JP3638543B2 - 温度補償型水晶発振器 - Google Patents

温度補償型水晶発振器 Download PDF

Info

Publication number
JP3638543B2
JP3638543B2 JP2001259450A JP2001259450A JP3638543B2 JP 3638543 B2 JP3638543 B2 JP 3638543B2 JP 2001259450 A JP2001259450 A JP 2001259450A JP 2001259450 A JP2001259450 A JP 2001259450A JP 3638543 B2 JP3638543 B2 JP 3638543B2
Authority
JP
Japan
Prior art keywords
temperature
crystal oscillator
capacitance
circuit
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001259450A
Other languages
English (en)
Other versions
JP2003069342A (ja
Inventor
二郎 金丸
Original Assignee
Necマイクロシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necマイクロシステム株式会社 filed Critical Necマイクロシステム株式会社
Priority to JP2001259450A priority Critical patent/JP3638543B2/ja
Publication of JP2003069342A publication Critical patent/JP2003069342A/ja
Application granted granted Critical
Publication of JP3638543B2 publication Critical patent/JP3638543B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温度補償型水晶発振器に関し、特に、温度センサと補償電圧発生回路により、発振器の直流動作点を変化させた温度補償型水晶発振器に関する。
【0002】
【従来の技術】
温度補償型水晶発振器は、主に、携帯電話の端末または基地局の基準周波数発振源として使用されることが周知である。
【0003】
近年、携帯電話等の急激な普及により、この温度補償型水晶発振器も小型化、高性能化が要求されていることも周知である。
【0004】
このような従来のインバータ型水晶発振器の構成を図14に、このインバータ型水晶発振器の発振周波数(Fosc)の対容量素子C1の特性を図6に示す。
【0005】
図14(a)を参照すると、従来のインバータ型水晶発振器は、水晶振動子521と、この水晶振動子521に並列接続されたインバータ522と、容量素子C1(523)と、容量素子C2(524)とを具備する。そして、この従来のインバータ型水晶発振器の等価回路を図14(b)に示す。
【0006】
また、インバータ型水晶発振器の発振周波数(fosc)は、下式に示す様な式で、一般的に表される。
Fs=1÷(2×π×(L0×C0)**(1/2))(Hz)・・・(1)
Fosc=Fs×(1+C0÷(C+C1×C2÷(C1+C2)))**(1/2)(Hz)・・・(2)
ここで、符号C0は容量素子であり、符号C1、符号C2は可変容量素子でであり、符号L0はインダクタンス素子である。容量素子C1の容量値または容量素子C2の容量値を可変することで発振周波数(fosc)を調整することができる。
【0007】
水晶振動子の周波数温度特性は、水晶の結晶軸の切り出し角度により異なる。環境温度が−25℃〜85℃程度で周波数偏差が最も小さくなる切り出し角度はCカットと呼ばれ、時計、発振器等に広く使用されている。
【0008】
水晶振動子の周波数温度特性を、図7に示す。
【0009】
容量素子C1または容量素子C2にバラクタ容量(電圧制御可変容量)を使用し、制御電圧発生回路により任意の電圧を生成し、温度によりバラクタ容量を可変し、水晶振動子の周波数温度特性を補償したものが、温度補償型水晶発振器(以降、TCXOと略記する)である。
【0010】
従来技術のTCXOの一例を図8に示す。
【0011】
図8を参照すると、従来技術のTCXO800では、温度センサ801と補償電圧発生回路802により、発振器のDC動作点を変化させ、バラクタ容量値823を変える方法がとられている。
【0012】
補償電圧発生回路802の出力電圧の温度特性とバラクタ容量のバイアス電圧特性と周波数偏差の温度特性を図9(a)、図9(b)および図9(c)に示す。
【0013】
温度センサと補償電圧発生回路について、従来技術の一例を図10に示す。この温度センサは、PN接合ダイオードの順方向電圧の温度特性(−2mV/℃)を利用している。
【0014】
図10を参照すると、補償電圧発生回路1002は、この電圧で、一次式成分1021と低温側成分1020と高温側成分1019のそれぞれ3次式成分電圧を生成し、最後に加算アンプで組み合わせ補償電圧を生成する構成となっている。
【0015】
このように、補償電圧発生回路1002は、直流アンプを多段接続し構成し、各アンプ回路は、100素子程度の規模で構成されるオペアンプである。
【0016】
図10に示す例では、一次式成分と低温側/高温側のそれぞれ3次式成分の組み合わせだが、より高次式成分を考慮した方が補償精度は上がる。
【0017】
しかしながら、高次式成分の実現回路構成は複雑になり、アンプの多段化を招くため現状では上記構成が一般的となっている。図11に水晶振動子の周波数温度特性の製造バラツキを示す。
【0018】
水晶の製造バラツキを考慮し温度補償するために、補償電圧発生回路内にトリミング素子を配置し、個々にトリミングすることにより温度補償することが一般に知られている。
【0019】
温度センサ、補償電圧発生回路とともにバラクタ容量を含めIC化する場合、一般にバラクタ容量はPN接合容量を使用している。
【0020】
このPN接合容量(Cj)は、一般的に(3)式のように表される。
Cj=Cj0/(n(1−V/ψ)**(1/2))(F)・・・(3)
ただし、Cj0:ゼロバイアス時の容量
n:約3(濃度分布による)
V:バイアス電圧
ψ:ビルトインポテンシャル
図12に、PN接合容量の対電圧特性を示す。図12参照すると、PN接合容量値は、逆バイアスを増大していくと容量変化率が小さくなる。
【0021】
容量変化幅が大きいほど周波数調整範囲が広くなる。(3)式のnは小さい方が容量変化率が大きくなり、容量変化幅が大きい。
【0022】
【発明が解決しようとする課題】
しかしながら、(3)式のnはPN接合の濃度分布によるため使用ICプロセスに依存する。また、ディスクリート部品としてのバラクタ容量は、容量変化幅の大きい階段接合(n=2)で製造することが出来るが、IC内で能動素子とともに形成するPN接合容量は一般に不純物濃度分布が傾斜接合(n=3)となるため容量変化幅も小さくなる。
【0023】
このため、温度補償出来る水晶振動子の製造バラツキ範囲が狭くなり、その結果、TCXOの歩留まりが低下してしまうことになる。
【0024】
この対処法として、製造バラツキの小さい水晶振動子を使用する、または制御電圧発生回路のトリミングを広範囲にする、といった手法が取られるが、前者は水晶振動子が高価となり、後者はトリミング素子が多くなるため制御電圧発生回路が高価となる問題がある。
【0025】
現状は後者を選択しているのが一般的である。IC化の場合、トリミング素子の占めるベアチップ割合は実に5割程度もある。また、IC内に形成するバラクタ容量としてMOSトランジスタのしきい値でゲート容量が変化する特性を利用したMOS容量がある。
【0026】
図13に、MOS容量の対電圧特性を示す。このMOS容量は、PN接合容量に比べ容量変化幅が非常に大きいため、PN接合容量使用の問題を克服できるものであるが、電圧変化範囲がPN接合容量に比べ非常に小さく、また、その範囲を越えると容量変化しなくなるという特性により、制御が非常に難しくなってしまうという問題がある。
【0027】
そのため、TCXOとしては一般的に使用されていない。温度補償出来る水晶振動子の製造バラツキ範囲が狭くなるため、制御電圧発生回路のトリミングを広範囲にする必要があり、トリミング素子が多くなるため制御電圧発生回路が高価となる問題がある。
【0028】
したがって、本発明の目的は、IC内で周波数調整用として使用するバラクタ容量を、並列接続にして、それぞれに個別に制御する回路を設けることによって、補償出来る水晶振動子の製造バラツキ範囲を広め、またはトリミング素子を削減する事が出来る温度補償型水晶発振器提供することにある。
【0029】
【課題を解決するための手段】
本発明の温度補償型水晶発振器は、環境温度を電気信号に変換する温度センサと、前記温度センサの出力を受ける補償電圧発生回路と、前記補償電圧発生回路の出力を受ける制御電圧回路と、前記制御電圧回路の出力でその容量値を制御されるMOS容量と、前記補償電圧発生回路の出力でその容量値を制御されるPN接合容量と、前記MOS容量及び前記PN接合容量並びに水晶振動子並びにインバータとで発振回路部を形成する温度補償型水晶発振器であって、前記MOS容量と前記PN接合容量を並列接続し、前記制御電圧回路は、前記PN接合容量の第1の印加電圧範囲と前記MOS容量の第2の印加電圧範囲とに対応した第1のゲインを有するオペアンプ構成である。
【0030】
また、本発明の温度補償型水晶発振器の前記第1のゲインは、前記第2の印加電圧範囲を前記第1の印加電圧範囲で割り算した値である。
【0031】
さらに、本発明の温度補償型水晶発振器は、環境温度を電気信号に変換する温度センサと、前記温度センサの出力を受ける補償電圧発生回路と、前記補償電圧発生回路の出力を受ける制御電圧回路と、前記制御電圧回路の出力でその容量値を制御されるPN接合容量と、前記補償電圧発生回路の出力でその容量値を制御されるMOS容量と、前記MOS容量及び前記PN接合容量並びに水晶振動子並びにインバータとで発振回路部を形成する温度補償型水晶発振器であって、前記MOS容量と前記PN接合容量を並列接続し、前記制御電圧回路は、前記PN接合容量の第1の印加電圧範囲と前記MOS容量の第2の印加電圧範囲とに対応した第2のゲインを有するオペアンプ構成である。
【0032】
またさらに、本発明の温度補償型水晶発振器の前記第2のゲインは、前記第1の印加電圧範囲を前記第2の印加電圧範囲で割り算した値である。
【0033】
またさらに、本発明の温度補償型水晶発振器の前記温度センサは、PN接合ダイオードの順方向電圧の温度特性によりその出力を制御する構成である。
【0034】
さらに、本発明の温度補償型水晶発振器の前記補償電圧発生回路は、直流DCアンプを多段接続した構成のオペアンプ構成である。
【0035】
さらに、本発明の温度補償型水晶発振器の前記補償電圧発生回路は、一次式成分と低温側および高温側のそれぞれ3次式成分の組み合わせの構成である。
【0036】
【発明の実施の形態】
まず、図面を参照しながら、本発明の実施の形態について説明する。
【0037】
本発明は、IC内で周波数調整用として使用するバラクタ容量を、並列接続にして、それぞれに個別に制御する回路を設けることによって、補償出来る水晶振動子の製造バラツキ範囲を広め、またはトリミング素子を削減することを特徴としている。
【0038】
図1は、本発明の第1の実施の形態の温度補償型水晶発振器のブロック図である。
【0039】
図1を参照すると、本発明による第1の実施の形態の温度補償型水晶発振器100は、環境温度を電気信号に変換する温度センサ101と、温度センサ101の出力を受ける補償電圧発生回路102と、補償電圧発生回路102の出力を受ける制御電圧回路104と、抵抗R1(125)とバラクタ容量C1(123)と容量素子C2(124)と水晶振動子121とインバータ122とを具備する発振回路部とを備える。
【0040】
また、本発明による第1の実施の形態の温度補償型水晶発振器100のバラクタ容量C1(123)は、制御電圧回路104の出力でその容量値を制御されるMOS容量127と補償電圧発生回路102の出力でその容量値を制御されるPN接合容量126とを並列接続する構成である。
【0041】
そして、制御電圧回路104は、PN接合容量126の第1の印加電圧範囲とMOS容量127の第2の印加電圧範囲とに対応した第1のゲインを有するオペアンプ構成である。
【0042】
次に、本発明の第1の実施の形態の温度補償型水晶発振器100の動作について、図2を参照して説明する。
【0043】
図2に本発明による温度補償型水晶発振器100の補償電圧発生回路102の出力電圧に対する容量特性を示す。
【0044】
温度センサ101と補償電圧発生回路102については、従来技術の構成と同一である(図10を参照)。
【0045】
図10を参照すると、この温度センサ1001は、定電流源1011と順方向電圧の温度特性が(−2mV/℃)であるPN接合ダイオード1012を具備する。
【0046】
補償電圧発生回路1002の出力電圧の温度特性とバラクタ容量123のバイアス電圧特性と周波数偏差の温度特性を示す図9を再び参照して、温度補償型水晶発振器100の補償電圧発生回路1002を説明する。
【0047】
補償電圧発生回路1002は、この温度センサ1001の出力電圧1013で制御され、一次式成分1021と低温側成分1020と高温側成分1019のそれぞれ3次式成分電圧を生成し、最後に、加算アンプ1022で組み合わせ補償電圧1023を生成する構成となっている。
【0048】
すなわち、補償電圧発生回路1002は、温度センサ1001の出力電圧1013を受け、一次式成分1021を出力する1次関数電圧生成アンプ1014と、低温側3次関数電流生成アンプ1015と低温側3次関数電流生成アンプ1015の出力を電流電圧変換し、低温側成分1020を出力する電流電圧変換アンプ1016と、高温側3次関数電流生成アンプ1017と高温側3次関数電流生成アンプ1017の出力を電流電圧変換し、高温側成分1019を出力する電流電圧変換アンプ1018と、一次式成分1021と低温側成分1020と高温側成分1019のそれぞれ3次式成分電圧を生成し、補償電圧1023を生成する加算アンプ1022とを具備する。この補償電圧1023の温度依存性を図10(b)に示す。
【0049】
このように、補償電圧発生回路1002は、直流アンプを多段接続して構成し、各アンプ回路は、100素子程度の規模で構成されるオペアンプである。
【0050】
図10に示す例では、一次式成分1021と低温側の成分1020および高温側の成分1019のそれぞれ3次式成分の組み合わせである。より高次式成分を考慮した場合は、さらに補償精度は上がる。
【0051】
水晶の製造バラツキを考慮し温度補償するために、補償電圧発生回路内にトリミング素子を配置し、個々にトリミングすることにより温度補償することが一般に知られていることは、従来技術の説明で述べた。
【0052】
バラクタ容量のうち、PN接合容量のPN接合容量(Cj)は、一般的に(3)式のように表される(従来技術の説明を参照)。
Cj=Cj0/(n(1−V/ψ)**(1/2))(F)・・・(3)
ただし、Cj0:ゼロバイアス時の容量
n:約3(濃度分布による)
V:バイアス電圧
ψ:ビルトインポテンシャル
再び、図12参照すると、PN接合容量値は、逆バイアスを増大していくと容量変化率が小さくなる。
【0053】
容量変化幅が大きいほど周波数調整範囲が広くなり、(3)式のnは小さい方が容量変化率が大きくなり、容量変化幅が大きい。
【0054】
(3)式のnはPN接合の濃度分布によるため使用ICプロセスに依存する。また、ディスクリート部品としてのバラクタ容量は、容量変化幅の大きい階段接合(n=2)で製造することが出来るが、IC内で能動素子とともに形成するPN接合容量は一般に不純物濃度分布が傾斜接合(n=3)となるため容量変化幅も小さくなる。
【0055】
次に、制御電圧回路104により容量変化幅の大きいMOS容量の制御について説明する。
【0056】
図1は、図10による補償電圧発生回路1002で生成される電圧がPN接合容量126に印加されている。この印加電圧範囲は1V程度となる。
【0057】
MOS容量127の印加電圧範囲は0.4V程度であるため、制御電圧回路104は、そのゲインが(0.4/1=0.4)倍のオペアンプ構成で、両方の容量が制御できる。
【0058】
ゲインが(0.4/1=0.4)倍のオペアンプ構成例を図3に示す。図3を参照すると、本発明の制御電圧回路104は、入力端子301に100kΩの抵抗302を接続し、抵抗302の他端をオペアンプ303の反転入力に接続し、40kΩの抵抗304をオペアンプ303の反転入力と出力に接続する構成である。
【0059】
すなわち、本発明の制御電圧回路104の基本構成は、反転アンプ構成で、Nch/PchのMOS容量では電圧印加に対する容量値変動極性が反転し、どちらを使用するかで決まるよう構成される。
【0060】
次に、本発明の第2の実施の形態の温度補償型水晶発振器について、図4を参照して説明する。
【0061】
図4を参照すると、本発明の第2の実施の形態の温度補償型水晶発振器400は、図10による補償電圧発生回路1002で生成される電圧を0.4V程度に設定し、この電圧403をMOS容量127に印加し、制御電圧回路404を介して、PN接合容量126に印加させる構成である。それ以外の構成要素は、本発明の第1の実施の形態の温度補償型水晶発振器と同一であるので、図示するに留め、その構成の詳細な説明は省略する。
【0062】
制御電圧回路404は、そのゲインが(1/0.4=2.5)倍のオペアンプ構成となる。
【0063】
この場合は、1倍以上のゲインがあるため、1つのオペアンプで正転および反転のそれぞれの構成が可能となる。この制御電圧回路例を図5(a)、図5(b)にそれぞれ示す。
【0064】
図5(a)を参照すると、本発明の制御電圧回路404は、入力端子501に40kΩの抵抗502を接続し、抵抗502の他端をオペアンプ503の反転入力に接続し、100kΩの抵抗504をオペアンプ503の反転入力と出力に接続する構成である。すなわち、本発明の制御電圧回路404の基本構成は、反転アンプ構成である。
【0065】
次に、正転構成のオペアンプを説明する。図5(b)を参照すると、本発明の制御電圧回路404は、接地電位に67kΩの抵抗512を接続し、抵抗512の他端をオペアンプ513の反転入力に接続し、100kΩの抵抗514をオペアンプ513の反転入力と出力に接続する構成である。すなわち、本発明の制御電圧回路404の基本構成は、正転アンプ構成である。
【0066】
以上の説明のように、補償電圧発生回路でPN接合容量を変化させ、制御電圧回路により容量変化幅の大きいMOS容量を変化させることによって、PN接合容量だけの場合に比べ容量変化幅を大きくする事が出来る。
【0067】
【発明の効果】
以上説明した通り、本発明においては、バラクタ容量を、並列接続にして、それぞれに個別に制御する回路を設けることによって、補償出来る水晶振動子の製造バラツキ範囲を広め、またはトリミング素子を削減することができる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の温度補償型水晶発振器のブロック図である。
【図2】本発明による温度補償型水晶発振器の補償電圧発生回路出力電圧に対する容量特性を示す図である。
【図3】本発明による温度補償型水晶発振器の制御電圧回路のオペアンプ構成例である。
【図4】本発明の第2の実施の形態の温度補償型水晶発振器のブロック図である。
【図5】本発明による温度補償型水晶発振器の制御電圧回路の他のオペアンプ構成例である。
【図6】インバータ型水晶発振器の発振周波数(Fosc)の対容量素子C1の特性を説明する図である。
【図7】水晶振動子の周波数温度特性を示す図である。
【図8】従来の温度補償型水晶発振器のブロック図である。
【図9】補償電圧発生回路出力電圧の温度特性とバラクタ容量のバイアス電圧特性と周波数偏差の温度特性を示す図である。
【図10】温度補償型水晶発振器の温度センサと補償電圧発生回路のブロック図である。
【図11】水晶振動子の周波数温度特性の製造バラツキを示す図である。
【図12】PN接合容量の対電圧特性を示す図である。
【図13】MOS容量の対電圧特性を示す図である。
【図14】従来のインバータ型水晶発振器の構成を示す図である。
【符号の説明】
100,400,800 温度補償型水晶発振器
101,801 温度センサ
102、802 補償電圧発生回路
103、803 補償電圧発生回路の出力
104,404 制御電圧回路
121,821 水晶振動子
122,822 インバータ
123,823,124,824 容量素子
125,825 抵抗
126 PN接合容量
127 MOS容量
1001 温度センサ
1002 補償電圧発生回路
1011 電流源
1012 ダイオード
1013 温度センサの出力
1014 1次関数電圧生成アンプ
1015 低温側3次関数電流生成アンプ
1016,1018 電流電圧変換アンプ
1017 温側3次関数電流生成アンプ
1019 高温側成分
1020 低温側成分
1021 一次式成分
1022 加算アンプ
1023 補償電圧

Claims (10)

  1. 環境温度を電気信号に変換する温度センサと、前記温度センサの出力を受ける補償電圧発生回路と、前記補償電圧発生回路の出力を受ける制御電圧回路と、前記制御電圧回路の出力でその容量値を制御されるMOS容量と、前記補償電圧発生回路の出力でその容量値を制御されるPN接合容量と、前記MOS容量及び前記PN接合容量並びに水晶振動子並びにインバータとで発振回路部を形成する温度補償型水晶発振器であって、前記MOS容量と前記PN接合容量を並列接続し、前記制御電圧回路は、前記PN接合容量の第1の印加電圧範囲の幅と前記MOS容量の第2の印加電圧範囲の幅とに対応した第1のゲインを有するオペアンプ構成であることを特徴とする温度補償型水晶発振器。
  2. 前記第1のゲインは、前記第2の印加電圧範囲の幅を前記第1の印加電圧範囲の幅で割り算した値である請求項1記載の温度補償型水晶発振器。
  3. 環境温度を電気信号に変換する温度センサと、前記温度センサの出力を受ける補償電圧発生回路と、前記補償電圧発生回路の出力を受ける制御電圧回路と、前記制御電圧回路の出力でその容量値を制御されるPN接合容量と、前記補償電圧発生回路の出力でその容量値を制御されるMOS容量と、前記MOS容量及び前記PN接合容量並びに水晶振動子並びにインバータとで発振回路部を形成する温度補償型水晶発振器であって、前記MOS容量と前記PN接合容量を並列接続し、前記制御電圧回路は、前記PN接合容量の第1の印加電圧範囲の幅と前記MOS容量の第2の印加電圧範囲の幅とに対応した第2のゲインを有するオペアンプ構成であることを特徴とする温度補償型水晶発振器。
  4. 前記第2のゲインは、前記第1の印加電圧範囲の幅を前記第2の印加電圧範囲の幅で割り算した値である請求項3記載の温度補償型水晶発振器。
  5. 前記温度センサは、PN接合ダイオードの順方向電圧の温度特性によりその出力を制御する請求項1、2、3または4記載の温度補償型水晶発振器。
  6. 前記補償電圧発生回路は、直流DCアンプを多段接続した構成のオペアンプである請求項1、2、3、4または5記載の温度補償型水晶発振器。
  7. 前記補償電圧発生回路は、一次式成分と低温側および高温側のそれぞれ3次式成分の組み合わせである請求項1、2、3、4または5記載の温度補償型水晶発振器。
  8. 前記MOS容量は、Nch型のMOS容量である請求項1、2、3、4、5、6または7記載の温度補償型水晶発振器。
  9. 前記MOS容量は、Pch型のMOS容量である請求項1、2、3、4、5、6または7記載の温度補償型水晶発振器。
  10. 前記制御電圧回路は、反転アンプ構成である請求項1、2、5、6、7または8記載の温度補償型水晶発振器。
JP2001259450A 2001-08-29 2001-08-29 温度補償型水晶発振器 Expired - Fee Related JP3638543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259450A JP3638543B2 (ja) 2001-08-29 2001-08-29 温度補償型水晶発振器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259450A JP3638543B2 (ja) 2001-08-29 2001-08-29 温度補償型水晶発振器

Publications (2)

Publication Number Publication Date
JP2003069342A JP2003069342A (ja) 2003-03-07
JP3638543B2 true JP3638543B2 (ja) 2005-04-13

Family

ID=19086820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259450A Expired - Fee Related JP3638543B2 (ja) 2001-08-29 2001-08-29 温度補償型水晶発振器

Country Status (1)

Country Link
JP (1) JP3638543B2 (ja)

Also Published As

Publication number Publication date
JP2003069342A (ja) 2003-03-07

Similar Documents

Publication Publication Date Title
JP3350040B2 (ja) 温度補償型発振器
TWI388128B (zh) 用於單片式時脈產生器及時序/頻率參考器之頻率控制器
TWI426701B (zh) 電感與電容為基礎的時脈產生器及時序/頻率參考器
US20070085620A1 (en) Semiconductor integrated circuit device
CN106603012B (zh) 宽带温度补偿压控振荡器及温度补偿方法和电压产生电路
JPWO2003021765A1 (ja) 発振器及び通信機器
JP3774454B2 (ja) 周波数直接変調装置及び通信システム
US20060012445A1 (en) Voltage controlled oscillator
JP4233634B2 (ja) 温度補償型水晶発振器
JP5034772B2 (ja) 温度補償圧電発振器
JP4870894B2 (ja) 温度補償型発振器
JP3638543B2 (ja) 温度補償型水晶発振器
Jin et al. A 0.8-V low-power low-cost CMOS crystal oscillator with high frequency accuracy
US7928810B2 (en) Oscillator arrangement and method for operating an oscillating crystal
JP3876594B2 (ja) 温度補償発振器
JP2003046334A (ja) 温度補償型水晶発振器
JP4428124B2 (ja) 温度補償発振器
JP4539161B2 (ja) 電圧制御発振器
JPH11251838A (ja) 温度補償型水晶発振器
JP4424001B2 (ja) 温度補償型圧電発振器
JP2012114679A (ja) 電圧制御発振器
KR20040039895A (ko) 온도 보상 수정 발진기의 사인 버퍼 회로
JP4538913B2 (ja) 温度補償圧電発振器
JP2006222645A (ja) 温度補償型発振器
JP3981541B2 (ja) 温度補償用電圧発生回路及び発振器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees