JP3636698B2 - 有機el駆動回路およびこれを用いる有機el表示装置 - Google Patents

有機el駆動回路およびこれを用いる有機el表示装置 Download PDF

Info

Publication number
JP3636698B2
JP3636698B2 JP2002082662A JP2002082662A JP3636698B2 JP 3636698 B2 JP3636698 B2 JP 3636698B2 JP 2002082662 A JP2002082662 A JP 2002082662A JP 2002082662 A JP2002082662 A JP 2002082662A JP 3636698 B2 JP3636698 B2 JP 3636698B2
Authority
JP
Japan
Prior art keywords
current
drive
circuit
output
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082662A
Other languages
English (en)
Other versions
JP2003255898A (ja
Inventor
慎二 北原
幸一 花田
淳 前出
雅憲 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002082662A priority Critical patent/JP3636698B2/ja
Publication of JP2003255898A publication Critical patent/JP2003255898A/ja
Application granted granted Critical
Publication of JP3636698B2 publication Critical patent/JP3636698B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、有機EL駆動回路およびこれを用いる有機EL表示装置に関し、詳しくは、携帯電話機等の表示画面での輝度むらを低減でき、集積率が高く、特に、高輝度カラー表示に適した有機EL表示装置に関する。
【0002】
【従来の技術】
従来、有機EL表示装置は、自発光による高輝度表示が可能であることから、小画面での表示に適し、携帯電話機、DVDプレーヤ、PDA(携帯端末装置)等に搭載される次世代表示装置として注目されている。
この有機EL表示装置の問題点は、液晶表示装置のように電圧駆動を行うと、輝度ばらつきが大きくなり、かつ、R(赤),G(緑),B(青)に感度差があることから表示制御が難しくなる点である。
そこで、最近では、電流駆動のドライバを用いた有機EL表示装置が提案されている。例えば、特開平10−112391号などでは、電流駆動により輝度ばらつきの問題を解決する技術が記載されている。
【0003】
図7は、現在提案されているこの種の有機EL表示装置の電流駆動・制御回路の一例の説明図であり、図8,図9は、その電流駆動回路の説明図である。
図7において、1は、カラムラインが396個(198個×2)の端子ピン(以下ピン)、ローラインが162個(81個×2)のピンを持つ携帯電話機用の有機EL表示装置の有機EL表示パネルである。このパネル1は、上下2枚のELパネル1a,1bを中央部で接合した形態を採る。
これの上側には、2個のカラムドライバIC(以下カラムドライバ)2a、2bが設けられ、下側にも2個のカラムドライバ2c、2dが設けられている。そして、ロードライバIC(以下ロードライバ)としてそれぞれのEL表示パネル1a,1bに対応して3a、3bが設けられている。
各ドライバは、カラー表示用では、1個のカラム端子駆動ICにおいて、R,G,Bそれぞれに内部で66ピンが割当てられていて、合計で66×3=198ピンのカラム出力ラインとなっている。図では、それを単純化してR,G,Bの区別なく示してある。そこで、以下では、R,G,Bの区別なく、カラムの出力ラインを1個のカラム端子駆動ICで198ピン、カラム合計で396ピンとして説明する。
各カラムドライバ2a、2b、2c、2dと各ロードライバ3a、3bは、有機EL表示パネル駆動用の電源(電池)4から電力が供給されて動作する。この電源電圧は、通常、12V〜15V程度の範囲のうちの1つの電圧、例えば、15Vが用いられる。
【0004】
これらドライバは、コントローラ5からの制御信号に応じて動作し、カラムドライバ側は、EL素子の陽極駆動側ドライバであって、有機EL素子へ電流を吐出す電流吐き出し側となって各出力ラインを水平方向ラインとして走査し、ロードライバ側は、EL素子の陰極駆動側ドライバであって、有機EL素子から流出する電流をグランドGNDにシンクする電流シンク側となって各出力ラインを垂直方向ラインとして走査する。
なお、コントローラ5は、演算処理装置(MPU)6により制御され、電圧3Vの電源(電池)7から電力を受けて動作する。そこで、有機EL表示パネル駆動用の電源(電池)4は、電池電源7からDC−DCコンバータにより昇圧することで得ることができる。
【0005】
図8は、カラムドライバ2a〜2dの説明図であって、各出力ラインそれぞれを電流駆動するカラムライン電流駆動回路8が198個のピン対応にそれぞれ設けられていて、カラムライン電流駆動回路8を制御するカラム制御回路9が198個のカラムライン電流駆動回路8に共通に設けられている。
カラムライン電流駆動回路8は、サンプルアンドホール回路81、サンプルアンドホール回路81から駆動電流を入力ピン82aに受けるk倍駆動電流生成回路82、そしてこの駆動電流をさらにk倍にするk倍出力のカレントミラー出力回路83とからなる。
なお、サンプルアンドホール回路81は、電池7の電圧3Vで駆動され、D/A91で変換された電流値をそのときどきのサンプルとして保持し、入力データに対応する基準電流を発生する基準電流発生回路(基準電源)である。
カレントミラー出力回路83の各出力端子は、カラムの各ピン84に接続され、カレントミラー出力回路83が各ピン対応に設けられていて、k倍駆動電流生成回路82により駆動され、入力電流に対してk倍の出力電流を発生する。これによりサンプルアンドホール回路81で生成される各ピン対応の基準電流がk×k倍の出力電流にされて各ピン対応のカレントミラー出力回路83から各ピンに対して出力される。
【0006】
このようなカレントミラーの出力段を設けて各ピンへ駆動電流をk×k倍の電流増幅をして出力駆動電流を生成するのは、駆動電流の生成回路ブロックをμAオーダの微小電流として消費電流を低減するためである。
カラム制御回路9は、4ビットD/A変換回路(D/A)91と、スイッチングコントロール回路92とからなり、スイッチングコントロール回路92がコントローラ5からの制御信号に応じてスイッチング制御信号を送出して水平走査対象となるカラムライン電流駆動回路8のk倍駆動電流生成回路82を選択的に動作させる。このときには、すでにコントローラ5から送出された水平方向走査におけるそのときの表示輝度レベルに対応するデータがあらかじめD/A91に供給されて、これによりD/A変換されたアナログ信号(アナログの電流値)がサンプルアンドホール回路81に送出されてホールドされている。この表示輝度レベルに対応する基準電流がk×k倍の駆動電流にされてその駆動電流が15V用の電源(電池)4からカレントミラー出力回路83の出力側トランジスタを経て水平走査により選択されたカラム側の出力ピン84に出力される。
【0007】
図9は、ロードライバ3a,3bの説明図であって、各出力ラインそれぞれから駆動電流をグランドへとシンクするローライン電流駆動回路10が81個の出力ピン対応にそれぞれ設けられていて、ローライン電流駆動回路10を制御するスイッチングコントロール回路11が81個のローライン電流駆動回路10に共通に設けられている。なお、図では、そのうち1個のロー側のピン81aに対応するローライン電流駆動回路10のみ示してある。
ローライン電流駆動回路10は、いわゆるプッシュ・プルの出力回路であって、スイッチングコントロール回路11からの駆動信号に応じてプッシュ側あるいはプル側のトランジスタTr1,Tr2が駆動される。なお、垂直走査対象の出力ピンが選択されているときには、プル側のトランジスタTr2がONになって電流シンク側となり、カラム側から出力され有機EL素子を駆動した電流をグランドGNDへと落とす。
スイッチングコントロール回路11は、コントローラ5から制御信号を受けて垂直走査を行う。
【0008】
【発明が解決しようとする課題】
このような電流駆動の有機EL表示パネル1にあっては、カラム側のピン数が非常に多いことからカラムドライバのICが複数個必要となり、駆動ICの駆動電流のばらつきから表示パネルの輝度が駆動IC単位で相違する問題がある。
そのため、駆動電流の特性が揃ったICを選択して駆動回路を形成するようにしているが、それには、ICの選別が必要となり、製造工数が増加する問題がある。しかも、この場合に、カラー表示では、R,G,Bそれぞれについての特性も問題になり、適正なものを選別し難い。そこで、ある駆動ICから次の駆動ICへの継ぎ目の輝度むら、いわゆる駆動IC対応の輝度むらが発生し易い。
カラム端子駆動ICが100ピン近くなる(R,G,Bでは各30ピン以上)か、それ以上になると、前記の対策として、カラム側の出力ピンの個々の電流値を調整することを考えてもそれが難しい。そこで、駆動電流調整回路をIC内部に多数設けることを考えたが、そのようにすると、本来のカラム電流駆動回路の集積効率を悪化させる。そのため、駆動ICごとに電池から供給する電流を調整する駆動電流調整回路をそれぞれこのICの外部に外付けして調整することを考えた。
しかし、一方では、有機EL表示パネルの小型化、薄型化の要請が強く、パネルの周囲の搭載エリアが制限されていて、外付けの駆動電流調整回路の搭載が難しいのが現状である。また、前記のようなカラム側のカラムライン電流駆動回路では、カレントミラー回路が出力ピン対応に多数必要となり、それだけでもトランジスタの数が多く、出力ピン数が増加すればするほど集積効率が悪くなる。
この発明の目的は、このような従来技術の問題点を解決するものであって、画面での輝度むらを低減でき、集積率が高い有機EL表示装置を提供することにある。
この発明の他の目的は、画面での輝度むらを低減でき、集積率が高く、特に、高輝度カラー表示に適した有機EL表示装置を提供することにある。
【0009】
【課題を解決するための手段】
このような目的を達成するためのこの発明の有機EL駆動回路およびこれを用いる有機EL表示装置の特徴は、有機EL表示パネルの端子を電流駆動する出力段を有する電流駆動回路のドライブ段に設けられ入力側駆動トランジスタ1個に対してカレントミラー接続され出力段を駆動するn個(nは30か、それ以上の整数)の出力側トランジスタを有する第1のカレントミラー回路と、入力側駆動トランジスタに流すμAオーダの駆動電流を調整する駆動電流値調整回路とを備え、入力側駆動トランジスタをn個の出力側トランジスタの配列の実質的に中央部に配置し、駆動電流値調整回路によって中央部から実質的に対称の位置にあるR,G,Bの表示色のそれぞれの最初のピンと最後のピンのドライブ電流が実質的に等しくなるように出力段の出力電流値を調整するものである。
さらに他の発明としては、前記の駆動電流値調整回路がIC製造工程で調整できる回路であり、有機ELパネルのカラムの各端子の少なくとも特定の1つの端子に対する出力電流値あるいは特定の1つの端子に対する出力側トランジスタの電流値が所定値になるように調整されるものである。
【0010】
【発明の実施の形態】
ところで、この発明者等は、まず、基準電流を発生する入力段あるいは初段と、有機EL表示パネルの端子を電流駆動する電流出力回路を出力段とする電流駆動回路において、これらの入力段(初段)と出力段との間のドライブ段の回路を、入力側の駆動トランジスタ1個に対してカレントミラー接続の出力側トランジスタをピン対応にn個並列に設けたカレントミラー回路とした。このことで、集積率を向上させて集積領域を確保した上で、カラム端子駆動IC対応の輝度むらをなくすために、カラムドライバのIC内部に抵抗値選択による基準電流(あるいは基準となる駆動電流)の調整回路を設けてこの電流の調整回路をレーザトリミングをすることによりカラム端子駆動ICごとに個々に前記の基準電流(あるいは基準となる駆動電流)の電流値を調整することを考えた。
このようにして、EL表示パネル上における出力電流の調整回路を設けても占有面積の増加問題が生じないが、それでもカラム端子駆動IC対応で輝度むらが発生した。
その原因は、カラム端子駆動ICの出力ピンの数が100ピン近くなる(R,G,Bでは各30ピン以上)ものでは、入力側を1つとして30個以上の多数の出力を設けたカレントミラー回路により駆動電流を生成することになるので、言い換えれば、出力ピンを1つの基準電源からの電流で並列駆動出力するようにしているので、それぞれの出力電流値が少しづつ変化して、第1番目の出力ピンの出力駆動電流値と最終番目の出力ピンの出力駆動電流値とで差が出るからである。
【0011】
そこで、この発明者等は、最初のカラム端子駆動ICの最終番目の出力ピンの電流値と次のカラム端子駆動ICの最初の出力ピンの電流値を等しくするように調整することにした。これによりカラム端子駆動IC対応の輝度むらなくなると思われたが、そのようにしても、カラー表示の場合には、R,G,Bそれぞれに第1番目のピンと最終番目のピンについての電流値の差が異なるので、言い換えれば、R,G,Bそれぞれにピン配列に対する輝度特性(図3参照)が異なるので、全体としての輝度むらを調整することが難しく、作業効率も悪いことが分かった。
なお、カラーでは、R,G,Bのピンが順次繰り返して配列されるために、あるカラム端子駆動ICの最後のピンと次のカラム端子駆動ICの最初のピンの関係は、例えば、Gでは、n個のピンのうちの最後からみて第3番目のピンと次のカラム端子駆動ICの第1番目のピンが対応し、Rでは、最後からみて第2番目のピンと次のカラム端子駆動ICの第2番目のピンが対応し、Bでは、最後のピンと次のカラム端子駆動ICの第3番目のピンが対応する。
【0012】
このような、出力ピンを1つの基準電源からの電流で並列駆動出力するときの輝度むらについて具体的に説明すると、カラム端子駆動ICのピン駆動電流の差による輝度むらは、R,G,Bのピン数が十ピン程度ではあまり問題にならないが、今回試作した、R,G,Bの各33ピンのカラム端子駆動ICでは輝度むらが問題となった。R,G,Bの各30ピンのICは試作していないが、試作した33ピンのICの輝度むらの状態をみる限り、1割程度ICのピン数を低減しても輝度むらが収まらない。そこで、試作したR,G,Bの各33ピンのカラム端子駆動ICについてカラムの出力ピンに出力電流を供給するカレントミラー出力回路の電流値についてカラム側の各ピン対応に測定したところ図3のような出力ピン対出力電流特性になることが分かった。図3において、横軸がカラム側の出力ピンの位置であり、縦軸が出力電流値Ioである。これを解決するには、前記したように、基準電流源と電流値調整回路とをR,G,Bそれぞれに設けて、レーザトリミングで調整すれば解決すると思われたが、図3にみるように、R,G,Bの特性カーブ相互に差があり過ぎて十分に輝度むらを抑えることができなかった。そこで、このような特性になる原因を調べたところ、その主要因は、1個の入力側トランジスタと33個の出力側トランジスタからなるカレントミラー回路のドライブ段にあった。このときのカレントミラーの出力側トランジスタに発生させる駆動電流は、消費電力を低減するためにμAオーダの微小電流を生成していて、それが大きく影響していることが分かった。
すなわち、R,G,Bの第1ピンから第33ピンまでのドライブ電流自体が前記のような特性カーブになっていたのは、ドライブ回路における、μAオーダの微小電流の生成する配線ラインの微細化による配線抵抗と、トランジスタの微細化によるベース−エミッタ特性の悪化、そしてR,G,Bのドライブ回路のレイアウトとが大きく関係していた。
レイアウトについては、R,G,Bは、通常、Rのドライバ回路が中央となり、その両側にGとBのドライバ回路がくるので、電流駆動のドライブラインの位置がR,G、Bでそれぞれに異なっている。また、配線抵抗については、出力ピン数が増加すればするほど駆動配線ラインの幅を広くすることが難しくなり、通常でも数十ミクロンとなることが起因している。さらにアルミニュウム配線等の導電率が低い配線が利用されていることも原因の1つである。その分、単位長さ当たりの配線の抵抗値が大きくなるからである。この配線は、できるだけ幅が狭い方が集積率は向上するが、逆に出力ピン対出力電流特性は悪化する。さらに、ドライブ回路のカレントミラー出力トランジスタへの共通の電力供給ラインの幅が狭くなると、生成されるドライブ電流対ピンの特性が悪化する。
【0013】
このような問題を解決するために、前記の構成のように、有機EL表示パネルのカラムラインの電流駆動回路の出力段に対するドライブ段として設けられるカレントミラー回路においてその入力側駆動トランジスタ1個に対してカレントミラー接続されるn個(nは30か、それ以上の整数)の出力側トランジスタを有するカレントミラー回路を設けて集積効率を上げる。その上で、1個の入力側駆動トランジスタをn個の出力側トランジスタの配列の実質的に中央部に配置する。これにより、中央から実質的に対称の位置にあるR,G,Bの最初のピンと最後のピンのドライブ電流を実質的に等しくする。前記のようにすると、中央部のピン位置から両側にピンに向かってドライブ電流が漸次減少する山型の特性になる。その結果、ピン配列に対する輝度特性も同様な特性になる
。さらに、駆動電流値調整回路により各ピンの少なくとも特定の1つのピンに対する駆動電流値を所定値になるように調整する。
これらにより、この発明の電流駆動回路は、出力ピン対出力電流特性が図4に示すような中央部が高く両端が除々に低くなる実質的に対称な山型特性になって、この山型特性の高さ方向の位置が駆動電流値調整回路により調整できるようになる。そこで、R,G,Bの各出力ピン対出力電流特性を実質的に等しくすることができる。また、ドライブ電流が中央部から両端に向かって漸次減少する山型の特性は、ピン配列方向に対する輝度むらの推移をゆるやかにする。
その結果、この発明の電流駆動回路は、カラム端子駆動IC間の駆動電流のばらつきが低減して、あるカラム端子駆動IC、すなわち有機ELの陽極駆動ICから次の有機ELの陽極駆動IC(カラム端子駆動IC)への継ぎ目輝度むらを目立たなくすることができる。これにより、画面での輝度むらを低減でき、集積率が高く、高輝度カラー表示が可能な有機EL表示装置が実現できる。
また、たとえ、1個のカラム端子駆動IC(有機ELの陽極駆動IC)においてもその内部のR,G,Bの輝度特性を揃えることが可能であり、高輝度カラー表示に適した有機EL表示装置のカラム端子駆動IC(有機ELの陽極駆動IC)を実現できる。
なお、以下の説明では、R,G,Bごとの説明の場合には、カラムの駆動ピンの番号は、それぞれ1番ピンから33番ピンを例として、R,G,Bごとに個別にピン番号で説明し、カラム端子駆動ICのピン全体の説明の場合には、R,G,Bの区分けをせずに、1番ピンから99番ピンを例として説明とする。
【0014】
【実施例】
図1において、20は、有機EL駆動回路のカラムドライバであって、図8のカラム制御回路9に換えてカラム制御回路9aが設けられ、カラムライン電流駆動回路8に換えてカラムライン電流駆動回路8aが設けられている。なお、各図において、図7、図8と同一の構成要素は同一の符号で示す。
カラム制御回路9aは、4ビットD/A変換回路(D/A)91と、スイッチングコントロール回路92(図8参照)とからなり、カラムライン電流駆動回路8aは、基準電流反転回路21と、レーザトリミングの駆動電流値調整回路22、駆動電流生成回路23、そして、図8に示す、k倍駆動電流生成回路82およびk倍出力のカレントミラー出力回路83とからなる。なお、カラー表示の場合には、D/A91とカラムライン電流駆動回路8aとは、R,G,Bに対応してそれぞれが1個のカラム端子駆動ICに内蔵される。
なお、この実施例では、図8に示されるサンプルアンドホール回路81に対応する回路として、基準電流反転回路21と、レーザトリミングの駆動電流値調整回路22、そして駆動電流生成回路23とが設けられている。これら回路は、電池7の電圧、この例では3Vで動作する回路である。
ただし、実施例の駆動ピン数は、R,G,Bの各出力ピンが33個であり、総出力ピンは、99である。したがって、1つの駆動電流生成回路23の駆動電流もそれぞれに出力ピンに対応した33個生成される。この駆動電流生成回路23が生成する33個の各駆動電流は、各出力ピン84に対していて、カレントミラー出力回路83から出力される出力電流(ピン駆動電流)と一対一で対応している。
ところで、基準電流反転回路21は、容量性負荷となる有機EL素子を駆動初期の一定期間の間初期充電するピーク電流を生成する回路となっているが、ここでは、発明に直接関係していないので、ピーク電流を生成する制御回路部分を省略してある。したがって、ここでは単なる基準電流反転回路になっている。
【0015】
駆動電流生成回路23は、電源4のライン+VDD(=3V)にエミッタ側が接続された入力側pnpバイポーラトランジスタQaとn個(n=33)の出力側pnpバイポーラトランジスタQnからなり、入力側トランジスタQaは、そのコレクタに駆動電流値調整回路22を経た調整電流値mIの駆動電流を受ける。
ここで、トランジスタQaとn個の各トランジスタQnとは、エミッタ面積比が1:1となっていて、その配線接続は、図2に示すように、並列に接続されるn個のトランジスタQnの駆動配線ライン13(n個のトランジスタQnのベースを共通に接続する配線ライン)の実質的に中央位置(第16番目のピンと第17番目のピンとの間の位置)に配置される。なお、トランジスタQcは、ベース電流を補正するトランジスタであり、図1には示されていない。
また、n個のトランジスタQnのエミッタが接続された電力供給配線ライン12においても実質的に中央位置で電源4のライン+VDDに接続され、この位置で電源4のライン+VDDから電力供給を受ける。この位置に対応してトランジスタQaのエミッタも接続されている。
各トランジスタQnのコレクタ出力側は、図1に示すn個の各k倍駆動電流生成回路82の入力端子82aにそれぞれが接続されている。このn個のk倍駆動電流生成回路82は、それぞれn個のk倍出力のカレントミラー出力回路83を駆動し、カラムラインの駆動ピンに対応して設けられている。なお、カレントミラー出力回路83は、k倍駆動電流生成回路82と同じk倍である必要はない。
【0016】
D/A91は、デジタル値の4ビットデータを受ける2段のインバータから成るバッファアンプ911a、911b、911c、911dと、バッファアンプ911a、911b、911c、911dのそれぞれの出力を受けるNチャネルMOSFETのスイッチ回路912a、912b、912c、912d、直列抵抗回路913、そして、この直列抵抗回路913をエミッタ側に有する入力側npnトランジスタQ1と、これとカレントミラー接続された出力側npnトランジスタQ2とからなるカレントミラー回路914とから構成されている。
また、直列抵抗回路913は、トランジスタQ1のエミッタとグランドGNDとの間に設けられた5個の抵抗、抵抗913a、抵抗913b、抵抗913c、抵抗913d、抵抗913eとからなる。そして、前記の各スイッチ回路912a、912b、912c、912dは、それぞれの抵抗の接続点とグランドGNDとの間に挿入されている。
これにより、入力されたデータ(基準電流値設定のデータ)に応じてスイッチ回路912(各スイッチ回路の代表として)がON/OFFされてこれに応じた電流Iが入力側トランジスタQ1のエミッタに流れ、コレクタ側に同様な電流が流れて、出力側トランジスタQ2のコレクタにも同様な電流が流れてA/D変換された電流値Iがこれらトランジスタから表示レベルを示す電流値として出力される。
【0017】
基準電流反転回路21は、D/A91の変換電流値Iを入力電流としてコレクタ側に受ける入力側pnpトランジスタQ3,Q4と、これにカレントミラー接続された出力側pnpトランジスタQ5とからなるカレントミラー回路21aで構成されている。トランジスタQ3,Q4,Q5は、エミッタ側が電池7の電源ライン+VDDに接続され、トランジスタQ3のコレクタ側は、トランジスタQ1のコレクタに、トランジスタQ4のコレクタ側は、トランジスタQ2のコレクタにそれぞれ接続されている。
ここで、トランジスタQ3,Q4とトランジスタQ5とのエミッタ面積比は、10:10:10であるが、トランジスタQ3,Q4の下流のトランジスタQ1,Q2のエミッタ面積がトランジスタQ3,Q4に対して1/10であるので、トランジスタQ3,Q4とトランジスタQ5の電流比は、1:1:1となる。ここでトランジスタQ3,Q4とトランジスタQ5のエミッタ面積エミッタを1:10としてその比率mを10倍とすれば、すなわち、m=10とすれば、トランジスタQ5のコレクタ側から10倍の電流mIが出力される。ただし、m=10は、R(赤)の駆動回路であり、G(緑)とB(青)は、それぞれm=6である。
ここでは、トランジスタQ3,Q4とトランジスタQ5とのエミッタ面積比が10:10:10となっているが、R,G,Bの駆動電流に対する発光輝度の相違を吸収するために電流比をこれらのエミッタ面積比により調整する。なお、ここで、トランジスタQ5に並列に出力側トランジスタをもう1個設けて、この並列に設けたトランジスタをON/OFFすることでピーク電流を生成することができる。その制御回路は前記したように示していない。
トランジスタQ3,Q4とトランジスタQ5について、例えば、トランジスタQ1,Q2と同じトランジスタを10個並列に接続しておき、製造工程で並列接続数を選択することで、この電流比を調整できる。これによりR,G,Bの発光輝度特性に応じて基準電流を調整することができる。
これにより、D/A91から変換電流値Iを受けて、R,G,Bのそれぞれに対応して、これをカレントミラー回路21aによりm倍にし、基準駆動電流(基準電流をm倍にした電流)として電流値mIを発生して駆動電流値調整回路22に送出する。
【0018】
レーザトリミングの駆動電流値調整回路22は、カレントミラー回路22aと、レーザトリミング抵抗回路22b,22cとで構成されている。カレントミラー回路22aは、基準電流反転回路21の電流値mIを入力電流としてコレクタ側に受ける入力側npnトランジスタQ6と、これにカレントミラー接続された出力側npnトランジスタQ7とからなる。レーザトリミング抵抗回路22b,22cは、各トランジスタQ6,Q7のエミッタとグランドGNDとの間に設けられた回路であって、レーザトリミング抵抗回路22bは、Rb1〜Rbnの直列抵抗回路とこれら各抵抗に並列に設けられたトリミングヒューズHb1〜Hbnとからなる。また、レーザトリミング抵抗回路22cは、Rc1〜Rcnの直列抵抗回路とこれら各抵抗に並列に設けられたトリミングヒューズHc1〜Hcnとからなる。これら回路は、レーザトリミングにより各抵抗に並列に接続された各ヒューズを選択的に切断することで、カレントミラー22aの下流に直列に接続される抵抗値を選択するものである。
【0019】
さて、この実施例では、図2に示すように、トランジスタQaが並列に接続されるn個のトランジスタQnの配線ラインの実質的に中央位置に配置されている。このことにより、各トランジスタQnのベースを共通に接続配線し、ベース駆動の駆動電流が流される駆動配線ライン13の中央位置に加えられる。中央位置は、R,G,Bの各33ピンにおいて、カレントミラー出力回路83が駆動するカラムラインの駆動ピンにおける第16番目のピンと第17番目のピンとの間である。以下では、説明を分かり易くするために、カレントミラー出力回路83を駆動する駆動電流についも駆動ピンの位置で説明する。
カレントミラーの入力側トランジスタQaのコレクタに供給された駆動電流がカレントミラーの出力側トランジスタQnから出力ピン対応の駆動電流として流出するが、このとき、トランジスタQaのベースに流れる電流と実質的に等しい電流が共通に接続された33個の各トランジスタQnのベースに流れる。このベース電流を流す電圧は、ベース配線ライン13の微細化による配線抵抗により中央を基準として左右に両側に順次低下する。その低下量は微小な変化であるが、トランジスタの微細化によるベース−エミッタ特性の悪化により、n個のトランジスタQnについて、第16番目のピンと第17番目のピンとの間の位置から両端の最終ピンの33番目ピンと最初のピンの1番目ピンに対称に順次減少したベース電流が流れる。
【0020】
その結果、中央部のピン位置から両側にピンに向かってドライブ電流が漸次減少する山型になる。このとき、最初のピンと最後のピンの駆動電流値が実質的に等しくなる。さらに、駆動電流値調整回路22により、ある決められた特定の1つのピンに対する駆動電流値を所定値になるように調整すると、R,G,Bの各カレントミラー出力回路83の駆動電流は、図4のような出力ピン対出力電流特性となる。なお、+VDDは電池7(=3V)の電源ラインである。
そこで、このような特性が揃ったカラム端子駆動ICを複数配列しても継ぎ目部分も全体的にも輝度むらがほとんど分からなくなる。
なお、前記の場合、3Vの電源ライン+VDDの接続は、前記と同様に、トランジスタQnの電力供給ライン12の中央部一カ所で接続されていて、この位置がトランジスタQaの位置(第16番目のピンと第17番目のピンとの間の位置)に対応している。
その結果、Rのドライバ回路が中央となり、その両側にGとBのドライバ回路がくるレイアウトであっても、それぞれの駆動電流のドライブラインの中央部で図2のごとく配線することで、出力ピン対出力電流特性を図4のように、R,G,Bのそれぞれについて中央部を中心に山型の対称で同一特性にすることができる。なお、前記したように、カラムライン電流駆動回路8aは、R,G,Bに対応して設けられていて、R,G,Bともに独立に調整できる。
【0021】
そこで、R,G,Bに対応するそれぞれのカラムライン電流駆動回路8aにおいて1番目のピンの駆動電流値をレーザトリミングにより製造過程で駆動電流値調整回路22において調整しておけば、最終ピンの駆動電流値もほぼ等しくなるので、何個のカラム端子駆動ICを並列に配列、例えば、3個乃至4個配列してもカラム端子駆動ICごとの輝度むらが発生しない。
なお、カラム端子駆動IC全体としては、R,G,Bの区別なく、ピン番号を1から99番まで連続してカウントする。このような場合には、前記したように、第1番目の出力ピンと最終番目の出力ピンの関係は、カラー表示の場合、例えば、G(緑)のカラムライン電流駆動回路8aでは、99ピンのカラム端子駆動ICうちの第1番目がG(緑)の最初の出力ピンであり、最後からみて第3番目のピンが最後の出力ピンとなる。これに対してRのカラムライン電流駆動回路8aのピン番号は順次1番づつずれて、Bのカラムライン電流駆動回路8aのピン番号は順次2番づつずれる。
なお、カラムライン電流駆動回路8aの駆動電流値調整は、有機EL表示パネル1にカラム駆動の複数のカラム端子駆動ICを搭載した状態で、それぞれのICにおいてR,G,BのそれぞれのD/A変換する入力データを同じデータとしておき、それぞれの最初の出力ピンあるいは最後の出力ピンについて駆動電流値調整回路22により駆動電流値が等しくなるように調整するとよい。輝度調整の際のD/A変換回路91の入力データは、最大の輝度の値として調整するとよい。
これにより、カラム端子駆動ICから次のカラム端子駆動ICへの継ぎ目の輝度むらを防止できる。
【0022】
さらに、図3に示すように輝度特性を中央部が最大輝度になるように調整することで全体的な輝度むらも目立たなくなる。
なお、通常、有機ELでは、R,G,Bの発光輝度は、赤(R)の輝度が落ち、G:R:Bの駆動電流比が3:5:3程度になるので、これを通常は前記したように、基準電流反転回路21のエミッタ面積比の選択による基準電流値の設定でそれぞれ調整する。しかし、この輝度については、駆動電流値調整回路22にて補助調整することができる。また、この調整回路22の調整ダイナミックレンジを大きく採れば、補助調整ではなく、輝度調整そのものが調整回路22でできるので、基準電流反転回路21でのエミッタ面積比による調整は不要になる。そこで、トランジスタQ3,Q4とトランジスタQ5とのエミッタ面積比をここでは前記した10:10:10にしてある。
ところで、ロードライバは、従来と同様な回路が使用できるので、ここではその説明を割愛する。
【0023】
図5は、この発明の有機EL駆動回路を適用した他の実施例のカラムライン電流駆動回路のドライブ段を中心とするブロック図、そして図6は、出力ピン対出力電流特性の説明図である。なお、図1と同一の構成要素は同一の符号で示す。
図5において、200は、有機EL駆動回路のカラムドライバであって、図1のカラムドライバの駆動電流生成回路23に換えて、駆動電流生成回路230が設けられている。
駆動電流生成回路230と駆動電流生成回路23と異なる点は、ドライブ段のカレントミラー回路が、入力トランジスタ1個に対して30個あるいはそれ以上とするのではなく、これより少ない値にする。そのために、駆動電流生成回路230の駆動点がNa〜NpのP個に分割されている。分割された各回路のグループが入力側トランジスタ1個に対して出力側トランジスタ14個乃至16個程度のカレントミラー回路230a〜230pで構成される。すなわち、図4の中央部の入力側トランジスタQnが図5ではP個となり、P個の駆動点を持つP個のカレントミラー回路に分割され、それぞれがドライブ電流を生成する。
なお、図1のR,G,Bが各33個の場合には、P=2となるが、ここでは、出力ピンの数を165個として、前記のPをP=11個とした例について以下説明する。また、P個のそれぞれのカレントミラー回路230a〜230pは、それぞれの中央部分(駆動点がNa〜Npの近傍)でメインの電源ライン+VDDに接続されて電力供給を受ける。ここで、ピン数が165個となっているのは、k倍駆動電流生成回路82の初段に表示画素対応に表示データを受ける5ビットのD/A変換回路を設けたからである。165=33×5とした結果である。
【0024】
また、この実施例では、図4のレーザトリミングの駆動電流値調整回路22と駆動電流生成回路230との間にドライブ電流複製回路24が設けられている。
駆動電流生成回路230の各グループを構成するカレントミラー回路230a〜230pは、それぞれ電源7のライン+VDD(=3V)にエミッタ側が接続された入力側pnpバイポーラトランジスタQa,1個とm個(m=15)の出力側pnpバイポーラトランジスタQnからなる。各グループの入力側のトランジスタQaは、それぞれにドライブ電流複製回路24を介して、そのコレクタに駆動電流値調整回路22で生成された調整電流値mIの基準駆動電流を受ける。
ここで、1個のトランジスタQaとm個の各トランジスタQnとは、エミッタ面積比が1:1となっている。トランジスタQaとトランジスタQnのベース配線接続は、図5に示すように、配線ライン13(m×P個のトランジスタQnのベースを共通に接続する配線ライン)により行われる。ここでは、実質的にP=11のブロック(グループ)に分割されている。その分割されたそれぞれのブロックの実質的に中央位置に1個のトランジスタQaが配置されている。この配置されている点が実質的に前記の駆動点がNa〜Npとなっている。
なお、トランジスタQnが15個単位であるので、図示するものは、165個のトランジスタに対して、各グループの中央位置は、トランジスタQaの左右にトランジスタQnが7個あるいは8個あって、完全な対称位置とはならない。例えば、最初にトランジスタQnを左側に8個配置し、その次にトランジスタQaを配置して、後はトランジスタQnを15個おきに配置してトランジスタQaを10個配置する。このようにすれば、最後の10個目のトランジスタQa後にはトランジスタQnが7個配置されて、合計で165個となる。これにより、実質的に対称位置にトランジスタQaを配置することができる。
【0025】
各グループの各トランジスタQnのコレクタ出力側は、全体でP×m(=165)個となり、これらP×m個の出力側は、図5に示すn個の各k倍駆動電流生成回路82の入力端子82aに5個単位で接続され、k倍駆動電流生成回路82の入力段に設けられた5ビットのD/A変換回路の各ビット出力段に入力される。なお、n(=33)個は、k倍出力のカレントミラー出力回路83が駆動するR,G,Bの各カラムラインの駆動ピン数に対応している。
また、各グループのP個のトランジスタQnのエミッタが接続された電力供給配線ライン12においても各グループのトランジスタQaに対応して実質的に各ブロック(あるいはグループ)の中央位置で電源7のライン+VDDに接続され、この位置で電源4のライン+VDDから電力供給を受ける。この位置に対応してトランジスタQaのエミッタが接続されている。
【0026】
ドライブ電流複製回路24は、カレントミラー回路で構成されている。これは、トランジスタQ11を入力側としてエミッタ側が電源ライン+VDDに接続されたpnn型のカレントミラー接続のトランジスタQ11,Q12と、このトランジスタQ12の下流に設けられたnpn型のトランジスタQ13、このトランジスタQ13を入力側トランジスタとしてこれにカレントミラー接続された11個のnpn型の出力側トランジスタQ14〜Q24とからなる。
トランジスタQ11のコレクタ側は、入力側トランジスタとして駆動電流値調整回路22から電流値mIを受けて、出力側トランジスタQ12を介してトランジスタQ13を駆動し、出力側トランジスタQ14〜Q24に電流値mIを転送する。
なお、トランジスタQ13は、そのコレクタ側がトランジスタQ12のコレクタと接続され、エミッタ側は、抵抗R13を介してグランドラインGNDに接続されている。出力側トランジスタQ14〜Q24は、コレクタ側がそれぞれ分割された各グループのトランジスタQaのコレクタに接続され、それぞれのエミッタ側は、抵抗R14〜R24を介してグランドラインGNDに接続されている。
また、トランジスタQb,Qc,Qdは、それぞれのカレントミラー回路においてベース電流を補正するために挿入されたトランジスタである。
【0027】
このように電流複製回路24を設けて図1の駆動電流生成回路23をP個に分割して、P個の入力側の駆動点をもつカレントミラー回路230a〜230pを駆動する。このように出力側トランジスタn個のカレントミラー回路をグループ分割することにより、図6のような出力ピン対出力電流特性になる。これによりさらに輝度むらがなくなる。
それは、駆動電流生成回路230の各グループ(カレントミラー回路230a〜230pの各ブロック)の中央部の位置から両側のピンに向かってドライブ電流が漸次減少する山型の特性がグループ分割されたブロック数だけできるからである。このとき、各グループの最初のピンと最後のピンの駆動電流値が実質的に等しくなる。また、山のピーク位置と両端とのドライブ電流の差も小さくなる。
なお、各グループ(各ブロック)のカレントミラー回路の出力側トランジスタの数としては、33個以下の範囲であって、現在のところ10個から25個の範囲から選択された値にあることが好ましい。
【0028】
ところで、前記のように、多数の出力トランジスタを有するカレントミラー回路を、入力側トランジスタを中央に配置して複数の出力トランジスタを有するカレントミラー回路複数個、例えば、P個で構成することで、P個にグループ化して駆動電流を生成することができる。
この場合、入力側トランジスタから離れた端部の出力側トランジスタのベース−コレクタ間結合容量と各種の配線による寄生容量とが理論的には1/Pと少なくなり、過渡電流を低減させる効果がある。しかも、途中に配置される出力側トランジスタは、両側の入力側トランジスタから駆動されることになる。
その結果、輝度むらがほとんど分からなくなる。しかも、駆動電流生成回路230の後段にあるk倍駆動電流生成回路82において表示データに応じた駆動電流を発生するためにD/A変換回路が設けられているが、これがスイッチング制御されても、出力駆動電流に加わるスイッチングノイズが低減される。それは、スイッチングON時にトランジスタQnのベースからみたコレクタ側の入力容量が低減するからである。トランジスタQnからの過渡電流が低減されてトランジスタQnのベース電圧の変動が抑制されるからである。その結果、スイッチングノイズとして表示画面に発生する白色の線である、いわゆる白ひげ等もほとんど発生しないで済む。
なお、この実施例においても、レーザトリミングの駆動電流値調整回路22に設けられたレーザトリミング用のヒューズHb1〜Hbn,Hc1〜Hcnにより基準電流mIを調整することができることは図1と同様である。
【0029】
以上説明してきたが、実施例では、駆動電流値調整回路は、レーザトリミングで抵抗値を選択するものであるが、これは、レーザトリミングによる抵抗値選択する回路に限定されるものではなく、駆動電流を調整できる回路であればどのようなものであってもよい。
また、駆動電流値調整回路の位置は、基準電流を発生する入力段(あるいは初段)と有機ELパネルのピンを電流駆動する出力段の間であれば、ドライブ段としてどの位置に配置されてもよい。また、表示データを受けるD/A変換回路も同様であって、入力段(あるいは初段)と出力段の間に配置されていればよい。
実施例における1:m,1:kのカレントミラー回路は、いわゆる電流増幅をしているものであり、通常の電流増幅回路が使用されてもよい。
また、この電流駆動回路は、白黒表示のものでもよいので、R,G,Bそれぞれに対応して設けられていなくてもよい。
【0030】
さらに、この発明では、カレントミラーの入力側となるトランジスタQaは、複数の出力側トランジスタQnの配置の中央位置において複数個設けてもよい。
なお、実施例では、バイポーラトランジスタを主体として構成しているが、MOSFETトランジスタを主体として構成してもよいことはもちろんである。また、実施例のnpn型(あるいはNチャンネル型トランジスタ)は、(あるいはPチャンネル型)トランジスタに、pnp型(あるいはPチャンネル型)トランジスタは、npn型(あるいはNチャンネル)トランジスタに置き換えることができる。この場合には、電源電圧は負となり、上流に設けたトランジスタは下流に設けることになる。
【0031】
【発明の効果】
以上説明してきたように、この発明にあっては、入力側駆動トランジスタ1個に対してカレントミラー接続のn個の出力側トランジスタを有機ELパネルのカラム側の各ピン対応に並列に有するカレントミラー回路をドライブ回路に設けて、入力側駆動トランジスタをn個の出力側トランジスタの配列の実質的に中央部に配置する。これにより出力ピン対出力電流特性を中央部から対称な山型特性にする。そして、駆動電流値調整回路により各ピンの少なくとも特定の1つのピンに対する駆動電流値を所定値になるように調整することにより、カラー表示の場合で、たとえ、1個のカラム端子駆動ICにおいてもその内部のR,G,Bの輝度特性を揃えることが可能である。
その結果、画面での輝度むらを低減でき、集積率が高く、高輝度カラー表示が可能な有機EL表示装置を実現できる。
【図面の簡単な説明】
【図1】図1は、この発明の有機EL駆動回路を適用した一実施例のカラムドライバを中心とするブロック図である。
【図2】図2は、その出力回路の部分の接続状態の説明図である。
【図3】図3は、対策前の出力ピン対出力電流特性の説明図である。
【図4】図4は、出力ピン対出力電流特性の説明図である。
【図5】図5は、この発明の有機EL駆動回路を適用した他の実施例のカラムライン電流駆動回路のドライブ段を中心とするブロック図である。
【図6】図6は、出力ピン対出力電流特性の説明図である。
【図7】図7は、従来の有機EL駆動回路の一例のブロック図である。
【図8】図8は、図7におけるカラムドライバの説明図である。
【図9】図9は、図7におけるロードライバの説明図である。
【符号の説明】
1…有機EL表示パネル、1a,1b…ELパネル、
2a〜2d,20,200…カラムドライバ、
3a、3b…ロードライバ、4,7…電源(電池)、
5…コントローラ、8,8a…カラムライン電流駆動回路、
9a…カラム制御回路、10…電流駆動回路、
11…スイッチングコントロール回路、
21…基準電流反転回路、
22…レーザトリミングの駆動電流値調整回路、
23,230…駆動電流生成回路、
24…ドライブ電流複製回路、
81…サンプルアンドホール回路、
82…n倍駆動電流生成回路、
83…カレントミラー出力回路、
81a,84…出力ピン、
9…カラム制御回路、91…4ビットD/A変換回路(D/A)、
92…スイッチングコントロール回路、
230a〜230p…カレントミラー回路の各ブロック。

Claims (20)

  1. 有機EL表示パネルの端子を電流駆動する出力段を有する電流駆動回路のドライブ段に設けられ入力側駆動トランジスタ1個に対してカレントミラー接続され前記出力段を駆動するn個(nは30か、それ以上の整数)の出力側トランジスタを有する第1のカレントミラー回路と、前記入力側駆動トランジスタに流すμAオーダの駆動電流を調整する駆動電流値調整回路とを備え、前記入力側駆動トランジスタを前記n個の出力側トランジスタの配列の実質的に中央部に配置し、前記駆動電流値調整回路によって前記中央部から実質的に対称の位置にあるR,G,Bの表示色のそれぞれの最初のピンと最後のピンのドライブ電流が実質的に等しくなるように前記出力段の出力電流値を調整することを特徴とする有機EL駆動回路。
  2. 前記駆動電流値調整回路は、IC製造工程で調整できる回路であり、前記有機ELパネルのカラムの各端子の少なくとも特定の1つの端子に対する前記出力電流値あるいは前記特定の1つの端子に対する前記出力側トランジスタの電流値が所定値になるように調整される請求項1記載の有機EL駆動回路。
  3. 前記電流駆動回路は、入力段あるいは初段に基準電流を発生する基準電流発生回路と、前記第1のカレントミラー回路の前記出力側トランジスタにより駆動される第2のカレントミラー回路とを有し、この第2のカレントミラー回路は、前記有機EL表示パネルの各端子に対応して設けられ、k倍(kは2以上の整数)の前記駆動電流を発生して前記出力段を駆動する請求項2記載の有機EL駆動回路。
  4. 前記出力段は、L倍(Lは2以上の整数)の駆動電流を発生する第3のカレントミラー回路を有し、前記第1のカレントミラー回路の前記入力側駆動トランジスタの中央位置の配置は、n個の前記第1の出力側トランジスタに電力を供給する配線ラインの前記中央部に対応した位置で電力ラインと接続されて電力供給を受ける請求項2記載の有機EL駆動回路。
  5. 前記nは、カラー表示に対応してR,G,Bそれぞれの数であり、前記カラムの各端子は、R,G,Bが順次繰返して割当てられ、前記電流値を所定値に調整する端子は、R,G,Bのぞれぞれのn個の端子のうちの第1番目〜第3番目の端子と、最後から3番目から最後の端子のうちから選択された1つ端子である請求項3記載の有機EL駆動回路。
  6. 前記第1のカレントミラー回路を複数のカレントミラー回路に分割して分割された各カレントミラー回路において入力側トランジスタを複数の出力側トランジスタの中央部に配置した請求項1記載の有機EL駆動回路。
  7. 前記分割された複数のカレントミラー回路の出力側トランジスタの数は、10個〜25個の範囲から選択された数である請求項6記載の有機EL駆動回路。
  8. 前記第1のカレントミラー回路の前記入力側トランジスタを複数個設けて前記n個の出力側トランジスタを実質的に均等になるように複数のグループに配分して複数個設けられた前記入力側駆動トランジスタをそれぞれの前記グループの複数の前記出力側トランジスタの実質的に中央部にそれぞれ配置した請求項1記載の有機EL駆動回路。
  9. 前記分割された複数のカレントミラー回路の出力側トランジスタの数は、10個〜25個の範囲から選択された数である請求項8記載の有機EL駆動回路。
  10. 前記駆動電流値調整回路は、IC製造工程で調整できる回路であり、前記有機ELパネルのカラムの各端子の少なくとも特定の1つの端子に対する前記出力電流値あるいは前記特定の1つの端子に対する前記出力側トランジスタの電流値が所定値になるように調整される請求項8記載の有機EL駆動回路。
  11. 前記電流駆動回路は、前記第1のカレントミラー回路の前記出力側トランジスタにより駆動される第2のカレントミラー回路を有し、この第2のカレントミラー回路は、前記有機EL表示パネルの各端子に対応して設けられ、k倍(kは2以上の整数)の前記駆動電流を発生する前記出力段を駆動する請求項10記載の有機EL駆動回路。
  12. 有機EL表示パネルと、
    前記有機EL表示パネルの端子を電流駆動する出力段を有する電流駆動回路のドライブ段に設けられ入力側駆動トランジスタ1個に対してカレントミラー接続され前記出力段を駆動するn個(nは30か、それ以上の整数)の出力側トランジスタを有する第1のカレントミラー回路と、前記入力側駆動トランジスタに流すμAオーダの駆動電流を調整する駆動電流値調整回路とを備え、 前記入力側駆動トランジスタを前記n個の出力側トランジスタの配列の実質的に中央部に配置し、前記駆動電流値調整回路によって前記中央部から実質的に対称の位置にあるR,G,Bの表示色のそれぞれの最初のピンと最後のピンのドライブ電流が実質的に等しくなるように前記出力段の出力電流値を調整することを特徴とする有機EL表示装置。
  13. 前記駆動電流値調整回路は、IC製造工程で調整できる回路であり、前記有機ELパネルのカラムの各端子の少なくとも特定の1つの端子に対する前記出力電流値あるいは前記特定の1つの端子に対する前記出力側トランジスタの電流値が所定値になるように調整される請求項12記載の有機EL表示装置。
  14. 前記電流駆動回路は、入力段あるいは初段に基準電流を発生する基準電流発生回路と、前記第1のカレントミラー回路の前記出力側トランジスタにより駆動される第2のカレントミラー回路とを有し、この第2のカレントミラー回路は、前記有機EL表示パネルの各端子に対応して設けられ、k倍(kは2以上の整数)の前記駆動電流を発生する前記出力段を駆動する請求項13記載の有機EL表示装置。
  15. 前記出力段は、L倍(Lは2以上の整数)の駆動電流を発生する第3のカレントミラー回路を有し、前記第1のカレントミラー回路の前記入力側駆動トランジスタの中央位置の配置は、n個の前記第1の出力側トランジスタに電力を供給する配線ラインの前記中央部に対応した位置で電力ラインと接続されて電力供給を受ける請求項14記載の有機EL表示装置。
  16. 前記第1のカレントミラー回路を複数のカレントミラー回路に分割して分割された各カレントミラー回路において入力側トランジスタを複数の出力側トランジスタの中央部に配置した請求項12記載の有機EL表示装置。
  17. 前記分割された複数のカレントミラー回路の出力側トランジスタの数は、10個〜25個の範囲から選択された数である請求項16記載の有機EL表示装置。
  18. 前記第1のカレントミラー回路の前記入力側トランジスタを複数個設けて前記n個の出力側トランジスタを実質的に均等になるように複数のグループに配分して複数個設けられた前記入力側駆動トランジスタをそれぞれの前記グループの複数の前記出力側トランジスタの実質的に中央部にそれぞれ配置した請求項12記載の有機EL表示装置。
  19. 前記分割された複数のカレントミラー回路の出力側トランジスタの数は、10個〜25個の範囲から選択された数である請求項18記載の有機EL駆動回路。
  20. 前記駆動電流値調整回路は、IC製造工程で調整できる回路であり、前記有機ELパネルのカラムの各端子の少なくとも特定の1つの端子に対する前記出力電流値あるいは前記特定の1つの端子に対する前記出力側トランジスタの電流値が所定値になるように調整される請求項19記載の有機EL表示装置。
JP2002082662A 2001-03-26 2002-03-25 有機el駆動回路およびこれを用いる有機el表示装置 Expired - Fee Related JP3636698B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082662A JP3636698B2 (ja) 2001-03-26 2002-03-25 有機el駆動回路およびこれを用いる有機el表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-86967 2001-03-26
JP2001086967 2001-03-26
JP2001-396219 2001-12-27
JP2001396219 2001-12-27
JP2002082662A JP3636698B2 (ja) 2001-03-26 2002-03-25 有機el駆動回路およびこれを用いる有機el表示装置

Publications (2)

Publication Number Publication Date
JP2003255898A JP2003255898A (ja) 2003-09-10
JP3636698B2 true JP3636698B2 (ja) 2005-04-06

Family

ID=28678665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082662A Expired - Fee Related JP3636698B2 (ja) 2001-03-26 2002-03-25 有機el駆動回路およびこれを用いる有機el表示装置

Country Status (1)

Country Link
JP (1) JP3636698B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037916A (ja) * 2003-06-27 2005-02-10 Rohm Co Ltd 有機el駆動回路および有機el表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386462A (en) * 2002-03-14 2003-09-17 Cambridge Display Tech Ltd Display driver circuits
JP3810364B2 (ja) 2002-12-19 2006-08-16 松下電器産業株式会社 表示装置用ドライバ
TWI241865B (en) 2003-06-25 2005-10-11 Rohm Co Ltd Organic EL element drive circuit and organic EL display device using the same drive circuit
TWI234413B (en) * 2003-06-27 2005-06-11 Rohm Co Ltd Organic EL panel drive circuit and organic EL display device using the same drive circuit
CN100342416C (zh) * 2004-04-22 2007-10-10 友达光电股份有限公司 用于有机发光二极管显示器的数据驱动电路
JP4941906B2 (ja) * 2004-05-12 2012-05-30 ローム株式会社 有機el駆動回路およびこれを用いる有機el表示装置
KR100670137B1 (ko) 2004-10-08 2007-01-16 삼성에스디아이 주식회사 디지털/아날로그 컨버터와 이를 이용한 표시 장치 및 그표시 패널과 구동 방법
KR100658619B1 (ko) 2004-10-08 2006-12-15 삼성에스디아이 주식회사 디지털/아날로그 컨버터와 이를 이용한 표시 장치 및 그표시 패널과 구동 방법
KR100688803B1 (ko) 2004-11-23 2007-03-02 삼성에스디아이 주식회사 전류 범위 제어회로, 데이터 구동부 및 발광 표시장치
JP2006201761A (ja) * 2004-12-21 2006-08-03 Matsushita Electric Ind Co Ltd 電流駆動装置,データドライバ,および表示装置
JP2010054605A (ja) * 2008-08-26 2010-03-11 Casio Comput Co Ltd 電流発生回路及び表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037916A (ja) * 2003-06-27 2005-02-10 Rohm Co Ltd 有機el駆動回路および有機el表示装置

Also Published As

Publication number Publication date
JP2003255898A (ja) 2003-09-10

Similar Documents

Publication Publication Date Title
KR100507549B1 (ko) 유기 el 구동회로 및 이를 이용한 유기 el 표시장치
KR100488909B1 (ko) 유기 el 소자 구동 회로 및 유기 el 표시 장치
KR100475844B1 (ko) 유기 el 구동회로 및 이를 이용한 디스플레이 장치
JP3636698B2 (ja) 有機el駆動回路およびこれを用いる有機el表示装置
JP4735911B2 (ja) 駆動回路及びこれを用いた定電流駆動装置
KR100489208B1 (ko) 유기 el 구동 회로 및 이를 이용한 유기 el디스플레이 장치
KR100656013B1 (ko) 유기 el 구동 회로 및 이를 이용하는 유기 el 표시장치
JP2004145278A (ja) 電子回路、電子回路の駆動方法、電気光学装置、電気光学装置の駆動方法及び電子機器
JP2000340842A (ja) Led駆動装置
JP3924179B2 (ja) D/a変換回路およびこれを用いる有機el駆動回路
JP3647846B2 (ja) 有機el駆動回路および有機el表示装置
JP4151882B2 (ja) 有機el駆動回路および有機el表示装置
JPH06308902A (ja) 半導体集積回路及び表示装置
JP4958402B2 (ja) フラットパネルディスプレイ用ドライバ
KR100672108B1 (ko) 유기 el 소자 구동 회로 및 이를 이용한 유기 el디스플레이 장치
CN100401355C (zh) 有机el驱动电路和有机el显示设备
JP2003308044A (ja) 有機el駆動回路および有機el表示装置
JP5074916B2 (ja) 複数の出力を備えた信号線駆動装置
JP4101066B2 (ja) 有機el駆動回路およびこれを用いる有機el表示装置
JP2004145279A (ja) 電子回路、電子回路の駆動方法、電気光学装置、電気光学装置の駆動方法及び電子機器
JP4028805B2 (ja) 有機el駆動回路およびこれを用いる有機el表示装置
JP4015897B2 (ja) 有機el駆動回路および有機el表示装置
JP2005037915A (ja) 有機el駆動回路およびこれを用いる有機el表示装置
JPH01154093A (ja) アクティブマトリクス型液晶表示装置の駆動方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041117

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees