JP3626576B2 - 磁気光学素子 - Google Patents
磁気光学素子 Download PDFInfo
- Publication number
- JP3626576B2 JP3626576B2 JP15497297A JP15497297A JP3626576B2 JP 3626576 B2 JP3626576 B2 JP 3626576B2 JP 15497297 A JP15497297 A JP 15497297A JP 15497297 A JP15497297 A JP 15497297A JP 3626576 B2 JP3626576 B2 JP 3626576B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic layer
- transparent
- magneto
- transparent magnetic
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
【発明の属する技術分野】
本発明は、ディスプレイへの応用に適した磁気光学素子に関する。
【0002】
【従来の技術】
従来より、磁気光学効果(ファラデー効果ないしは磁気光学カー効果)を示す磁性体は、例えば、光磁気ディスクに利用されて情報の書込み・再生が可能とされている。この他、磁気光学効果を示す透明磁性体を用いこの透明磁性体に対して磁気ヘッドを用いて画像の書込みを行い、光を照射させることでファラデー回転の有無により画像を表示させるディスプレイへの応用も検討されている。
【0003】
ここに、磁気光学効果は、右及び左円偏光によって起こされる電子遷移の差異から生ずることが知られている。この差異を大きくして磁気光学効果を増大させる試みが、文献「磁気光学効果を大きくするための指針」(日本応用磁気学会誌,Vol.8.No.5,1984 p.366〜370)(文献1とする)等により報告されている。
【0004】
第1の試みとして、Baフェライトを用いた場合に、BaFe12O19中のFeをCoによって置換する方法がある(例えば、“Proc.Int.Symp.on OpticalMemory.1987 Japanese Journal of Applied Physics,Vol.26(1987)Supplement 26−4 pp23〜26”中の“Ba−Ferrite Magneto−optical Recording Media” 参照…文献2とする)。この方法の場合、Coの置換量にもよるが、ファラデー効果が数倍増大することが確認されている。
【0005】
第2の試みとして、同様に元素置換法であるが、鉄ガーネットの希土類イオンの一部をBi(3+)イオンで置換する方法がある(文献1中のp.368参照)。この方法の場合も、ファラデー回転角が増大することが知られている。加えて、可視域の吸収率が殆ど増加しないため、ディスプレイにおけるコントラスト向上には都合がよい。
【0006】
【発明が解決しようとする課題】
ところが、第1のCo置換方法による場合、文献2中にも記載されているように、効果が増大する波長域は700〜800nmであり、ディスプレイとして必要な波長域500〜700nm(500〜600nm位が人間の目で最も感じる波長域である)では殆ど効果がないものである。また、エピタキシャル成長法を用いて製造するため、基板が制約を受けるとか、基板温度が600℃以上と異常に高温であることが必要とされる、といった不都合もある。
【0007】
第2のBi(3+)イオン置換法による場合、ファラデー回転角が増加する波長域が520nm付近で好都合であるが、製造プロセスで要求される基板温度が600℃以上といった高温であり、大きな面積のものを作製するのは困難で、ディスプレイへの適用化を図る上では好ましくない。
【0008】
また、Baフェライトの場合のファラデー回転角は1°/μm位、Bi置換ガーネットの場合のファラデー回転角は6°/μm位である。ディスプレイへの適用を考えた場合、ファラデー回転角はできるだけ大きい方がコントラストがよく、上記の6°/μm位ではコントラスト1程度であるので、ディスプレイ用としてはファラデー回転角10°/μm以上、できれば20°/μm以上あることが好ましい。従って、従来法ではファラデー回転角の増大効果が不十分である。
【0009】
一方、第2の方法におけるBi置換ガーネットの場合、薄膜としてではなく、共沈法により作製した平均粒径1000Å以下の粉末を用いて製造することができる。この場合、結着剤と基板とが必要となるが、素子作製時には高温とする必要がなく、均一塗布さえ可能であれば大面積化も可能である。しかし、薄膜による場合に比して、結着剤の分だけ単位厚み当りのファラデー回転角が減少し、かつ、粉末は1000Å以下の粒径とすると光の透過率はよいが薄膜の場合よりも光の散乱による透過率の減少は避けられない。
【0010】
一般論としても、何れの磁性体の場合も、その層厚を厚くすれば、ファラデー回転角は増大するが、光の透過率が低下するため、薄くて(つまり、透過率がよくて)大きなファラデー回転角が得られる磁気光学素子が望まれる。
【0011】
そこで、本発明は、一般的な磁気光学材料を用いながら、大きなファラデー回転角を得ることができ、大面積化等を容易に図れ、ディスプレイへの適用に適した磁気光学素子を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1記載の発明の磁気光学素子は、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成され垂直磁気異方性を有する透明磁性層と、屈折率の異なる2種類の多数の透明誘電体膜が交互に積層されて前記透明磁性層を挾むことで光を局在させて前記透明磁性層の磁気光学効果を増大させる一対の多層膜と、これらの多層膜の外面に配設された一対の偏光子と、を備え、前記透明磁性層の所望の部分に磁気記録させるようにした。従って、透明磁性層が透明誘電体膜による一対の多層膜により挾まれた構造となっているので、入射した光は多層膜中で多重反射が生じてその光のエネルギーが多層膜間の透明磁性層に蓄えられる局在化現象が生ずる。即ち、屈折率の異なる2種類の透明誘電体膜による多層膜の中心にさらに異なる屈折率の物質層(透明磁性層)を配置すると、中心の物質層に光が局在化する現象が生ずる。この結果、透明磁性層の磁気光学効果が増大し、ファラデー回転角が増大することになる。また、透明磁性層は、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成されているので、透明磁性層を薄く形成できその透明性が向上するとともに、多層膜との接触面の状態が滑らかとなって空気等の入り込みにくい界面構造となり光のロスがなくなるため、光を局在化させるための光閉じ込めが確実となり、ファラデー回転角の増大を簡単かつ確実に実現できる。さらに、透明磁性層は、垂直磁気異方性を有する磁性材料により形成されており、光とスピンとが平行なときにファラデー効果が生ずるので、垂直磁気異方性を有する磁性材料を用いて透明磁性層を形成することにより、画像情報に基づき透明磁性層に書込みを行った場合に大きなファラデー回転角が得られ、良好なる表示を行える。加えて、多層膜の外面には一対の偏光子が配設されているので、コントラストの高い画像表示が可能となる。この際、元素置換等を利用した特殊な透明磁性層を用いる必要がなく通常の透明磁性材料でよく、基板温度も特に高温にする必要がなく、大面積化も容易である。
【0014】
請求項2記載の発明の磁気光学素子は、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成され垂直磁気異方性を有する透明磁性層と、屈折率の異なる2種類の多数の透明誘電体膜が交互に積層されて前記透明磁性層の一面側に配設され、前記透明磁性層の他面側に配設された反射層とにより当該透明磁性層を挾むことで光を局在させて前記透明磁性層の磁気光学効果を増大させる多層膜と、この多層膜の外面に配設された偏光子と、を備え、前記透明磁性層の所望の部分に磁気記録させるようにした。従って、請求項1記載の発明の場合と同様に磁気光学効果の増大及びコントラストの高い画像表示が可能となるが、多層膜側から透明磁性層に向けて入射した光は反射層で反射されて再び透明磁性層及び多層膜を経て出射するので、ファラデー回転角の増大効果が倍増される。
【0018】
【発明の実施の形態】
本発明の第一の実施の形態を図1に基づいて説明する。本実施の形態の磁気光学素子1は、透明磁性層2を中心として、この透明磁性層2を一対の多層膜3,4、一対の透明基板5,6、及び、一対の偏光子7,8で挾んだサンドイッチ構造として形成されている。前記多層膜3,4は、各々屈折率の異なる2種類の多数の透明誘電体膜9a,9bを交互に積層させた構造体として形成されている。
【0019】
このような構成の磁気光学素子1によれば、透明磁性層2が一対の多層膜3,4により挾まれた構造となっているので、磁気光学素子1中に入射した光は多層膜3,4中で多重反射が生じてその光のエネルギーが中心の透明磁性層2に蓄えられる局在化現象が生ずる。即ち、屈折率の異なる2種類の透明誘電体膜9a,9bによる多層膜3,4の中心にさらに異なる屈折率の透明磁性層2を配置すると、中心の透明磁性層2に光が局在化する現象が生ずる。この結果、透明磁性層2の磁気光学効果が増大し、ファラデー回転角が増大することになる。加えて、多層膜3,4の外面には一対の偏光子7,8が配設されているので、コントラストの高い画像表示が可能となる。
【0020】
ここに、透明磁性層2の材料としては従来一般に用いられている磁気光学効果を示す透明磁性材料でよいが、例えば、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成することが好ましい。このような平均粒径1000Å以下の磁性体の超微粒子としては、例えば、Fe,Co,Ni、又は、これらの合金の超微粒子、或いは、希土類鉄ガーネットの超微粒子などを用いることができる。コバルトフェライト、Baフェライト等の酸化物の超微粒子や、FeBO3 ,FeF3 ,YFeO3 ,NdFeO3 等の複屈折性の大きな材料であっても、超微粒子であれば利用可能である。この他、MnBi,MnCuBi,PtCo等の超微粒子も利用可能である。平均粒径1000Å以下の超微粒子を用いれば、この透明磁性層2の両面に配設される多層膜3,4との接触面は非常に滑らかとなり、かつ、透明磁性層2自体を薄く作製できその透明性が向上する。特に、希土類鉄ガーネットの超微粒子を用いれば、逆磁歪効果により多層膜3,4に垂直な方向(積層方向)に磁気異方性を持たせることができ、ディスプレイに適用した場合、大きなファラデー回転角が得られて好ましい。即ち、光の方向と透明磁性層2に磁気ヘッド(図示せず)により磁気的に記録されたスピンの方向とが平行なときに大きなファラデー効果が生ずるためである。
【0021】
また、多層膜3,4用の透明誘電体膜9a,9bとしては、特に制約を受けず、Al2O3,MgO,BeO,Y2O3 ,SnO2 ,InO3 ,SiO2 ,ZnO,TiO2 等の材料を適宜用い得るが、最も一般的なTiO2 とSiO2 の組合せでもよい。積層する層数は、10〜50層程度がよい。透明基板5,6としては石英基板等が用いられる。
【0022】
偏光子7,8の偏光面は、一方の偏光面を回転することにより、最もコントラストの付く方位に設定される。
【0023】
本発明の第二の実施の形態を図2及び図3に基づいて説明する。前記実施の形態で示した部分と同一部分は同一符号を用いて示し、説明も省略する(以下の実施の形態でも同様とする)。本実施の形態では、片方の多層膜4、透明基板6及び偏光子8に代えて、反射層10及び基板11が透明磁性層2の片面に積層された磁気光学素子12として構成されている。即ち、透過型の磁気光学素子1に対して反射型の磁気光学素子12とされている。
【0024】
本実施の形態による場合も、前記実施の形態の場合と同様に磁気光学効果の増大及びコントラストの高い画像表示が可能となるが、多層膜3側から透明磁性層2に向けて入射した光は、反射層10で反射されて、再び透明磁性層2及び多層膜3を経て出射するので、ファラデー回転角の増大効果が倍増される(約2倍となる)。
【0025】
ここに、前記反射層10については、AgやAlなどを用いて一般的な蒸着法やスパッタリング法などにより形成してもよく、或いは、TiO2 ,MgO等のような白色微粒子を接着剤と混合させた後に、基板11上に塗布して透明磁性層2に貼付させるようにしてもよい。このような方法で形成される代表的な反射層10としては、Al,SiO,Ag,Al2O3等がよく知られている。
【0026】
ところで、反射型の磁気光学素子12をディスプレイに適用した場合の画像表示の原理(コントラストの付け方)を、模式的に示す図3を参照して説明する。ここに、透明磁性層2に関して、画像部分(暗くしたい部分)は棒磁石等の磁気ヘッドにより膜厚方向に磁化された磁化部2a(矢印13が磁化方向=スピンを示している)とされ、非画像部分(明るくしたい部分)は非磁化部2bとされているものとする。まず、図3(a)に示すように偏光子7に光線が入射した場合、この偏光子7を通れる方向の偏光面14a,14bが多層膜3を経て透明磁性層2に入射する。図3(b)に示すように透明磁性層2に入射した偏光面14a,14bで示される光の内、磁化部2aに入射した光はファラデー回転角θだけ回転して反射層10に入射するが、非磁化部2bに入射した光はそのまま反射層10に入射する。図3(c)に示すように反射層10に入射した光はその偏光面状態で反射されて、図3(d)に示すように、再び透明磁性層2に入射する。このとき、磁化部2aに入射した光は再びファラデー回転角θだけ回転して(合計、2θ)、図3(e)に示すように、多層膜3を経て偏光子7に向かうが、非磁化部2bに入射した光はそのまま多層膜3を経て偏光子7に向かう。このときの偏光面14a,14bの状態は、偏光面14a側が偏光子7を通過できない方向に回転しているので暗くなり、偏光面14b側は偏光子7を通過できる方向のままであるので明るくなる。これにより、磁化部2aが暗く非磁化部2bが明るくなるコントラストの付いた画像表示が可能となる。
【0027】
即ち、図3に示す原理的な模式図からもわかるように、液晶ディスプレイに似た表示原理であるが、偏光面を回転させるために透明磁性層2のファラデー回転なる磁気旋光を利用しているものである。ちなみに、従来にあっては、前述したようにファラデー回転角が小さく、かつ、透明磁性層の透明性が悪かったため、磁気光学素子がディスプレイとしては利用されていなかったものである。
【0028】
本発明の第三の実施の形態を図4に基づいて説明する。本実施の形態の磁気光学素子15は構造的には図1に示した磁気光学素子1に極めて類似しているが、本実施の形態では、特にその製造方法が異なるものである。本実施の形態では、まず、透明基板5上に多層膜(第1の多層膜)3を形成し、次に、多層膜3上に透明磁性層2を形成し、さらに、この透明磁性層2上に多層膜(第2の多層膜)4を形成するが、薄膜法によるこれらの成膜工程を連続して行った後、透明基板5及び多層膜4の外面に各々偏光子7,8を貼付することにより磁気光学素子15が作製されている。この場合の連続成膜法としては、一般的なCVD法、PVD法等の薄膜法が用いられる。
【0029】
本実施の形態によれば、多層膜3、透明磁性層2及び多層膜4の成膜工程が連続的に行われるので、透明磁性層2と多層膜3,4との界面に空気等が全く入り込むことなく積層構造を成膜することができる。この結果、光を局在化させるための光閉じ込め構造の作製が確実となり、ファラデー回転角を増大させるための構造を簡単に実現できる。また、透明基板5を加熱する必要がないので、透明基板5・多層膜3間の密着性を損なうようなこともない。
【0030】
【実施例】
本発明の第一の実施例を図1を参照して説明する。まず、表面を研磨した厚さ0.5mmの石英基板5,6上に、酸素とアルゴンとの混合ガスを用いた反応スパッタリング法によりTiO2 /SiO2 の積層膜を各々膜厚900Åで15層ずつ交互に積層させて多層膜3,4を形成した。従って、石英基板5、多層膜3のセットと石英基板6、多層膜4のセットとの2セット分が形成される。つづいて、共沈法により作製したBi置換希土類鉄ガーネットの平均粒径600Åの超微粒子(Bi2DyFe3.8Al1.2O19)とナフテン酸ビスマス(トルエン溶液)を1:1の割合で混合させたボールミルを用いて、54時間分散後、上記2つのセットの多層膜3,4の非基板側面でこの分散液を挾んで固化した。固化後の透明磁性層2の膜厚は0.3μmであった。ちなみに、同じ分散液を石英基板上に塗布して乾燥させた0.3μmの厚さの磁性層に対して基板面に垂直に磁界を印加して測定した場合の保磁力Hcは600Oeであって、垂直磁気異方性を有しており、かつ、波長600nmの光に対する透過率は62%であった。次に、石英基板5,6の外面側に市販のフィルム状の偏光子7,8を貼付して磁気光学素子1を完成させた。このように作製された磁気光学素子1に関して、日本分光株式会社製の磁気光学測定装置K‐250を用いて石英基板6上のファラデー回転角を測定したところ(使用光の波長520nm)、8°/μmが得られたものである。また、偏光子7の外側から直径1mmの棒磁石(表面磁束3KG)を用いて透明磁性層2に磁気記録した後、偏光子7,8の内の一方、例えば、偏光子8を回転させることで最もコントラストの付く方位に設定したところ、記録部と非記録部とで明瞭なコントラストが得られたものである。
【0031】
ちなみに、本実施例に対する第一の比較例として、分散液の厚みを1μmとして透明磁性層を形成し、かつ、多層膜3,4を有しない他は第一の実施例と同一条件で作製したところ、ファラデー回転角は3°/μmに留まり、棒磁石による磁気記録を行っても記録部と非記録部とでコントラストが付かず画像は視認できなかったものである。
【0032】
また、本実施例に対する第二の比較例として、共沈法により作製したBi置換希土類鉄ガーネットの平均粒径1800Åの微粒子を用いる他は、第一の実施例と同一条件で作製したところ、透明磁性層の保磁力Hcは800Oeであり、ファラデー回転角は6.4°/μmに留まったものである。
【0033】
本発明の第二の実施例を図2を参照して説明する。本実施例は、基本的に前記第一の実施例に準ずるものであり、石英基板6及び多層膜4のセットは作製せず、石英基板5及び多層膜3側のセットと基板11上に形成した2000Åの厚さのAlによる反射層10との間に透明磁性層2(材料、膜厚等は前記実施例と同じ)を形成した後、石英基板6に対してのみ市販のフィルム状の偏光子7を貼付して磁気光学素子12を完成させた。このように作製された磁気光学素子12に関して、棒磁石で磁気記録を行い、光を入射させたところ、記録部と非記録部とでコントラストの付いた反射像が視認できたものである。この場合のファラデー回転角は反射により2倍に倍増されており、第一の実施例の8°/μmに対して16°/μmに増大したものである。
【0034】
ちなみに、本実施例に対する第三の比較例として、多層膜3を有しない他は、第二の実施例と同一条件で作製したところ、ファラデー回転角は6°/μmに留まったものである。また、磁気記録後の画像としてもかすかに観察し得る程度であり、コントラストの悪い反射像であった。
【0035】
本発明の第三の実施例を図4を参照して説明する。本実施例も、基本的には、第一の実施例に準ずるが、その製造方法が異なる。まず、第一の実施例の場合と同様に、石英基板5上に多層膜3を成膜形成した後、連続して、その真空蒸着装置のチャンバー内にアルゴンガスと乾燥空気とを導入しながら鉄を蒸発させることで、鉄の超微粒子膜による透明磁性層2を3000Åの膜厚となるように成膜形成した(平均粒径は70Åであった)。さらに、連続させて、反応スパッタリング法で透明磁性層2の膜上に多層膜4を成膜形成した。このような連続成膜工程終了後に、外面に市販のフィルム状の偏光子7,8を貼付して磁気光学素子15を完成させた。このような磁気光学素子15についてファラデー回転角を測定したところ、使用光の波長依存性が少なく、波長550nmの光の場合で9°/μmのファラデー回転角が得られたものである。また、透明磁性層2の保磁力Hcは400Oeであり、垂直磁気異方性を有していた。また、棒磁石で磁気記録した後、光を入射させて観察したところ、記録部と非記録部とで明瞭なコントラストが得られ、画像を明瞭に読み取れたものである。
【0036】
ちなみに、本実施例に対する第四の比較例として、多層膜3,4を有しない他は、第三の実施例と同一条件で作製したところ、ファラデー回転角は波長550nmの光に対して2.2°/μmに留まったものである。また、棒磁石による磁気記録を行っても記録部と非記録部とでコントラストが付かず画像は視認できなかったものである。
【0037】
【発明の効果】
請求項1記載の発明の磁気光学素子によれば、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成され垂直磁気異方性を有する透明磁性層と、屈折率の異なる2種類の多数の透明誘電体膜が交互に積層されて前記透明磁性層を挾むことで光を局在させて前記透明磁性層の磁気光学効果を増大させる一対の多層膜と、これらの多層膜の外面に配設された一対の偏光子と、を備え、前記透明磁性層の所望の部分に磁気記録させるようにしたので、入射した光を局在化現象により多層膜間の透明磁性層に蓄えさせて、透明磁性層の磁気光学効果を増大させ、そのファラデー回転角を増大させることができ、この際、透明磁性層は、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成されているので、透明磁性層を薄く形成できその透明性を向上させることができるとともに、多層膜との接触面の状態が滑らかとなって空気等の入り込みにくい界面構造となり光のロスがなくなるため、光を局在化させるための光閉じ込めが確実となり、ファラデー回転角の増大を簡単かつ確実に実現でき、ディスプレイへの適用度を高めることができ、また、透明磁性層は、垂直磁気異方性を有する磁性材料により形成されているので、光とスピンとが平行なときにファラデー効果が生ずることから、画像情報に基づき透明磁性層に書込みを行った場合の大きなファラデー回転角を得ることができ、ディスプレイに適用した場合に良好なる表示を行うことができ、加えて、多層膜の外面には一対の偏光子が配設されているので、コントラストの高い画像表示が可能となり、この際、元素置換等を利用した特殊な透明磁性層を用いる必要がなく通常の透明磁性材料でよく、基板温度も特に高温にする必要がなく、大面積化も容易であり、よって、ディスプレイに好適に適用することができる。
【0038】
請求項2記載の発明の磁気光学素子によれば、平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成され垂直磁気異方性を有する透明磁性層と、屈折率の異なる2種類の多数の透明誘電体膜が交互に積層されて前記透明磁性層の一面側に配設され、前記透明磁性層の他面側に配設された反射層とにより当該透明磁性層を挾むことで光を局在させて前記透明磁性層の磁気光学効果を増大させる多層膜と、この多層膜の外面に配設された偏光子と、を備え、前記透明磁性層の所望の部分に磁気記録させるようにしたので、請求項1記載の発明の場合と同様に磁気光学効果を増大させ、かつ、コントラストの高い画像表示を可能にすることができるが、特に、多層膜側から透明磁性層に向けて入射した光を反射層で反射させて再び透明磁性層及び多層膜を経て出射させるので、ファラデー回転角の増大効果を倍増させることができる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態及び第一の実施例を示す断面構造図である。
【図2】本発明の第二の実施の形態及び第二の実施例を示す断面構造図である。
【図3】画像表示の原理を説明する模式図である。
【図4】本発明の第三の実施の形態及び第三の実施例を示す断面構造図である。
【符号の説明】
2 透明磁性層
3,4 多層膜
5 透明基板
7,8 偏光子
9a,9b 透明誘電体膜
10 反射層
Claims (2)
- 平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成され垂直磁気異方性を有する透明磁性層と、
屈折率の異なる2種類の多数の透明誘電体膜が交互に積層されて前記透明磁性層を挾むことで光を局在させて前記透明磁性層の磁気光学効果を増大させる一対の多層膜と、
これらの多層膜の外面に配設された一対の偏光子と、
を備え、前記透明磁性層の所望の部分に磁気記録させることを特徴とする磁気光学素子。 - 平均粒径1000Å以下の磁性体の超微粒子と結合剤とにより形成され垂直磁気異方性を有する透明磁性層と、
屈折率の異なる2種類の多数の透明誘電体膜が交互に積層されて前記透明磁性層の一面側に配設され、前記透明磁性層の他面側に配設された反射層とにより当該透明磁性層を挾むことで光を局在させて前記透明磁性層の磁気光学効果を増大させる多層膜と、
この多層膜の外面に配設された偏光子と、
を備え、前記透明磁性層の所望の部分に磁気記録させることを特徴とする磁気光学素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15497297A JP3626576B2 (ja) | 1997-05-14 | 1997-06-12 | 磁気光学素子 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12391097 | 1997-05-14 | ||
JP9-123910 | 1997-05-14 | ||
JP15497297A JP3626576B2 (ja) | 1997-05-14 | 1997-06-12 | 磁気光学素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1130770A JPH1130770A (ja) | 1999-02-02 |
JP3626576B2 true JP3626576B2 (ja) | 2005-03-09 |
Family
ID=26460702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15497297A Expired - Fee Related JP3626576B2 (ja) | 1997-05-14 | 1997-06-12 | 磁気光学素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3626576B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001194639A (ja) * | 1999-10-27 | 2001-07-19 | Minebea Co Ltd | 磁気光学体 |
JP3979138B2 (ja) * | 2001-12-20 | 2007-09-19 | 住友電気工業株式会社 | 光アイソレータおよび偏光子 |
CN106200024A (zh) * | 2016-08-31 | 2016-12-07 | 欧阳征标 | 磁光薄膜磁表面快波光二极管 |
CN106249443A (zh) * | 2016-08-31 | 2016-12-21 | 欧阳征标 | 磁光薄膜磁表面快波方向可控光二极管 |
-
1997
- 1997-06-12 JP JP15497297A patent/JP3626576B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1130770A (ja) | 1999-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645722A (en) | Photo-thermo-magnetic recording medium and method of preparing same | |
US8068387B2 (en) | Magneto-optical device | |
JP3853512B2 (ja) | 磁気光学素子 | |
EP1102285A2 (en) | Magneto-optical member | |
JP3626576B2 (ja) | 磁気光学素子 | |
JP3753853B2 (ja) | 磁気光学素子及び磁気光学デバイス | |
JP3557084B2 (ja) | 磁気光学素子 | |
JP2000267057A (ja) | 磁気光学素子 | |
JPH10213785A (ja) | 偏光子及びその製造方法及び偏光子を備えるディスプレイまたは表示装置 | |
JP3850387B2 (ja) | 偏光子の製造方法及び偏光子 | |
JP3560431B2 (ja) | 表示デバイス | |
JP3792917B2 (ja) | イメージングデバイス | |
JPH03296202A (ja) | 磁性膜 | |
JP3754557B2 (ja) | 磁気光学素子 | |
JPH09230298A (ja) | 光デバイス | |
JP3833813B2 (ja) | 磁気記録媒体及びこれの記録・再生方法 | |
JP3730038B2 (ja) | 画像表示用磁気光学素子及びカード | |
JP2000173019A (ja) | 磁気光学素子及び磁気ヘッドアレイ | |
US20060107278A1 (en) | Magnetic multilayer film and magneto-optical recording medium using magnetic multilayer film | |
JP3792406B2 (ja) | 高密度磁気記録再生方法および高密度磁気記録媒体 | |
JPH0317813A (ja) | 磁気記録媒体 | |
JP2000162993A (ja) | イメージングデバイス | |
JP2000047032A (ja) | 偏光変換素子および該偏光変換素子を使用した表示装置 | |
JP3628859B2 (ja) | 磁気光学素子及び光学装置 | |
JP4050996B2 (ja) | 光スイッチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041203 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071210 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |