置を現用系と予備系に分割して構成したことを特徴とする請求項8記載の光伝送システム。
  11. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と波長多重光信号入出力用の予備系光伝送路と電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の現用系インタフェースリンクと電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の予備系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、現用系の送信側に出力波長が可変の複数の電光変換部と各電光変換部から出力される光信号を合流して前記入力用の現用系及び予備系インタフェースリンクに送出する光合流器を備え、又、現用系の受信側に現用系インタフェースリンクから入力される波長多重光信号を個々の波長の光信号に分波する分波器と、予備系の受信側に予備系インタフェースリンクから入力される波長多重光信号を分岐する分岐器と、分岐された波長多重光信号より所定の波長を有する光信号を抽出する可変波長フィルタと、前記分波器及び可変波長フィルタより出力される光信号を電気信号に変換する複数の現用系及び予備系の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系信号及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を波長毎に現用系光伝送路にルーチングし、4)予備系インタフェースリンクから入ってきた波長多重光信号を波長毎に予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  12. 光パスクロスコネクト装置を現用系と予備系に分割して構成したことを特徴とする請求項11記載の光伝送システム。
  13. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、スイッチングされた信号の波長を所定の波長に変換する波長変換器と、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と波長多重光信号入出力用の予備系光伝送路と電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の現用系インタフェースリンクと電気クロスコネクト装置との間に設けられた複数の波長多重光信号入出力用の予備系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、現用系及び予備系の送信側のそれぞれに出力波長が固定の複数の電光変換部と各電光変換部から出力される光信号を合流して前記入力用の現用系及び予備系インタフェースリンクに送出する光合流器を備え、又、現用系及び予備系の受信側のそれぞれに前記光パスクロスコネクト装置より現用系及び予備系のインタフェースリンクを介して入力される波長多重光信号を個々の波長の光信号に分波する分波器と各光信号を電気信号に変換する複数の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を波長毎に現用系光伝送路にルーチングし、4)予備系インタフェースリンクから入ってきた波長多重光信号を波長毎に予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  14. 前記現用系及び予備系の光電変換部と現用/予備切替手段の間に、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部を設け、現用/予備切替手段は位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行うことを特徴とする請求項13記載の光伝送システム。
  15. 光パスクロスコネクト装置を現用系と予備系に分割して構成したことを特徴とする請求項13記載の光伝送システム。
  16. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と、複数の波長多重光信号入出力用の予備系光伝送路と、電気クロスコネクト装置との間に設けられた複数の波長多重光信号出力用の現用系及び予備系のインタフェースリンクと、光分配器あるいは光分配スイッチに接続された複数の波長多重光信号入力用の現用系及び予備系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、現用系の光信号送信側に出力波長が可変の複数の電光変換部と各電光変換部から出力される光信号を合流して前記光分配器あるいは光分配スイッチに送出する光合流器を備え、又、光信号受信側に光パスクロスコネクト装置より現用系及び予備系インタフェースリンクを介して入力される現用及び予備の波長多重光信号を個々の波長の光信号に分波する分波器と各光信号を電気信号に変換する複数の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を波長毎に現用系光伝送路にルーチングし、4)予備系インタフェースリンクから入ってきた波長多重光信号を波長毎に予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  17. 前記現用系及び予備系の光電変換部と現用/予備切替手段の間に、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部を設け、現用/予備切替手段は位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行うことを特徴とする請求項16記載の光伝送システム。
  18. 光パスクロスコネクト装置を現用系と予備系に分割して構成したことを特徴とする請求項16記載の光伝送システム。
  19. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、スイッチングされた光信号の波長を所定の波長に変換する波長変換器と、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と、波長多重光信号入出力用の予備系光伝送路と、電気クロスコネクト装置との間に設けられた複数の波長多重光信号出力用の現用系及び予備系のインタフェースリンクと、光分配器あるいは光分配スイッチに接続された複数の波長多重光信号入力用の現用系及び予備系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、現用系の光信号送信側に出力波長が固定の複数の電光変換部と各電光変換部から出力される光信号を合流して前記光分配器あるいは光分配スイッチに送出する光合流器を備え、又、光信号受信側に光パスクロスコネクト装置より現用系及び予備系インタフェースリンクを介して入力される現用及び予備の波長多重光信号を個々の波長の光信号に分波する分波器と各光信号を電気信号に変換する複数の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を波長毎に現用系光伝送路にルーチングし、4)予備系インタフェースリンクから入ってきた波長多重光信号を波長毎に予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  20. 前記現用系及び予備系の光電変換部と現用/予備切替手段の間に、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部を設け、現用/予備切替手段は位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行うことを特徴とする請求項19記載の光伝送システム。
  21. 光パスクロスコネクト装置を現用系と予備系に分割して構成したことを特徴とする請求項19記載の光伝送システム。
  22. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分配機能を備えると共に前記分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と、複数の波長多重光信号入出力用の予備系光伝送路と、電気クロスコネクト装置との間に設けられた複数の波長多重光信号出力用の現用系及び予備系インタフェースリンクと、電気クロスコネクト装置との間に設けられた複数の波長多重光信号入力用の現用系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、光信号送信側に出力波長が可変の複数の電光変換部と各電光変換部から出力される光信号を合流して前記現用系インタフェースリンクに送出する光合流器を備え、又、光信号受信側に光パスクロスコネクト装置より現用系及び予備系インタフェースリンクを介して入力される現用及び予備の波長多重光信号を個々の波長の光信号に分波する分波器と各光信号を電気信号に変換する複数の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を分配機能により波長毎に現用系光伝送路と予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  23. 前記現用系及び予備系の光電変換部と現用/予備切替手段の間に、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部を設け、現用/予備切替手段は位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行うことを特徴とする請求項22記載の光伝送システム。
  24. 光パスクロスコネクト装置と電気クロスコネクト装置からなる光伝送システムにおいて、
    光パスクロスコネクト装置は、波長多重光信号を個々の波長の光信号に分波する分波器と、分配機能を備えると共に前記分波された各光信号を所定の出方路にスイッチングする空間光スイッチと、スイッチングされた信号の波長を所定の波長に変換する波長変換器と、同一出方路向けの光信号を合流する合波器を備え、又、複数の波長多重光信号入出力用の現用系光伝送路と、複数の波長多重光信号入出力用の予備系光伝送路と、電気クロスコネクト装置との間に設けられた複数の波長多重光信号出力用の現用系及び予備系インタフェースリンクと、電気クロスコネクト装置との間に設けられた複数の波長多重光信号入力用の現用系インタフェースリンクをそれぞれ収容し、
    電気クロスコネクト装置は、光信号送信側に出力波長が固定の複数の電光変換部と各電光変換部から出力される光信号を合流して前記現用系インタフェースリンクに送出する光合流器を備え、又、光信号受信側に光パスクロスコネクト装置から現用系及び予備系インタフェースリンクを介して入力される現用及び予備の波長多重光信号を個々の波長の光信号に分波する分波器と各光信号を電気信号に変換する複数の光電変換部を備え、更に、現用系及び予備系の光電変換部から出力される現用系及び予備系信号の切り替えを行う現用/予備切替手段を備え、
    光パスクロスコネクト装置は、1)現用系光伝送路から入ってきた波長多重光信号を波長毎に現用系光伝送路や現用系インタフェースリンクにルーチングし、2)予備系光伝送路から入ってきた波長多重光信号を波長毎に予備系光伝送路や予備系インタフェースリンクにルーチングし、3)現用系インタフェースリンクから入ってきた波長多重光信号を分配機能により波長毎に現用系光伝送路と予備系光伝送路にそれぞれルーチングし、
    電気クロスコネクト装置は切替指示により現用及び予備の無瞬断伝送路切替を行うことを特徴とする光伝送システム。
  25. 前記現用系及び予備系の光電変換部と現用/予備切替手段の間に、現用系及び予備系の信号位相が一致するように電気的に位相調整する位相調整部を設け、現用/予備切替手段は位相調整された現用系信号及び予備系信号の一方を選択して現用系と予備系の切り替えを行うことを特徴とする請求項24記載の光伝送システム。
JP18916096A 1996-04-15 1996-07-18 光伝送システム Expired - Fee Related JP3639383B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18916096A JP3639383B2 (ja) 1996-04-15 1996-07-18 光伝送システム
US08/816,078 US6072610A (en) 1996-04-15 1997-03-13 Optical transmission system
EP97104700A EP0802697B1 (en) 1996-04-15 1997-03-19 Optical transmission system
DE69740015T DE69740015D1 (de) 1996-04-15 1997-03-19 Optisches Übertragungssystem
CN97110518A CN1118983C (zh) 1996-04-15 1997-04-14 光传输系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-92592 1996-04-15
JP9259296 1996-04-15
JP18916096A JP3639383B2 (ja) 1996-04-15 1996-07-18 光伝送システム

Publications (2)

Publication Number Publication Date
JPH104418A JPH104418A (ja) 1998-01-06
JP3639383B2 true JP3639383B2 (ja) 2005-04-20

Family

ID=26433988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18916096A Expired - Fee Related JP3639383B2 (ja) 1996-04-15 1996-07-18 光伝送システム

Country Status (5)

Country Link
US (1) US6072610A (ja)
EP (1) EP0802697B1 (ja)
JP (1) JP3639383B2 (ja)
CN (1) CN1118983C (ja)
DE (1) DE69740015D1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481442B2 (ja) * 1997-12-22 2003-12-22 日本電気株式会社 光ネットワーク
US6940810B1 (en) * 1998-02-20 2005-09-06 Adc Telecommunications, Inc. Protection switching of virtual connections at the data link layer
CN1291414A (zh) * 1998-02-20 2001-04-11 Adc长途电讯有限公司 虚连接的保护交换
JPH11239100A (ja) * 1998-02-20 1999-08-31 Fujitsu Ltd 冗長構成を有する光波長多重システム
JPH11275028A (ja) * 1998-03-20 1999-10-08 Fujitsu Ltd 光通信システム
JP3221401B2 (ja) * 1998-06-15 2001-10-22 日本電気株式会社 光信号監視方法及び装置
JP2000115215A (ja) * 1998-10-05 2000-04-21 Nec Corp ループネットワークにおける故障検知回路
JP3070588B2 (ja) * 1998-11-20 2000-07-31 日本電気株式会社 Atm svc二重化システム
JP3574754B2 (ja) * 1998-12-25 2004-10-06 富士通株式会社 光パスクロスコネクト装置
JP3114715B2 (ja) * 1999-01-08 2000-12-04 日本電気株式会社 2重化呼制御装置
US6934305B1 (en) 1999-01-15 2005-08-23 Cisco Technology, Inc. Method and apparatus for detecting errors in a backplane frame
US6982974B1 (en) 1999-01-15 2006-01-03 Cisco Technology, Inc. Method and apparatus for a rearrangeably non-blocking switching matrix
US7293090B1 (en) 1999-01-15 2007-11-06 Cisco Technology, Inc. Resource management protocol for a configurable network router
US6856627B2 (en) 1999-01-15 2005-02-15 Cisco Technology, Inc. Method for routing information over a network
US6724757B1 (en) * 1999-01-15 2004-04-20 Cisco Technology, Inc. Configurable network router
US6850704B1 (en) * 1999-09-14 2005-02-01 Lucent Technologies Inc. Low-overhead fault-tolerance techniques for optical and other cross-connect systems
US6597826B1 (en) 1999-11-02 2003-07-22 Xros, Inc. Optical cross-connect switching system with bridging, test access and redundancy
US6792174B1 (en) 1999-11-02 2004-09-14 Nortel Networks Limited Method and apparatus for signaling between an optical cross-connect switch and attached network equipment
US6571030B1 (en) 1999-11-02 2003-05-27 Xros, Inc. Optical cross-connect switching system
US6650803B1 (en) 1999-11-02 2003-11-18 Xros, Inc. Method and apparatus for optical to electrical to optical conversion in an optical cross-connect switch
JP2001268011A (ja) * 2000-03-21 2001-09-28 Fujitsu Ltd 光ノードシステム、及び、スイッチの接続方法
US20020018263A1 (en) * 2000-06-08 2002-02-14 An Ge Scalable WDM optical IP router architecture
JP2001358654A (ja) 2000-06-15 2001-12-26 Fujitsu Ltd 光波長変換器及び、これを用いる光波長多重化システム
US7187865B2 (en) * 2001-11-13 2007-03-06 Nortel Networks Limited Hybrid photonic/electronic switching in a multi-channel network
DE10231275A1 (de) * 2002-07-10 2004-01-22 Marconi Communications Gmbh Verfahren zum Übertragen von Information in einem optischen Netzwerk und Knoten für ein solches Netzwerk
ATE299319T1 (de) * 2002-03-27 2005-07-15 Lightmaze Solutions Ag Intelligentes optisches netzelement
JP3808824B2 (ja) * 2002-11-20 2006-08-16 株式会社日立製作所 情報伝送システム及び情報伝送方法
JP4530821B2 (ja) * 2004-08-16 2010-08-25 富士通株式会社 光分岐挿入装置
JP4638754B2 (ja) * 2005-03-18 2011-02-23 富士通株式会社 光装置および光クロスコネクト装置
CN101022319B (zh) * 2007-03-16 2010-10-27 华为技术有限公司 光通信网络中的调度装置及调度方法
JP5088304B2 (ja) * 2008-11-27 2012-12-05 富士通株式会社 通信システム
JP2011130078A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp 波長多重伝送装置
JP5776330B2 (ja) * 2011-05-25 2015-09-09 富士通株式会社 波長再配置方法及びノード装置
JP5904320B2 (ja) * 2011-09-22 2016-04-13 日本電気株式会社 光通信装置、光通信システム、および経路制御方法
CN114128172B (zh) * 2019-08-05 2024-04-09 日本电信电话株式会社 传输装置及传输方法
CN114024646A (zh) * 2021-10-27 2022-02-08 中航光电科技股份有限公司 可冗余互连的星载波分复用系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8910957D0 (en) * 1989-05-12 1989-06-28 Plessey Telecomm Optical transmission apparatus
JP3376144B2 (ja) * 1994-12-28 2003-02-10 日本電気株式会社 光ネットワーク装置及び光伝送方式
JP3582030B2 (ja) * 1995-07-05 2004-10-27 富士通株式会社 クロスコネクト装置
US5724167A (en) * 1995-11-14 1998-03-03 Telefonaktiebolaget Lm Ericsson Modular optical cross-connect architecture with optical wavelength switching
US5739935A (en) * 1995-11-14 1998-04-14 Telefonaktiebolaget Lm Ericsson Modular optical cross-connect architecture with optical wavelength switching
US5884017A (en) * 1995-12-29 1999-03-16 Mci Communications Corporation Method and system for optical restoration tributary switching in a fiber network

Also Published As

Publication number Publication date
US6072610A (en) 2000-06-06
CN1171683A (zh) 1998-01-28
DE69740015D1 (de) 2010-11-18
CN1118983C (zh) 2003-08-20
EP0802697B1 (en) 2010-10-06
EP0802697A3 (en) 2000-07-26
EP0802697A2 (en) 1997-10-22
JPH104418A (ja) 1998-01-06

Similar Documents

Publication Publication Date Title
JP3639383B2 (ja) 光伝送システム
CA2254606C (en) Ring network for sharing protection resource by working communication paths
JP3582030B2 (ja) クロスコネクト装置
JP3175630B2 (ja) 光通信用ノード及びこれにより構成されるリング構成の波長分割多重光伝送装置
US6701085B1 (en) Method and apparatus for data transmission in the wavelength-division multiplex method in an optical ring network
JP2002135817A (ja) 光スイッチ装置および光伝送装置
US6130764A (en) Transmission apparatus in ring network
JP3586586B2 (ja) 光波リングシステム
JP3976602B2 (ja) 光クロスコネクト装置
JP3553385B2 (ja) 光スイッチング装置
JP2012075115A (ja) 光通信網用のノード
JP3416900B2 (ja) 波長分割型光通話路
JP4676657B2 (ja) 光アド・ドロップ多重化装置
JPH08125636A (ja) 波長多重プロテクション方法および伝送装置
JP4408806B2 (ja) Wdmネットワークのためのパス保護の方法及びそれに応じたノード
JP3597146B2 (ja) 光送信装置、光受信装置及びこれらを用いた光伝送システム
CN115967465A (zh) 一种波分复用设备及光信号处理方法
JP3725731B2 (ja) 光クロスコネクト装置
JP4021585B2 (ja) 光パスクロスコネクト装置
JP3987534B2 (ja) 光クロスコネクト装置及び光通信制御方法
JP2004513534A (ja) 光分岐挿入装置における光チャネルスイッチングのための方法及び装置
JP3464749B2 (ja) 波長分割型光通話路
JP3766949B2 (ja) パス監視機能付光通信装置
JP4163351B2 (ja) 多重化端局装置
JPH10257580A (ja) クロスコネクト装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees