JP3628214B2 - 燃料蒸気処理装置 - Google Patents

燃料蒸気処理装置 Download PDF

Info

Publication number
JP3628214B2
JP3628214B2 JP20536899A JP20536899A JP3628214B2 JP 3628214 B2 JP3628214 B2 JP 3628214B2 JP 20536899 A JP20536899 A JP 20536899A JP 20536899 A JP20536899 A JP 20536899A JP 3628214 B2 JP3628214 B2 JP 3628214B2
Authority
JP
Japan
Prior art keywords
fuel
cooler
fuel vapor
canister
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20536899A
Other languages
English (en)
Other versions
JP2001032752A (ja
Inventor
久喜 太田
直也 加藤
秀明 板倉
時男 小浜
俊水 村井
義彦 兵道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP20536899A priority Critical patent/JP3628214B2/ja
Publication of JP2001032752A publication Critical patent/JP2001032752A/ja
Application granted granted Critical
Publication of JP3628214B2 publication Critical patent/JP3628214B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃料蒸気処理装置に関わり、特に燃料タンク内で発生した燃料ガスを冷却器で冷却し燃料タンクに還流する燃料蒸気処理装置に関するものである。
【0002】
【従来の技術】
車両走行中又は停止時に燃料タンクから蒸発する燃料蒸気をキャニスタに導いて内蔵する活性炭に吸着させ、車外への放出を防止することが従来から行われている。
【0003】
また、近年では燃料給油時に外気へ放出されるベーパ(燃料蒸気)の低減の必要性が高まっている。燃料給油時には、燃料タンク内の空間に充満した燃料蒸気が給油燃料によって押し出され、キャニスタに大量に送り込まれる。燃料蒸気を外気に放出しないためには、キャニスタの容積を大きくしなければならず、キャニスタを小型化するにはキャニスタに送られる蒸気量を減らす必要がある。
【0004】
そこで、キャニスタへ流入する蒸気量を減らす目的で、燃料タンクとキャニスタとを接続し燃料蒸気をキャニスタに向けて送る燃料蒸気通路の途中に燃料蒸気を冷却する冷却器を設け、冷却器で燃料蒸気を冷却して液化し、還流配管を介して再び燃料タンクに戻す構成とした燃料蒸気処理装置が提案されている(特開平6−147029号)。
【0005】
図14はこの従来の燃料蒸気処理装置の構成を示すシステム図である。
【0006】
図14で、1は燃料タンク、101は冷却器、102は液溜め、30はキャニスタである。
【0007】
燃料タンク1には給油口11が設けられている。内部には、燃料ポンプ2に接続され図示しないエンジンに燃料を送る燃料供給管3と燃料圧力を調整するプレッシャレギュレータ5、余剰燃料を戻す燃料リターン管4が配置される。この燃料リターン管4の途中にベンチュリ部が設けられ、冷却器101内のらせん管により冷却液化された燃料を液溜め102へ送り、液溜め102内で気液分離され回収された燃料を回収通路6を通してベンチュリ部へ吸い込む。燃料タンク1内に発生した蒸気は燃料蒸気通路10を通って冷却器101に送られる。
【0008】
冷却器101はらせん管内を燃料蒸気が流れ、らせん管をとり囲む冷却液器内を冷却液が循環して燃料蒸気を冷却液化し、液化燃料と液化回収しきれなかった燃料蒸気は液溜め102に送られ、液化燃料と燃料蒸気に分離され、液化回収しきれなかった燃料蒸気はキャニスタ30へ導入され、キャニタ30内の活性炭に吸着されて浄化される。
【0009】
【発明が解決しようとする課題】
前記のように冷却器を配置した蒸発燃料処理装置では、燃料蒸気を十分冷却するには、冷却部分の配管を長くすることが必要である。しかし、蒸気通路が長いと圧損が大きくなり、給油時には多量の燃料蒸気が通路を通過するので、燃料タンクの内圧上昇を招き、給油が出来なくなるという問題があった。圧損を下げるため冷却部の長さを短くすると、冷却器の能力が低下し、給油時の多量の蒸気を冷却回収できなくなってしまう。
【0010】
また、前記のように冷却器を蒸気通路に新たに配置するには、車両に搭載スペースが必要であり、冷却器を冷却するエネルギーが必要である。そのため、重量の増加や燃費の悪化を招く。
【0011】
本発明は、効率良く燃料蒸気を液化し、給油時であっても十分な冷却性能が得られ、キャニスタからの燃料蒸気の吹き抜けを抑えられる燃料蒸気処理装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は前記課題を解決するために第1発明として、冷却器内の蒸気通路は複数の並列通路で構成し、更に冷却器内に液溜めを設け、所定量の液化燃料が蓄積できると共に、冷却器で液化された燃料を燃料タンクに還流させる回収通路に液化された燃料を燃料タンクに還流させる量を調整する液化燃料量調整手段を設ける構成とした。
【0013】
この結果、燃料蒸気を冷却し液化回収する冷却器において、圧損の増加を抑えると共に冷却性能を向上させ、効率良く液化することができる。
【0014】
例えば、夏期の気温が高い場合等は、燃料タンク内の燃料は高温となり大量の蒸気が冷却器に送られる。ここで、液化燃料量調整手段を閉じておき、冷却器で液化された燃料を冷却器内に設けられた液溜めに一時的にためておくことが可能となる。
【0015】
そのようにせず、もしすぐに燃料タンクに戻すと、燃料タンクの温度は高いままなので当然気化を繰り返し、冷却器と燃料タンクを燃料が循環することになる。これは燃料タンクの温度が低下するまで止まることがなく、冷却器を冷却するエネルギーが多量に必要となる。このため、装置の大型化を招くが前記のようにすればそれを解消できる。
【0016】
また、第2発明として燃料蒸気を冷却して液化回収する冷却器とキャニスタを一体化し、冷却器の冷却とキャニスタの温度調節を同時に行う。これにより、キャニスタの性能向上とキャニスタへの流入蒸気量低減を同時に行うことができる。
【0017】
また、キャニスタと冷却器とを一体化することで、従来のキャニスタと同体積もしくは小型化することができる。さらに、冷却器の冷却とキャニスタの温度調節を熱電素子(ペルチエ素子)で同時に行え、温度調節に必要な電力を最小限にできる。キャニスタは、吸着時には冷却し、パージ時には加熱することで性能を向上できる。冷却器によって燃料蒸気が回収できるのでキャニスタへの流入蒸気は減少し、キャニスタの温度調節により性能も向上するので、キャニスタが小型化でき、空いた空間に冷却器を搭載できる。
【0018】
具体的には本発明は前記課題を達成するために、請求項1ないし請求項11に記載の技術的手段を採用する。
【0019】
請求項1に記載の発明によれば、冷却器内に液溜めを設け、冷却器全体を断熱手段で覆うとともに、液溜めに燃料が所定量蓄積され、回収通路の途中に設けられた液化燃料量調整手段の開度を調整して液溜めから燃料タンクに還流される燃料量を調整するので、液化した燃料が所定量蓄積できるため、燃料タンクの温度が下がるか、電力に余裕のある運転条件になるまで液化燃料を溜めておくことができる。そうすることで、高温時のアイドルのような燃料蒸気が大量に発生し、車両の電力供給量に余裕が少ない場合、消費電力を最小限にして燃料蒸気を効率良く回収できる。また、冷却器内の冷却通路が実質的に複数の並列通路から構成されているので、冷却通路の圧損低減と冷却性能の向上を両立させることができる。
【0020】
また、請求項2に記載の発明によれば、冷却器を熱電素子で冷却するようにしているので、簡単な構成かつ少ない電力で効率良く、しかも冷却能力の制御容易に、冷却器を冷却することができる。
【0021】
また、請求項3に記載の発明によれば、冷却器の温度状態を検出する温度検知器と、この温度出力に応じて熱電素子に加える電力を制御する手段を備えているので、冷却器の温度が所望温度、例えば1〜5°C程度になるように、熱電素子に加える電力を制御する手段が印加電力を調整することができ、燃料蒸気中に含まれる水が氷結して通路を塞ぐことを防止できる。
【0022】
また、請求項4に記載の発明によれば、冷却器内に液溜めを設け、冷却器全体を断熱手段で覆うとともに、液溜めに燃料が所定量蓄積され、回収通路の途中に設けられた液化燃料量調整手段の開度を調整して液溜めから燃料タンクに還流される燃料量を調整すると共に、前記燃料蒸気通路内の燃料蒸気を気泡状態にして前記液溜めに保持された冷却燃料に通すので、燃料蒸気を冷却する通路を省略でき、冷却機の小型化、液化回収の効率向上が可能となる。
【0023】
また、請求項5に記載の発明によれば、液化燃料をタンク内に吸い込むのに新たに特別な装置を必要としないと共に、液化燃料の流れを制御する液化燃料量調整手段により適量を吸い込むことができる。
【0024】
また、請求項6に記載の発明によれば、燃料タンク内の温度条件に応じて、液化燃料量調整手段を開閉制御することによって、液溜めから燃料タンクに還流される燃料量を流量制御するので、液化燃料量調整手段を閉じておき冷却器で液化された燃料を冷却器内に設けられた液溜めに一時的にためておくことにより、液化された燃料が気化を繰り返し、冷却器と燃料タンクを燃料が循環することが防止される。
【0025】
また、請求項4及び請求項7に記載の発明によれば、エンジン停止時には、冷却器とキャニスタとを連通する接続通路を遮断し、冷却器を通らない燃料タンクとキャニスタとの通路を開くので、エンジン停止時には冷却器から蒸発した燃料蒸気がキャニスタへ流出せず、このためエンジン停止時にキャニスタに流入する燃料蒸気の量を低減でき、キャニスタの小型化が可能になる。
【0026】
また、請求項8に記載の発明によれば、キャニスタの性能向上とキャニスタへの流入蒸気量低減による小型化が可能となる。
【0027】
また、請求項9に記載の発明によれば、温調手段が熱電素子により構成されているので、簡単な構成かつ少ない電力で効率良く、しかも温調能力の制御容易に、熱電素子で温調することができる。
【0028】
また、請求項10に記載の発明によれば、冷却器のキャニスタと反対側に冷却手段を設けて冷却器を冷却すると共に、キャニスタ側の温調手段で冷却器とキャニスタの冷却と加熱を行うので、冷却器の冷却により、キャニスタへの流入蒸気量低減による小型化が可能となる。また、キャニスタと冷却器とを一体化することで、従来のキャニスタと同体積もしくは小型化することができる。
【0029】
また、キャニスタを温調することで、吸着量の増加、脱離時の残留量減少が可能となり、キャニスタの性能が向上し、更なる小型化が可能となる。
【0030】
また、請求項11に記載の発明によれば、冷却手段が熱電素子により構成されているので、簡単な構成かつ少ない電力で効率良く、しかも冷却能力の制御容易に、冷却器を冷却することができる。
【0031】
【発明の実施の形態】
図1及び図2は本発明の第1実施形態に関するものであり、図1は本発明の燃料蒸気処理装置のシステム図であり、図2は本発明の要部である冷却器20であり、(A)は冷却器20の中心軸に沿う横断面図、(B)は(A)中の断面I−Iの平面断面図である。
【0032】
以下、本発明の第1実施形態について、その詳細を図1及び図2に基づき説明する。
【0033】
図1で、1は燃料タンク、20は冷却器、30はキャニスタ、500は冷却器の温度を制御する電源部、510はECUである。
【0034】
燃料タンク1には、給油口11が設けられている。内部には、燃料ポンプ2に接続され図示しないエンジンに燃料を送る燃料供給管3と燃圧を調整するプレッシャレギュレータ5、余剰燃料を戻す燃料リターン管4が配置される。この燃料リターン管4の途中にベンチュリ部が設けられ、冷却器20から冷却回収された燃料を回収通路6を通して吸い込む。回収通路6の途中には液化燃料量調整手段をなす制御弁7が配置され、ECU510の制御出力により液化燃料の流れが制御される。燃料タンク1内に発生した蒸気は、燃料蒸気通路10を通って冷却器20に送られる。
【0035】
冷却器20を図2に従って説明する。
【0036】
冷却器20は、燃料蒸気流入ポート21が燃料蒸気通路10と接続されており、冷却器20の左側上部から冷却器20に燃料蒸気を取り入れる。冷却器20の内部は、上部がセパレータ26で左右の部屋に分離され、流入した蒸気は、左側の冷却通路271を一旦下部に下がった後、右側の冷却通路272を上昇する構成となっている。右側上部で燃料蒸気流出ポート22が燃料蒸気通路の延長部をなす接続通路12を介してキャニスタ30に接続しており、冷却器20で燃料を液化回収しきれなかった燃料蒸気をキャニスタ30へ導入する。
【0037】
冷却器20のアルミ等からなる内側ケース23のセパレータ26の左右には、冷却通路271、272が複数本並列に配置されている。冷却通路271、272が複数本並列に配置されていることで、通路の圧損低減と冷却性能の向上を両立させることができる。
【0038】
下部には冷却された液化燃料202が溜められる液溜め201があり、燃料排出ポート28が下部に設けられている。冷却器20全体に外側ケース25が囲んでおり、内側ケース23と外側ケース25の間隙には発泡スチロールなどの断熱材24を挿入してある。断熱材の代わりに真空層にして断熱することもできる。熱電素子290、291は冷却器20の2面に配置されている。
【0039】
図1において、キャニスタ30の内部には活性炭等の吸着剤が収容されている。キャニスタ30は、圧力制御弁31を介して接続通路12と接続され、また給油弁32が並列で接続されている。給油弁32は、給油時に開弁され、給油により燃料タンク1から押し出される大量の蒸気を通し易くする。給油時以外は給油弁32は閉じられ、圧力制御弁31によって燃料タンク1内の圧力は所定の範囲内に制御される。
【0040】
さらに、キャニスタ30はパージ通路13により図示しないエンジン吸気系に接続されている。エンジンの運転条件に応じてキャニスタ30に吸着された燃料蒸気が吸気管にパージされる。また、キャニスタ30は下部に設けられた大気ポート240で大気に解放されている。
【0041】
次に本発明の第1実施形態の作用を説明する。
【0042】
エンジン始動後、ECU510からの信号により電源部500が熱電素子290、291に電力を加え、冷却器20を冷却する。冷却器20の温度が所望温度、例えば1〜5°Cになるように電源部500が加える電力を調整する。冷却温度は低い程燃料蒸気の液化回収には有利であるが、燃料蒸気通路10内で蒸気中に含まれる水が氷結して通路を塞ぐおそれがあるので、水の凝固点以上にしておくことが望ましい。熱電素子290、291は、内側ケース23と合わせて冷却通路271、272を冷却する。
【0043】
燃料タンク1内で発生した燃料蒸気は燃料蒸気通路10を通って冷却器20に導入される。冷却された冷却通路271、272を燃料蒸気が通過すると、燃料蒸気は冷却される。燃料蒸気は通常飽和蒸気であるので、冷却されることで燃料は凝縮液化する。液化した燃料は、下部の液溜め201に溜められる。
【0044】
冷却器20内の液溜め201も断熱材24で囲まれていて、熱電素子290、291によって冷却されている。液化された燃料は、液溜め201で再蒸発することなく蓄積される。
【0045】
夏期の気温が高い時等で燃料タンク1内の温度が上昇した場合、燃料蒸気が大量に発生する。この時、冷却器20で液化した燃料をすぐに燃料タンク1に還流すると、当然燃料タンク1の温度は高いので液化燃料は再蒸発を繰り返す。燃料が燃料タンク1と冷却器20の間を循環することになり、燃料タンク1の温度が低下するまで再蒸発が繰り返される。燃料を液化させる場合には凝縮潜熱が必要であるので、冷却器20では燃料蒸気の冷却に加えて多くの電力が必要である。
【0046】
この第1実施形態では、液化した燃料は所定量蓄積ができるので、燃料タンクの温度が下がるか、電力に余裕のある運転条件になるまで、液化燃料を溜めておく。そうすることで、高温時のアイドルのような燃料蒸気が大量に発生し、車両の電力供給量に余裕が少なく、消費電力を最小限にして燃料蒸気を効率良く回収できる。
【0047】
エンジンが動いており、燃料リターン管4にリターン燃料が流れている場合は、回収通路6に吸引力が働く。液化燃料を燃料タンク1内に回収するタイミングを、エンジン回転数、水温、外気温等の値によりECU510が決定し、制御弁7を開弁して吸い込む。
【0048】
図8は本発明の効果を従来例と比較して示した特性図である。同じ冷却器温度で、本実施形態と従来例の冷却器を作動させ、燃料蒸気を導入した。燃料回収率は導入した燃料に対して、冷却器で液化回収した燃料の重量比である。本第1実施形態では、給油時相当の燃料蒸気流量まで燃料回収率が低下すること無く効率良く回収できる。従って、本発明によれば使用電力の低下をもたらすことができる。
【0049】
図3は本発明の第2実施形態のシステム図である。
【0050】
図3で、40は給油時以外に使う燃料蒸気通路、46は給油時に用いる燃料蒸気通路、43と44は遮断弁である。また、41は3方弁で給油時以外に使う燃料蒸気通路40と連通する給油時に用いる燃料蒸気通路46とバイパス通路42を切り換える。
【0051】
第2実施形態では、駐車時に冷却器20の温度が上昇した場合に、液溜め201に溜まった液化燃料が蒸発してキャニスタ30に流入しないようにする。
【0052】
通常走行時には、遮断弁43は閉じており、三方弁41は給油時以外に使う燃料蒸気通路40と給油時に用いる燃料蒸気通路46を連通しており、遮断弁44は開いている。燃料タンク1で発生した燃料蒸気は、給油時以外に使う燃料蒸気通路40を通り、圧力制御弁45の作動圧を越えると給油時に用いる燃料蒸気通路46を通過して、冷却器20に流れ、さらに接続通路12を通ってキャニスタ30に導入される。
【0053】
給油時は、遮断弁43、44は共に開き、大量の燃料蒸気を処理する必要があるので、圧力制御弁45は通さない。走行時、給油時とも第1実施形態と同じく、冷却器20で燃料蒸気を液化回収し、残りをキャニスタ30で吸着する。
【0054】
駐車時は、遮断弁43は閉じており、三方弁41は燃料蒸気通路40とバイパス通路42を連通しており、遮断弁44は閉じている。燃料タンク1で発生した燃料蒸気は、燃料蒸気通路40を通り、圧力制御弁45の作動圧を越えるとバイパス通路42を通過して、キャニスタ30に導入される。冷却器20の燃料蒸気流入ポート21と燃料蒸気流出ポート22に接続される通路は全て遮断されている。駐車時に冷却器20の温度が上昇し、液化燃料が再蒸発すると、冷却器20内の圧力が上昇し、液溜め201内の液体燃料は押し下げられて、回収通路6を通って燃料タンク1に送られる。回収通路6の途中には逆止弁8が設けられ、燃料タンク1から冷却器20側への逆流を防ぐと共に所定量の液化燃料を蓄積するようにしている。逆止弁8は回収通路6の下流側の圧力と液溜め201内の圧力との差圧で作動する。
【0055】
このようにすることで、駐車時にキャニスタ30に流入する燃料蒸気の量を低減でき、キャニスタ30の小型化が可能になる。
【0056】
図4は本発明の第3実施形態の主要部をなす冷却器20に関するもので、(A)は冷却器20の中心軸に沿う横断面図であり、(B)は(A)中の断面I−Iの平面断面図である。
【0057】
図4の冷却器20内には、液溜め201が配置され、所定量の燃料が保持されている。底部には燃料蒸気通路10が挿入され、冷却器20内の燃料蒸気通路10の先端部は閉じられ、側面に気泡孔50が多数開けられている。熱電素子290、291は、内側ケース23と共に液溜め201内の燃料を冷却する。
【0058】
燃料蒸気が発生し、燃料蒸気通路10から冷却器20に流入すると、気泡孔50から気泡となって液溜め201内に導入される。燃料蒸気は液溜め201内の冷却された燃料によって冷やされ、液化する。液化しきれなかった成分や空気等は、上部の燃料蒸気流出ポート22から排出されキャニスタ30へ送られる。
【0059】
このような構成にすることで、燃料蒸気を冷却する通路を省略でき、冷却器20の小型化、液化回収の効率向上が可能となる。
【0060】
図5は、本発明の第4実施形態の主要部をなす冷却器20に関するもので、(A)は冷却器20の中心軸に沿う横断面図であり、(B)は(A)中の断面I−Iの平面断面図である。
【0061】
図5の冷却器20は、燃料蒸気通路271、272が冷却フィン61に囲まれて形成されている。冷却フィン61はアルミ等により形成される。厚みは、0.1〜2mmが好適に使用できる。この構成にすることで、冷却器20の断面積に占める燃料蒸気通路断面積の割合が高くなり、冷却器20の圧損を更に低減することができる。また、冷却器20をより小型化することが可能になる。
【0062】
図6は本発明の第5実施形態の主要部をなす冷却器20に関するもので、(A)は冷却器20の中心軸に沿う横断面図であり、(B)は(A)中の断面I−Iの平面断面図である。
【0063】
図6の第5実施形態では、車両用クーラ等の冷媒を導入して冷却器20の冷却を行っている。図6で84は冷媒入口、85は冷媒出口、81は冷却器20内の冷媒通路である。冷媒通路81は、冷却器20内で複数の通路に分岐して、燃料蒸気通路271、272を形成する冷却フィン83を貫通している。この構成によって、熱電素子を使用することなく冷却器20を冷却することができ、構成が簡単で、コストを抑えることができる。
【0064】
図7は本発明の第6実施形態のシステム図である。
【0065】
図7の第6実施形態では、冷却器20内にサーミスタ等の温度検知器71を設けている。この温度出力に応じて、ECU510により熱電素子290、291に加える電力を制御することで、冷却器20の温度制御の精度を向上できる。それにより、燃料蒸気の発生状況の変化に高精度に応答でき、適切な値に冷却器20の温度を設定できるので、より効率良く燃料蒸気を液化することができる。
【0066】
また、この温度検知器71に液化燃料が接触すると温度が急変するので、液溜め201内の液化燃料の液面を検知できる。それを利用して温度検知器71を液溜め201の上限位置に設置して、温度検知器71が液面を検知したら制御弁7を開き、液化燃料を燃料タンク1に吸引する。これにより、液溜め201の容積を十分に活用でき、液溜め201から液化燃料が溢れてしまうことが防止できる。
【0067】
図9及び図10は本発明の燃料蒸気処理装置200の第7実施形態に関するものであり、図9は燃料蒸気処理装置200を用いたシステム図である。図10は燃料蒸気処理装置200の詳細構成図であり、(A)は(B)中の断面II−IIにおける横断面図であり、(B)は(A)中の断面I−Iにおける平面断面図である。
【0068】
以下、本発明の燃料蒸気処理装置を用いたシステムについて、その詳細を図9に基づき説明する。
【0069】
図9で1は燃料タンク、200は冷却器20とキャニスタ30が一体となった燃料蒸気処理装置、500は冷却器20の温度を調整する電源部、510はECUである。
【0070】
燃料タンク1には、給油口11が設けられている。内部には、燃料ポンプ2に接続され図示しないエンジンに燃料を送る燃料供給管3とプレッシャレギュレータ5で燃料圧力を調整し、余剰燃料は燃料リターン管4で戻される。この燃料リターン管4の途中にベンチュリ部が設けられ、冷却器20から冷却回収された燃料を回収通路6を通して吸い込み燃料タンク1に戻す。燃料タンク1内で発生した蒸気は、燃料蒸気通路10を通って本発明の燃料蒸気処理装置200に送られる。
【0071】
燃料蒸気処理装置200を図10に従って説明する。燃料蒸気処理装置200は、燃料蒸気を冷却回収する冷却器20と燃料蒸気を吸着するキャニスタ30と燃料タンク1で発生した燃料蒸気をキャニスタ30に送る燃料蒸気通路10等とから構成される。
【0072】
冷却器20は、燃料蒸気流入ポート21が燃料蒸気通路10と接続されており、冷却器20の上部から燃料蒸気を取り入れる。冷却器20の内側ケース23には、図示しないセパレータにより冷却通路271、272が対向して流れるように複数本並列に配置されている。下部には冷却液化した燃料が溜められる液溜め201があり、冷却通路271、272は液溜め201において連通しており、燃料排出ポート28が設けられている。燃料蒸気流入ポート21から冷却器20に導入された燃料蒸気は、一旦冷却通路271を通って液溜め201まで下がり、冷却通路272を上って接続通路12を通ってキャニスタ30に送られる。
【0073】
冷却器20全体に外側ケース25が囲んでおり、内側ケース23と外側ケース25の間隙には、発泡スチロールなどの断熱材24を挿入してある。断熱材24の代わりに真空層にして断熱することもできる。熱電素子290、291は、冷却器20の2面に設置され、第1熱電素子290はキャニスタ30と反対側に配置し、温調手段をなす第2熱電素子291はキャニスタ30とも接触して配置されている。第1熱電素子290の大気に触れる側には、放熱フィン401が配置される。
【0074】
キャニスタ30は、上部で冷却器20と接続通路12により接続され、パージポート13でエンジン吸気系に接続されている。冷却器20で燃料を液化回収しきれなかった蒸気がキャニスタ30に導入される。エンジンの運転条件に応じてキャニスタ30から燃料蒸気がパージポート13を通って図示しない吸気管にパージされる。また、下部で大気ポート240により大気に解放されている。キャニスタ30内部には活性炭等の吸着剤35がフィルタ34に挟まれて収容されている。
【0075】
次に本発明の第7実施形態の作用を説明する。
【0076】
図9及び図10において、燃料タンク1内で発生したガソリンの燃料蒸気は、燃料蒸気通路10を通って燃料蒸気処理装置200の冷却器20に導入される。冷却器20は、エンジン始動後第1熱電素子290によって冷却される。冷却器20の温度が所望温度、例えば1〜5°Cになるように電源部500で調整される。第1冷却素子290は、内側ケース23と合わせて冷却通路271、272を冷却する。
【0077】
冷却された冷却通路271、272を燃料タンク1で発生した燃料蒸気が通過すると、燃料蒸気は冷却される。燃料蒸気は通常飽和蒸気であるので、冷却されることで、燃料は凝縮液化する。液化した燃料は、下部の液溜め201に溜められる。
【0078】
エンジンが動いているときは、燃料リターン管4にリターン燃料が流れていることで回収通路6に吸引力が働く。液化燃料を燃料タンク1に回収するタイミングを、エンジン回転数、水温、外気温等の値によりECU510が決定し、制御弁7を開弁して、液溜め201に溜まった燃料を燃料タンク1に戻す。
【0079】
エンジン停止時は冷却器20の温度が上昇してしまうと液化燃料が再蒸発してキャニスタ30側に流出してしまうので、冷却器20の温度が上昇する前に制御弁7を解放して、燃料タンク1に燃料を戻す。
【0080】
冷却器20を通過した燃料蒸気は1〜5°Cの飽和蒸気であり、キャニスタ30内の活性炭35で吸着される。走行中等に高温の燃料蒸気が発生しても、冷却器20を通過した後は、常に1〜5°Cの飽和蒸気量に低減される。
【0081】
給油時には、給油口の開閉に合わせて冷却素子を作動させ、液化回収率を上げることも可能である。
【0082】
キャニスタ30に燃料蒸気が流入する時は、活性炭の吸着熱によってキャニスタ30の温度が上昇し、キャニスタ30の吸着性能が低下する。その時は、水温、外気温から判断して第2熱電素子291はキャニスタ30から冷却器20に熱を送るように作動させ、キャニスタ30を冷却する。この時、第1熱電素子290に加えられる電力は増加され、燃料蒸気処理装置200全体を冷却する。
【0083】
エンジン吸気管負圧によってパージポート13からパージされるときは、活性炭は吸熱するので温度が低下し、燃料成分の脱離が起こりにくくなる。吸気管負圧またはエンジン回転数とスロットル開度等によりその場合は、第2熱電素子291は冷却器20からキャニスタ30に熱を送るように作動させ、キャニスタ30を加熱する。この時、第1熱電素子290に加えられる電力は減少される。
【0084】
このようにキャニスタ30を温調することで、吸着量の増加、脱離時の残留量減少が可能となり、キャニスタ30の性能が向上する。また、冷却器20では比較的沸点の高い成分が先に液化されるので、キャニスタ30には脱離しやすい低沸点成分が供給されるため、エンジンの作動中にキャニスタ30の再生が容易になる。
【0085】
図11は本発明の燃料蒸気処理装置200の第8実施形態の詳細構成を示す正面断面図である。
【0086】
図11により第8実施形態を説明する。
【0087】
図11の燃料蒸気処理装置200に一体に組み込まれた冷却器20内には、液溜め201が配置され、所定量の液化燃料202が保持されている。液溜め201の底部には燃料蒸気通路10が挿入され、冷却器20内の燃料蒸気通路10の先端部は閉じられ、側面に気泡孔50が多数開けられている。熱電素子290、291は内側ケース23と共に液溜め201内の燃料を冷却する。
【0088】
燃料蒸気が発生し、燃料蒸気通路10から冷却器20に流入すると、気泡孔50から気泡となって液溜め201に導入される。燃料蒸気は液溜め201内の冷却された燃料によって冷やされて液化する。液化しきれなかった燃料蒸気や空気等は、上部の接続通路12を通ってキャニスタ30へ送られる。
【0089】
このような構成にすることで、燃料蒸気を冷却する通路を省略でき、冷却器20の小型化、液化回収の効率向上が可能となる。
【0090】
液溜め201の液面制御は、液溜め201の図示しない液面検出手段により液面の高さを検知し、適当な高さになったら制御弁7である電磁弁をECU510により開弁制御する。
【0091】
図12は本発明の燃料蒸気処理装置200の第9実施形態の詳細構成を示す正面断面図である。図12により第9実施形態を説明する。
【0092】
図12の第9実施形態では、キャニスタ301、302で冷却器20を挟み込んだ構成となっている。
【0093】
図12で200は燃料蒸気処理装置、301は第1キャニスタ、302は第2キャニスタである。第1キャニスタ301で吸着した燃料蒸気が駐車時等に下流側に拡散しても、第2キャニスタ302で吸着することで車外への燃料蒸気の漏れを防止することができる。また、第1キャニスタ301と第2キャニスタ302で冷却器20を挟み込むことで、冷却器20を冷却する時に発生する熱で常にキャニスタ301、302を加熱でき、冷却器20の冷却とキャニスタ301、302のパージをより効率良く行うことができる。
【0094】
図13は本発明の燃料蒸気処理装置200の第10実施形態を用いたシステム図である。図13により第10実施形態を説明する。
【0095】
図13で、40は給油時以外に使う燃料蒸気通路、46は給油時に用いる燃料蒸気通路、43と44は遮断弁である。また、41は3方弁で、給油時以外に使う燃料蒸気通路40と連通する給油時に用いる燃料蒸気通路46とバイパス通路42を切り換える。
【0096】
第10実施形態では、駐車時に冷却器20の温度が上昇した場合に、液溜め201に溜まった液化燃料が蒸発してキャニスタ30に流入しないようにする。
【0097】
通常走行時には遮断弁43は閉じており、三方弁41は給油時以外に使う燃料蒸気通路40と給油時に用いる燃料蒸気通路46を連通しており、遮断弁44は開いている。燃料タンク1で発生した燃料蒸気は、給油時以外に使う燃料蒸気通路40を通り、圧力制御弁45の作動圧を越えると給油時に用いる燃料蒸気通路46を通過して、冷却器20に流れ、さらに接続通路12を通ってキャニスタ30に導入される。
【0098】
給油時は遮断弁43、44は共に開き、大量の蒸気を流す。この時、圧力制御弁45は閉じている。走行時、給油時とも第7実施形態と同じく、冷却器20で燃料蒸気を液化回収し、残りをキャニスタ30で吸着する。
【0099】
駐車時は、遮断弁43は閉じており、三方弁41は燃料蒸気通路40とバイパス通路42を連通しており、遮断弁44は閉じている。燃料タンク1で発生した燃料蒸気は、燃料蒸気通路40を通り、圧力制御弁45の作動圧を越えるとバイパス通路42を通過して、キャニスタ30に導入される。冷却器20の燃料蒸気流入ポート21と燃料蒸気流出22に接続される通路は全て遮断されている。駐車時に冷却器20の温度が上昇し、液化燃料が再蒸発すると、冷却器20内の圧力が上昇し、液溜め201内の液化燃料は押し下げられて、回収通路6を通って燃料タンク1に送られる。回収通路6の途中には逆止弁8が設けられ、逆流を防ぐと共に所定量の液化燃料を蓄積するようにしている。
【0100】
逆止弁8は回収通路6の下流側の圧力と液溜め201内の圧力との差圧で作動する。
【0101】
このようにすることで、駐車時にキャニスタ30に流入する燃料蒸気の量を低減でき、キャニスタ30の小型化が可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に関するものであり、本発明の燃料蒸気処理装置のシステム図である。
【図2】本発明の第1実施形態に関するもので、本発明の要部である冷却器20であり、(A)は冷却器20の中心軸に沿う横断面図、(B)は(A)中の断面I−Iの平面断面図である。
【図3】本発明の第2実施形態のシステム図である。
【図4】本発明の第3実施形態の主要部をなす冷却器20に関するもので、(A)は冷却器20の中心軸に沿う横断面図であり、(B)は(A)中の断面I−Iの平面断面図である。
【図5】本発明の第4実施形態の主要部をなす冷却器20に関するもので、(A)は冷却器20の中心軸に沿う横断面図であり、(B)は(A)中の断面I−Iの平面断面図である。
【図6】本発明の第5実施形態の主要部をなす冷却器20に関するもので、(A)は冷却器20の中心軸に沿う横断面図であり、(B)は(A)中の断面I−Iの平面断面図である。
【図7】本発明の第6実施形態のシステム図である。
【図8】本発明の効果を従来例と比較して示した特性図である。
【図9】本発明の燃料蒸気処理装置200の第7実施形態に関するもので、燃料蒸気処理装置200を用いたシステム図である。
【図10】本発明の燃料蒸気処理装置200の第7実施形態に関するもので、燃料蒸気処理装置200の詳細構成図であり、(A)は(B)中の断面II−IIにおける横断面図であり、(B)は(A)中の断面I−Iにおける平面断面図である。
【図11】本発明の燃料蒸気処理装置200の第8実施形態の詳細構成を示す横断面図である。
【図12】本発明の燃料蒸気処理装置200の第9実施形態の詳細構成を示す横断面図である。
【図13】本発明の燃料蒸気処理装置200の第10実施形態を用いたシステム図である。
【図14】従来の燃料蒸気処理装置の構成を示すシステム図である。
【符号の説明】
1 燃料タンク
4 燃料リターン管
6 回収通路
7、8 液化燃料調整手段(7 制御弁、8 逆止弁)
10、46 燃料蒸気通路
12 接続通路
20 冷却器
24 断熱手段(断熱材)
27 冷却通路
29 熱電素子
30 キャニスタ
71 温度検知器
200 燃料蒸気処理装置
201 液溜め
290 冷却手段(第1熱電素子)
291 温調手段(第2熱電素子)
510 熱電素子に加える電力を制御する手段(ECU)

Claims (11)

  1. 燃料タンクで発生した燃料蒸気をキャニスタに送る燃料蒸気通路と、該燃料蒸気通路の途中に配置し燃料蒸気を冷却する冷却器と、該冷却器で液化された燃料を燃料タンクに還流させる回収通路を有する燃料蒸気処理装置において、
    前記冷却器内に液溜めを設け、前記冷却器全体を断熱手段で覆うとともに、前記液溜めに燃料が所定量蓄積され、前記回収通路の途中に設けられた液化燃料量調整手段により前記液溜めから前記燃料タンクに還流される燃料量を調整すると共に、前記冷却器内部の上部を、セパレータで左右の部屋に分割し、該左右の部屋に複数本の冷却通路を並列に配置し、下部を液化燃料を溜める液溜めとし、一方の部屋に流入した蒸気が一旦下部に下がった後、他方の部屋を上昇するように構成されていることを特徴とする燃料蒸気処理装置。
  2. 前記冷却器を熱電素子で冷却することを特徴とする請求項1に記載の燃料蒸気処理装置。
  3. 前記冷却器の温度状態を検出する温度検知器と、この温度出力に応じて前記熱電素子に加える電力を制御する手段を備えていることを特徴とする請求項2に記載の燃料蒸気処理装置。
  4. 燃料タンクで発生した燃料蒸気をキャニスタに送る燃料蒸気通路と、該燃料蒸気通路の途中に配置し燃料蒸気を冷却する冷却器と、該冷却器で液化された燃料を燃料タンクに還流させる回収通路を有する燃料蒸気処理装置において、
    前記冷却器内に液溜めを設け、前記冷却器全体を断熱手段で覆うとともに、前記液溜めに燃料が所定量蓄積され、前記回収通路の途中に設けられた液化燃料量調整手段により前記液溜めから前記燃料タンクに還流される燃料量を調整すると共に、前記燃料蒸気通路内の燃料蒸気を気泡状態にして前記液溜めに保持された冷却燃料に通すように構成し、かつエンジン停止時には、前記冷却器と前記キャニスタとを連通する前記接続通路を遮断し、冷却器を通らない燃料タンクとキャニスタとの通路を開くことを特徴とする燃料蒸気処理装置。
  5. 前記燃料タンク内の燃料ポンプが圧送した燃料の余剰分を還流する燃料リターン管中の燃料の流れを利用して、前記液化燃料を回収する回収通路を通して液化燃料を前記燃料タンク内に吸い込むと共に、前記回収通路に液化燃料の流れを制御する液化燃料量調整手段を設けたことを特徴とする請求項1又は請求項4に記載の燃料蒸気処理装置。
  6. 前記燃料タンク内の温度条件に応じて、前記液化燃料量調整手段を開閉制御することによって、前記液溜めから前記燃料タンクに還流される燃料量を流量制御することを特徴とする請求項1又は請求項4に記載の燃料蒸気処理装置。
  7. 燃料タンクで発生した燃料蒸気をキャニスタに送る燃料蒸気通路と、該燃料蒸気通路の途中に配置し燃料蒸気を冷却する冷却器と、該冷却器で液化された燃料を燃料タンクに還流させる回収通路を有する燃料蒸気処理装置において、
    前記冷却器内に液溜めを設け、前記冷却器全体を断熱手段で覆うとともに、前記液溜めに燃料が所定量蓄積され、前記回収通路の途中に設けられた液化燃料量調整手段により前記液溜めから前記燃料タンクに還流される燃料量を調整すると共に、前記冷却器内の冷却通路が実質的に複数の並列通路から構成され、かつ、エンジン停止時には、前記冷却器と前記キャニスタとを連通する前記接続通路を遮断し、冷却器を通らない燃料タンクとキャニスタとの通路を開くことを特徴とする燃料蒸気処理装置。
  8. 燃料タンクで発生した燃料蒸気をキャニスタに送る燃料蒸気通路と、該燃料蒸気通路の途中に配置され燃料蒸気を冷却する冷却器と、内部に吸着剤を収容したキャニスタとを備える燃料蒸気処理装置において、
    前記冷却器と前記キャニスタを一体化し、前記冷却器と前記キャニスタの間に温調手段を配置し、該温調手段で前記冷却器と前記キャニスタの温度制御をすることを特徴とする燃料蒸気処理装置。
  9. 前記温調手段が熱電素子により構成されていることを特徴とする請求項8に記載の燃料蒸気処理装置。
  10. 前記冷却器の前記キャニスタと反対側に冷却手段を設けて前記冷却器を冷却すると共に、キャニスタ側の前記温調手段で前記冷却器と前記キャニスタの冷却と加熱を行う構成としたことを特徴とする請求項8に記載の燃料蒸気処理装置。
  11. 前記冷却手段が熱電素子により構成されていることを特徴とする請求項10に記載の燃料蒸気処理装置。
JP20536899A 1999-07-19 1999-07-19 燃料蒸気処理装置 Expired - Fee Related JP3628214B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20536899A JP3628214B2 (ja) 1999-07-19 1999-07-19 燃料蒸気処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20536899A JP3628214B2 (ja) 1999-07-19 1999-07-19 燃料蒸気処理装置

Publications (2)

Publication Number Publication Date
JP2001032752A JP2001032752A (ja) 2001-02-06
JP3628214B2 true JP3628214B2 (ja) 2005-03-09

Family

ID=16505699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20536899A Expired - Fee Related JP3628214B2 (ja) 1999-07-19 1999-07-19 燃料蒸気処理装置

Country Status (1)

Country Link
JP (1) JP3628214B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671940B2 (ja) * 2006-10-12 2011-04-20 三菱電機株式会社 ガス状炭化水素の処理・回収装置及びその方法
JP5744995B2 (ja) * 2013-09-18 2015-07-08 株式会社日本自動車部品総合研究所 燃料供給装置
KR101876036B1 (ko) 2016-07-12 2018-07-06 현대자동차주식회사 자동차 연료탱크의 연료 넘침 방지 장치 및 방법
JP7045779B2 (ja) * 2018-03-23 2022-04-01 住友理工株式会社 気液分離装置

Also Published As

Publication number Publication date
JP2001032752A (ja) 2001-02-06

Similar Documents

Publication Publication Date Title
JP3540286B2 (ja) 燃料蒸気処理装置
US6098601A (en) Fuel vapor storage and recovery apparatus and method
JP3932963B2 (ja) 蒸発燃料処理装置
KR100728451B1 (ko) 가스 상태 탄화수소의 처리 및 회수 장치
EP2013549B1 (fr) Dispositif de refroidissement par absorption et vehicule automobile associe
KR101039401B1 (ko) 유증기 회수 시스템
KR101215211B1 (ko) 가스상태 탄화 수소의 처리· 회수 장치 및 방법
JP3628214B2 (ja) 燃料蒸気処理装置
JPS6093116A (ja) 蒸発冷却式インタ−ク−ラ装置
JPH1193784A (ja) 燃料蒸気回収装置
EP3708238B1 (en) Adsorption refrigeration system for the production of demineralized water aboard a motor vehicle, motor vehicle and method for producing demineralized water aboard a motor vehicle
JP3830353B2 (ja) 蒸発燃料処理装置
JP5606714B2 (ja) 抽気回収装置とその運転方法及びそれを備えたターボ冷凍機
JP2001182632A (ja) 燃料蒸気処理装置とその故障診断装置
JP5623381B2 (ja) 燃料供給装置
JP2000073898A (ja) 自動車の燃料供給装置
JPH0842405A (ja) 蒸発燃料処理装置
JP3544881B2 (ja) 燃料タンク
JPH04187861A (ja) エンジンの燃料蒸気放出防止装置
JP3659005B2 (ja) 燃料タンクの蒸発燃料処理装置
JPH05332211A (ja) キャニスタ装置
JP2002122048A (ja) 蒸発燃料処理方法およびその装置
CN115139780B (zh) 油气管理系统及具有其的车辆
JP2014047754A (ja) 蒸発燃料処理装置
JP3920978B2 (ja) 吸収式空調装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees