JP3611667B2 - 射出成形機の温度制御方法 - Google Patents

射出成形機の温度制御方法 Download PDF

Info

Publication number
JP3611667B2
JP3611667B2 JP12083596A JP12083596A JP3611667B2 JP 3611667 B2 JP3611667 B2 JP 3611667B2 JP 12083596 A JP12083596 A JP 12083596A JP 12083596 A JP12083596 A JP 12083596A JP 3611667 B2 JP3611667 B2 JP 3611667B2
Authority
JP
Japan
Prior art keywords
temperature
time
zone
temperature increase
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12083596A
Other languages
English (en)
Other versions
JPH09277337A (ja
Inventor
広 渡邊
聡 高次
修 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP12083596A priority Critical patent/JP3611667B2/ja
Publication of JPH09277337A publication Critical patent/JPH09277337A/ja
Application granted granted Critical
Publication of JP3611667B2 publication Critical patent/JP3611667B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形機の温度制御方法の改良に関する。
【0002】
【従来の技術】
射出成形機のノズルおよびシリンダの各部位は樹脂の特性に合わせて加熱する必要があり、しかも、加熱開始後、各部位が同じタイミングで最終昇温目標温度に到達することが望ましい。
【0003】
しかし、実際には、各部位が最終昇温目標温度に到達するまでの所要時間は、ヒータの発熱能力や各部位の熱容量および各部位の最終昇温目標温度の設定条件等によって異なり、昇温所要時間に差が生じると、残留樹脂の物性変化や、温度勾配の異常によるノズルおよびシリンダへの悪影響が生じる場合がある。
【0004】
特に、他の部位よりも先に最終昇温目標温度に達した部分の樹脂は高温の設定温度のまま長い時間に亘って加熱され続けることになるので、炭化や熱分解が発生し易くなる問題があり、また、ノズルおよびシリンダの各部に極端な温度差が生じると、熱膨張の差などによりスクリューやその先端部品に折損等の危険が生じる。
【0005】
図11ではノズル部T0 ,シリンダ先端部T1 ,シリンダ中央部T2 ,シリンダ基部T3 に対して同じ最終昇温目標温度を設定した場合の温度上昇曲線の一例を示しており、この例では昇温開始後の経過時間がAの時点でノズル部T0 の昇温が完了し、次いで、シリンダ先端部T1 の昇温完了、更に、シリンダ中央部T2 の昇温完了と続き、最後に、昇温開始後の経過時間がBの時点で最も昇温所要時間の長いシリンダ基部T3 の昇温が完了している。つまり、ノズル部T0 に関しては、昇温が完了してから更にB−Aの時間だけ最終昇温目標温度で放置されることになり、この間にノズル部T0 で樹脂の熱分解や炭化が発生する可能性がある。ノズル部T0 の熱容量はシリンダ側のそれに比べて小さいのが普通であるため、図11に示されるような傾向は、一般に、よく見受けられるものである。ノズル部T0 で樹脂の熱分解や炭化が発生したような場合、これをパージ作業によって完全に排出するのは困難であり、これらの炭化物等が連続成形作業中に成形品に混入して不良品が生成されるといった危険もある。ノズル部T0 で樹脂の熱分解や炭化が発生する前にパージ作業を行ってしまいたいのは山々であるが、シリンダ基部T3 が最終昇温目標温度に到達する前にパージ作業を行うことはできず、ここで無理をすれば、スクリューの折損事故等を引き起こすといった危険もある。
【0006】
PID制御を利用した温度のフィードバック制御は既に公知であるが、現在温度と最終昇温目標温度との差が大きな昇温開始の初期段階においては、各ヒータが常ONの状態(ヒータの通電ON/OFF時間のデューティ比が1の状態)に制御されるため、その時点におけるノズルおよびシリンダの各部位の温度は最終昇温目標温度とは関係なくヒータの発熱能力と各部位の熱容量との関係のみによって決まり、各部位の温度の相互関係が各々の最終昇温目標温度の相互関係を維持して上昇するといった保証はない。
【0007】
そこで、このような問題を解決するための手段として、昇温所要時間の短い部位のヒータの電源投入タイミングを他の部位のヒータの電源投入タイミングよりも遅らせる方法が利用されているが、このような方法では単に各部位の最終的な昇温完了タイミングを一致させることができるに過ぎず、昇温過程における各部位の温度の相互関係は全く無視されることになる。また、昇温所要時間の短い部位のヒータの電源を投入するまでに、この部位と他の部位との間に著しい温度差が生じるので、温度差によるスクリューやその先端部品の折損等の問題が一層深刻化するといった危険もある。
【0008】
【発明が解決しようとする課題】
本発明の目的は、前記従来技術の欠点を解消し、ノズルおよびシリンダの各部位の温度が設定目標温度に達するまでの所要時間を制御し、しかも、昇温過程における各部位の温度の相互関係を各々の設定目標温度の相互関係に相関させたままの状態で各部位の温度を上昇させることのできる射出成形機の温度制御方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、射出成形機のノズルおよびシリンダの各部位に独立したヒータを設けてノズルおよびシリンダの温度を制御する射出成形機の温度制御方法において、設定目標温度に到達するに必要とされる昇温所要時間を各部位毎に測定し、昇温所要時間の最大値に対する各部位毎の昇温所要時間の割合を求め、各部位のヒータの通電ON/OFF時間の通電時間または電力量を各々の割合に比例させて制御するようにしたことを特徴とする構成により、前記と同様の目的を達成し、更に、昇温所要時間が不用意に冗長されるといった問題も解消した。
【0012】
さらに、昇温所要時間の最大値以上の昇温所要時間を設定し、該設定昇温所要時間に対する各部位毎の昇温所要時間の割合を求め、各部位のヒータの通電ON/OFF時間の通電時間または電力量を各々の割合に比例させて制御するようにすることにより、昇温完了時刻を制御できるようにした。また、各部位に対して夫々測定した昇温所要時間よりも長い昇温所要時間を夫々設定し、各部位毎の設定昇温所要時間に対する対応する部位の前記測定した昇温所要時間の割合を求め、各部位のヒータの通電ON/OFF時間の通電時間または電力量を各々の割合に比例させて制御するようにすることによって、各部位の昇温完了時刻を制御し、使用する樹脂等の特性に合致するようにした。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。図1は本発明の方法を適用した射出成形機の制御装置100の要部と該射出成形機のシリンダ周辺部101の要部とを示すブロック図である。
【0014】
射出成形機を駆動制御する制御装置100は、数値制御用のマイクロプロセッサであるCNC用CPU25,プログラマブルマシンコントローラ用のマイクロプロセッサであるPMC用CPU18,サーボ制御用のマイクロプロセッサであるサーボCPU20および射出保圧圧力やスクリュー背圧のサンプリング処理等を行うための圧力モニタ用CPU17を有し、バス22を介して相互の入出力を選択することにより各マイクロプロセッサ間での情報伝達が行えるようになっている。
【0015】
PMC用CPU18には射出成形機のシーケンス動作を制御するシーケンスプログラム等を記憶したROM13および演算データの一時記憶等に用いられるRAM14が接続され、CNC用CPU25には、射出成形機を全体的に制御するプログラム等を記憶したROM27および演算データの一時記憶等に用いられるRAM28が接続されている。
【0016】
サーボCPU20および圧力モニタ用CPU17の各々には、サーボ制御専用の制御プログラムを格納したROM21やデータの一時記憶に用いられるRAM19、および、成形データのサンプリング処理等に関する制御プログラムを格納したROM11やデータの一時記憶に用いられるRAM12が接続されている。
【0017】
そして、サーボCPU20には、該CPU20からの指令に基いてエジェクタ用,ノズルタッチ用,型締用,射出用,スクリュー回転用等の各軸のサーボモータを駆動するサーボアンプ15が接続され、各軸のサーボモータに配備したパルスコーダ等からの出力の各々がサーボCPU20に帰還され、パルスコーダからのフィードバックパルスに基いてサーボCPU20により算出された各軸の現在位置やその現在速度等がRAM19の現在位置記憶レジスタおよび現在速度記憶レジスタの各々に記憶されるようになっている。なお、図1では、1軸のサーボアンプ及びサーボモータのみを図示している。
【0018】
圧力モニタ用CPU17は、射出シリンダ3に内嵌された射出用スクリューの基部に設けられた圧力検出器(図示せず)およびA/D変換器16を介して射出保圧圧力やスクリュー背圧のサンプリング処理を行う。
【0019】
射出シリンダ3およびその先端に固設されたノズル4の各部位には、各々独立して制御装置100の側から制御されるヒータと、その部位の現在温度を検出するための熱電対等の温度センサが設けられている。
【0020】
ヒータおよび温度センサの配設位置は、図2に示す通り、ノズル4上のゾーンNo. T0 の位置に1つ、以下、シリンダ3の先端から基部側にかけてゾーンNo. T1 からゾーンNo. TN−1 の各部位に各々1つずつ設けられており、総数はN個(任意)である。
【0021】
ゾーンNo. T0 からゾーンNo. TN−1 の各部位に配備されたヒータの各々は、制御装置100に設定された各ゾーン毎の目標温度と各ゾーン毎に配備された温度センサで検出される現在温度とに基いて制御装置100によりPID(比例,積分,微分)制御される。この実施形態では、ヒータの通電ON/OFF周期を1000ミリ秒とし(なお、このON/OFF周期は任意に設定できるもので、この実施例では1000ミリ秒としている)、目標温度と現在温度との偏差に基いて、そのうち何ミリ秒だけ各ヒータに通電するか(デューティ比)を求めて各ヒータの単位時間当たりの発熱量を調整し、温度偏差を補償するようにしている。従って、温度偏差が著しく大きな場合はデューティ比の演算結果が1を越える場合があり、そのような場合にはヒータの通電状態は常ONとなる。
【0022】
SW0 からSWN−1 の各々は200Vの交流電源から各ヒータへの通電を開閉するためのスイッチであり、制御装置100の出力回路23bを介して制御装置100側からの指令でON/OFF制御される。
【0023】
また、各ゾーンに配備された温度センサからの温度検出信号はA/D変換器30でA/D変換され、制御装置100の入力回路23aを介して制御装置100に読み込まれる。
【0024】
不揮発性メモリ24は射出成形作業に関する成形条件(射出保圧条件,計量条件等)と各種設定値,パラメータ,マクロ変数等を従来と同様にして記憶する成形データ保存用のメモリである。
【0025】
ディスプレイ付手動データ入力装置29はCRT表示回路26を介してバス22に接続され、各種設定画面の表示やデータの入力操作等が各種ファンクションキーやテンキーおよびカーソル移動キー等によって行われるようになっている。
【0026】
そして、PMC用CPU18が射出成形機各軸のシーケンス制御を行う一方、CNC用CPU25がROM27の制御プログラムに基いて各軸のサーボモータに対して移動指令の分配(パルス分配)を行い、サーボCPU20は各軸に対して分配された移動指令とパルスコーダ等の検出器で検出された位置のフィードバック信号および速度のフィードバック信号に基いて、従来と同様に位置ループ制御,速度ループ制御さらには電流ループ制御等のサーボ制御を行い、いわゆるディジタルサーボ処理を実行する。
【0027】
図3および図4はPMC用CPU18によるシリンダ3およびノズル4の温度制御の概略を示すフローチャートである。この処理は、温度設定画面における温度制御の選択項目をオペレータが選択することによって起動され、その後、射出成形機本体側のシーケンス制御とは独立してPMC用CPU18の背景処理として継続的に実行される。この項目の選択操作は実質的にはヒータへの電源投入処理であり、この後、シリンダ3およびノズル4の各部の温度が各々の最終昇温目標温度(設定目標温度)もしくはその近傍に達するまでの間、射出成形機本体は冷間起動禁止の状態に置かれ、射出スクリューの前後退動作や回転動作が禁止される。
【0028】
温度制御処理を開始したPMC用CPU18は、まず、ゾーン数記憶レジスタに加熱ゾーンの総数Nを、また、分割数記憶レジスタに、最終昇温目標温度達成までの昇温の刻み回数であるステップ数Sの値を読み込んだ後、ゾーン指標iの値を零に初期化し、以下、指標iの値がNに達するまでの間、該指標iの値を順次歩進して、その都度、各ゾーンの最終昇温目標温度記憶レジスタTxiに最終昇温目標温度の値を記憶して行く(ステップa1〜ステップa5)。
【0029】
以上の処理は、温度設定画面に表示されるガイダンスメッセージに従ってオペレータが数値入力キー等を操作してゾーン数Nやステップ数Sおよび各ゾーンの最終昇温目標温度Txiの入力操作を行い、これを受けてPMC用CPU18が実施する処理である。ゾーン数がNであれば、設定される最終昇温目標温度Txi(i=0 to N−1)の個数はN個である(図2参照)。
【0030】
次いで、PMC用CPU18は指標iの値を再び零に初期化し(ステップa6)、ゾーンNo. Ti の部位に設けられた温度センサからこのゾーンの現在温度を読み込み、その値をゾーンNo. Ti に対応させて現在温度記憶レジスタTniに記憶し(ステップa7)、このゾーンの最終昇温目標温度Txiから現在温度Tniを減じ、その値をステップ数Sで除して、該ゾーンにおける1ステップ分の温度の刻み幅Bi を求める(ステップa8)。従って、この実施形態においては前後する各ステップ間の温度差は(Txi−Tni)/Sで均等になるが、無論、不均等に設定するようにしてもよい。
【0031】
次に、PMC用CPU18は、指標jの値を零に初期化し(ステップa9)、指標jの値に1を加えた値に前述の刻み幅Bi を乗じ、その値をゾーンNo. Ti の部位の現在温度Tniに加算して第jステップのステップ昇温目標温度を求め、この値をステップ昇温目標温度記憶レジスタTxij 、要するに、ゾーンNo. Ti の第jステップの昇温目標温度を記憶するレジスタに記憶し(ステップa10)、指標jの値を歩進する(ステップa11)。最初のステップ、つまり、第0ステップのステップ昇温目標温度Txi0 の値は現在温度Tniではなく、Tni+Bi である。
【0032】
以下、PMC用CPU18は、指標jの値がステップ数Sに達するまでの間(ステップa12)、ステップa10〜ステップa12の処理を繰り返し実行し、ステップ昇温目標温度記憶レジスタTxij (j=0 to S−1)の各々に各ステップのステップ昇温目標温度Tni+〔Bi ×(j+1)〕を記憶して行く。いうまでもなく、ゾーンNo. Tiに対して設定されるステップ昇温目標温度の個数はS個であり、j=S−1 の最後のステップ昇温目標温度Txij の値はTxiS−1 =Tni+〔Bi ×S〕=Tni+[〔(Txi−Tni)/S〕×S]=Txiであって、ゾーンNo. Ti の最終昇温目標温度Txiに一致する。
【0033】
次いで、PMC用CPU18は、指標iの値を歩進し(ステップa13)、該指標iの値がゾーン数Nに達しているか否かを判別し(ステップa14)、達していなければ、指標iの値がゾーン数Nに達するまでの間、ステップa7〜ステップa14の処理を前記と同様にして繰り返し実行し、i=0 to N−1の全てのゾーンに対してj=0 to S−1の各ステップのステップ昇温目標温度Txij を設定する。昇温目標温度Txij は各ゾーン毎にS個ずつ存在するわけであるから、その総数は全体でS・N個である。
【0034】
このようにしてステップ昇温目標温度Txij の設定が全て完了すると、PMC用CPU18は再び指標jの値を零に初期化し(ステップa15)、各ゾーンTi (i=0 to N−1)のステップ昇温目標温度としてTxij の値を設定し、各ゾーンTi の温度のPID制御を開始する(ステップa16)。
【0035】
そして、PMC用CPU18は指標iの値を零に初期化し(ステップa17)、ゾーンNo. Tiの部位の現在温度を温度センサを介して現在温度記憶レジスタTniに読み込み(ステップa18)、その値がゾーンNo. Ti におけるステップjのステップ昇温目標温度Txij に達しているか否かを判別し(ステップa19)、達していなければ、現在温度Tniの読み込みとステップ昇温目標温度Txij との比較処理とを繰り返し実行して、ゾーンNo. Ti の部位の現在温度Tniがステップ昇温目標温度Txij に達するまで待機する。
【0036】
次いで、ゾーンNo. Ti の部位の現在温度Tniがステップjのステップ昇温目標温度Txij に達したことが確認されると、PMC用CPU18は指標iの値を歩進し(ステップa20)、指標iの現在値がゾーンの総数Nに達しているか否かを判別する(ステップa21)。指標iの値が総数Nに達していなければ現在温度がステップjのステップ昇温目標温度に達しているか否かを判別すべき他のゾーンが残っていることを意味するので、PMC用CPU18は再びステップa18の処理へと戻り、更新された指標iの値に基いて再び前記と同様の処理を繰り返し実行する。
【0037】
最終的に、ゾーンNo. Ti (i=0 to N−1)の全てのゾーンの現在温度Tniが各々のゾーンのステップjのステップ昇温目標温度Txij に達したことが確認された段階でステップa21の判別結果が真となる。
【0038】
従って、各ゾーンのヒータの発熱能力やゾーンの熱容量に差異があるような場合では、ステップ昇温目標温度Txij に達するのが比較的早いゾーンTi1とステップ昇温目標温度Txij に達するのが比較的遅いゾーンTi2が存在する場合が有り得るが、ステップ昇温目標温度の刻み幅Bi は昇温開始時の温度と最終昇温目標温度Txiとの温度差に比べて十分に小さな値であるため、この昇温所要時間のバラツキは実質的な問題とはならない。
【0039】
一例として、ゾーンNo. T0 のノズル部の温度Tn0とゾーンNo. TN−1 のシリンダ基部の温度TnN−1との間に温度上昇特性の差がある場合について図8に概念的に示す。確かに、両者が各々のステップ昇温目標温度に達するまでにはT′の時間差があるが、この時間差は、最終昇温目標温度まで両者を一気に加熱する図11のような場合の時間差B−Aに比べて十分に小さい。図8ではゾーンNo. T0 のノズル部の最終昇温目標温度Tx0とゾーンNo. TN−1 のシリンダ基部の最終昇温目標温度TxN−1とを同じ値で設定した場合について示しているが、両者の最終昇温目標温度の設定値が異なるような場合、例えば、図10に示されるようにノズル部の最終昇温目標温度Tx0をシリンダ基部の最終昇温目標温度TxN−1よりも高く設定したような場合であっても、その効果は同じである。
【0040】
ゾーンNo. Ti (i=0 to N−1)の全てのゾーンの現在温度Tniが各々のゾーンのステップjのステップ昇温目標温度Txij に達してステップa21の判別結果が真となると、PMC用CPU11は指標jの値を歩進し(ステップa22)、、該指標jの値がステップの総数Sに達しているか否か、即ち、最終昇温目標温度であるj=S−1 のステップ昇温目標温度TxiS−1 が全てのゾーンで達成されているか否かを判別する(ステップa23)。
【0041】
ここで、指標jの値がステップの総数Sに達していなければ、更新された指標jの値に対応する次の段階のステップ昇温目標温度が存在することを意味し、次のステップのための昇温作業を開始する必要が生じる。
【0042】
このままステップa16の処理に移行して直ちに次の昇温ステップの温度制御を開始してもよいが、この実施形態においては、各ゾーン間の温度、つまり、ヒータが巻回されていない部分の温度をその両側のゾーンの温度に馴染ませるために、この段階でタイマTに設定値をセットしてスタートさせ、この設定時間の分だけ待機してからステップa16の処理に移行して次の昇温ステップの温度制御を開始するようにしている(ステップa24,ステップa25)。各ゾーンの温度はPID制御されているので、この待機時間Tの間、先にこのステップの昇温目標温度に到達したゾーンの温度は、該ステップの昇温目標温度にフラットに維持され(図8および図10参照)、この間にヒータ非巻回部分の温度が両側のゾーンに対して熱平衡の状態に達する。
【0043】
そして、ステップa16の処理に移行したPMC用CPU18は、指標jの値がステップの総数Sに達するまでの間、指標jの値に基いて前記と同様の処理を繰り返し実行し、各昇温ステップの処理を実施する。
【0044】
ステップの総数Sの値はどのゾーンに対しても共通であるから、ステップa21の判別結果が真となって各ゾーンの現在温度の全てがステップjのステップ昇温目標温度に達したことが確認された段階では、各ゾーンの現在温度の比Tx0j :Tx1j :Tx2j :・・・:TxN−1j が、常に、各ゾーンの最終昇温目標温度の比Tx0:Tx1:Tx2:・・・:TxN−1と等しくなる。つまり、昇温過程における各ゾーンの現在温度の相互関係が各々のゾーンの最終昇温目標温度の相互関係に相関しているということである。なお、図10においてはノズル部の温度Tn0とシリンダ基部の温度TnN−1との比がTx0:TxN−1であり、当然、図8においてはノズル部の温度Tn0とシリンダ基部の温度TnN−1との比が1:1である(Tx0=TxN−1)。
【0045】
更に、待機時間Tの値を非常に短く、または、零に設定し、かつ、ステップ数Sの値を相当に大きく設定すれば、最も立上りの鈍い昇温特性を有するゾーンの昇温所要時間に各ゾーンの昇温所要時間が合わせられることになるので、図8の各昇温ステップの始点と終点の黒丸印を結んだような昇温特性、つまり、図9に示すような昇温特性が得られることになる。図9に示す通り、ステップ数Sの値を大きく設定すれば概ね滑らかな昇温特性を得ることができるが、依然として最も立上りの鈍い昇温特性と比べれば各ステップ区間での立上りが早い(傾きが大きい)ので、実際には、図9に示す通りの折れ線状の昇温特性となる。横軸に水平な部分の折れ線部を短くして全体を更に滑らかにするためには、ステップ数Sの値を更に大きくする必要がある。無論、最終昇温目標温度が各ゾーン毎に異なるような場合でもこれと同じ処理操作が可能である。
【0046】
そして、最終的に指標jの値がステップの総数Sに達し、各ゾーンの温度が最終昇温目標温度であるj=S−1 のステップ昇温目標温度TxiS−1 に達したことがステップa23の判別処理で検出されると、パラメータ設定されている冷間起動禁止用タイマーをスタートさせ設定時間に達すると、PMC用CPU18は冷間起動禁止の設定を解除し、射出スクリューの移動および回転に関する指令の実行を許容する状態となる(ステップa26〜a28)。
【0047】
この実施形態においては、各ステップ毎の昇温目標温度を決めるための処理が、常に、現在温度と最終昇温目標温度との関係に基いて行われるので、室温から最終昇温目標温度への昇温作業の場合に限らず、例えば、成形停止時の低温保持温度から最終昇温目標温度への再度の立上げや樹脂を交換する際の温度の切り替え等に際しても適用することができる。
【0048】
なお、上記実施形態では、各ステップの目標温度への温度制御においても、PID制御を採用しているが(図4のステップa16参照)、この各ステップの目標温度への温度制御をPID制御で行うことなく、目標温度に達するまで各ゾーンのヒータをオンにし、目標温度に達すると、オフにするようにしてもよい。この場合、図4において、ステップa16では、PID制御の開始ではなくヒータをオンにし、ステップa19で真となった場合には、ヒータをオフにするようにすればよい。そして全てのゾーンが最終昇温目標温度に達した後、PID制御を開始するようにしてもよい。
【0049】
また、このような制御を行うと、最終ステップの目標温度は最終昇温目標温度であり、この最終昇温目標温度を越える場合が生じるので、最終ステップのみPID制御を行うようにしてもよい。即ち、図4において、ステップa23の代わりにj=S−1か判断し、真であれば、ステップa16の処理、即ちPID制御を開始し、ステップa17〜a21の処理を行い、ステップa21が真になるとステップa26に移行するようにすればよい。
【0050】
図5および図6ならびに図7は、各ゾーンのヒータの通電ON/OFF時間のデューティ比を調整することにより単位時間当たりにヒータに入力される電力量を適正化して、昇温特性の異なる各ゾーンの最終的な昇温所要時間を一致させるようにした別の実施形態の測定演算処理の概略を示すフローチャートである。この測定演算処理は、最終昇温目標温度に到達するに必要とされる昇温所要時間を各ゾーン毎に測定するための処理と昇温所要時間の最大値に対する各ゾーン毎の昇温所要時間の割合を求めてゾーン毎の通電時間の補正デューティ比を算出するための係数を求める処理である。PID制御処理によって出力される通電ON時間(若しくはデューテイ比)にこの処理で求められた各ゾーンTi 毎の昇温所要時間の割合Priを乗じて、1000ミリ秒を1周期とするヒータの通電ON/OFF周期における補正ON時間を求めるようにしたものである。
【0051】
測定演算処理を開始したPMC用CPU18は、まず、i=0 to N−1の各ゾーンTi に対応する昇温所要時間取得フラグGi の値を全て零に初期化すると共に、i=0 to N−1の各ゾーンTi に対応する最終昇温目標温度記憶レジスタTxiの各々に各ゾーンの最終昇温目標温度の設定値を記憶し(ステップb1〜ステップb4)、各ゾーンの最終昇温目標温度の設定値Txiに基いて各ゾーンTi の温度のPID制御を開始し(ステップb5)、昇温所要時間計測タイマTをリスタートさせる(ステップb6)。昇温開始時点における各ゾーンTi の現在温度Tniと最終昇温目標温度の設定値Txiとの差は大きいので各ヒータの制御は実質的な常ON制御となる。
【0052】
次いで、PMC用CPU18は、指標iを零に初期化して(ステップb7)、指標iの値がゾーン総数Nに達しているか否かを判別し(ステップb8)、達していなければ、ゾーンTi に対応する昇温所要時間取得フラグGi がセットされているか否か、つまり、このゾーンTi の温度が最終昇温目標温度の設定値Txiに達したことが既に確認されているか否かを判別する(ステップb10)。
【0053】
そして、確認されていなければ、改めてこのゾーンTi の現在温度を読み込んで現在温度記憶レジスタTniに記憶し(ステップb11)、現在温度TniがこのゾーンTi の最終昇温目標温度の設定値Txiに達しているか否かを判別する(ステップb12)。
【0054】
該ゾーンTi の現在温度Tniが最終昇温目標温度の設定値Txiに達していなければ、PMC用CPU18は指標iの値を歩進し(ステップb21)、再びステップb8の処理に移行して、更新された指標iの値に基いて前記と同様の処理を繰り返し実行し、次のゾーンTi について昇温所要時間取得フラグGi がセットされているか否かを判別する。また、このような処理が繰り返し実行される間に指標iの値がゾーン総数Nに達してしまった場合には、指標iの値を改めて零に初期化し(ステップb9)、前記と同様の処理を繰り返す。
【0055】
もし、ステップb10の処理を実行する時点でi=0 to N−1の各ゾーンTi に対応する昇温所要時間取得フラグGi の全てがセットされているという事態が発生するとするなら、PMC用CPU18がステップb8〜ステップb10およびステップb21の処理から抜けられなくなるといった問題が生じることになるが、実際にはそのようなことは起こらない。現在温度Tniが最終昇温目標温度の設定値Txiを越えるまでは該ゾーンTi に対応する昇温所要時間取得フラグGi はセットされず、また、最も昇温所要時間の長いゾーンの現在温度Tniが最終昇温目標温度の設定値Txiを越えた時点では、昇温所要時間取得フラグGi の取得数kを数えるための確認処理(後述のステップb15〜ステップb20の処理)が必ず実施されるからである。ステップb20の処理で昇温所要時間取得フラグGi の取得数kがゾーン総数Nに達したことが一旦確認されてしまえば、PMC用CPU18はそれ以前のステップの処理に復帰することはない。
【0056】
そして、ステップb8〜ステップb12およびステップb21の処理を繰り返し実行する間に、ステップb12の判別処理において現在温度Tniが最終昇温目標温度の設定値Txiに達しているゾーンTi が検出されると、PMC用CPU18は、ゾーンTi に対応する昇温所要時間記憶レジスタUi に該時点におけるタイマTの計測値を記憶し(ステップb13)、このゾーンTi に対応する昇温所要時間取得フラグGi に1をセットする(ステップb14)。ステップb10の判別処理から明らかなように、昇温所要時間取得フラグGi が一旦セットされたゾーンTi に対しては現在温度Tniの検出に関する処理が非実行とされるので、最終昇温目標温度達成後に昇温所要時間記憶レジスタUi の値が誤って置き換えられるといったことは発生しない。
【0057】
次いで、PMC用CPU18は指標jおよびカウンタkの値を共に零に初期化し(ステップb15)、j=0 to N−1の各ゾーンTj の昇温所要時間取得フラグGj のうち幾つがセットされているかを検出する。要するに、j=0 to N−1の全ての昇温所要時間取得フラグGj を端から検索し、1がセットされているフラグが検出される度にkの値をカウントアップするのである(ステップb16〜ステップb19)。
【0058】
そして、PMC用CPU18は、カウンタkの値がゾーン総数Nに達しているか否か、つまり、i=0 to N−1の全てのゾーンTi が最終昇温目標温度の設定値Txiに達し、その昇温所要時間Ui が既に記録されているか否かを判別する(ステップb20)。当然、k=Nであれば全てのゾーンTi が最終昇温目標温度の設定値Txiに達しており、kの値がNよりも小さければ最終昇温目標温度の設定値Txiに達していないゾーンTi が1以上は存在することを意味する。
【0059】
最終昇温目標温度の設定値Txiに達していないゾーンTi が存在する場合、PMC用CPU18は、再び指標iの値を歩進し(ステップb21)、ステップb8の処理へと移行して、歩進された指標iの値に基いて前記と同様の処理を繰り返し実行する。なお、ステップb8の処理へ移行する前にステップb21の処理を実行するというのは必ずしも必須の要件ではない(ステップb20の判別結果が偽となった時点で直ちにステップb8の処理へ移行してもよい)。
【0060】
そして、最終的に、最も昇温所要時間の長いゾーンTi の現在温度Tniが最終昇温目標温度の設定値Txiに達し、前述したステップb13〜ステップb14の処理によりi=0 to N−1の各ゾーンTi の全ての昇温所要時間記憶レジスタUi に各ゾーンTi の昇温所要時間が記憶され、セットアップされた昇温所要時間取得フラグGi の数kがゾーン総数Nに達したことがステップb20の判別処理で検出されると、PMC用CPU18は昇温所要時間の最大値を記憶する最大値レジスタMt の値と指標iの値を一旦零に初期化する(ステップb22,ステップb23)。
【0061】
以下、PMC用CPU18は指標iの値を0からN−1 まで順次更新してその都度該指標iに対応する昇温所要時間記憶レジスタUi の値を読み込み、レジスタUiの値がレジスタMt の値よりも大きければレジスタUi の値をその時点における最大値としてレジスタMt に更新記憶する一方、レジスタUi の値が最大値記憶レジスタMt の値と同等以下であればレジスタUiの値をそのまま保持し行く(ステップb24〜ステップb27)。最終的に、ステップb24の判別結果が真となった時点でレジスタMt に残っている値が最も昇温の遅いゾーンの昇温所要時間の値である。
【0062】
なお、ステップb22〜ステップb27の処理に代え、ステップb20の判別結果が真となった時点のレジスタUi の値を最大値記憶レジスタMt にそのまま置き換えるようにしてもよい。ステップb20の判別結果が真となるのは最も昇温の遅いゾーンの温度が最終昇温目標温度に達した時点であり、第N回目のステップb13の処理、つまり、最も昇温の遅いゾーンに対して実行される処理で読み込まれた昇温所要時間の値がステップ20の判別処理完了時点でそのままレジスタUi に保持されているからである。当然、ステップb20の判別結果が真となった時点でこのような置き換え処理を行う場合には、ステップb22〜ステップb27の処理は不要であり、置き換え実行後、直ちにステップb28の処理に進むことになる。
【0063】
上述したいずれかの処理により最も昇温の遅いゾーンの昇温所要時間Mt を求めたPMC用CPU18は再び指標iの値を零に初期化し(ステップb28)、i=0 to N−1の各ゾーンTi 毎に昇温所要時間の最大値Mt に対する各ゾーンTi 毎の昇温所要時間の割合Priを算出し(ステップb29〜ステップb31)、その値をi=0 to N−1の各ゾーンTi 毎のPID制御処理によって出力される通電ON時間に乗じる係数(PID制御処理によって出力されるON/OFFデューティ比に乗じて補正されたデューティ比を求める係数)として不揮発性メモリ24に設定する(ステップb32)。
【0064】
使用樹脂や金型の変更がない限り、以降の昇温作業ではこの係数PriをPID制御処理によって出力される通電ON時間に乗じ、補正された通電ON時間として各ゾーンTi のヒータの通電ON/OFF制御が行われることになる。若しくは、PID制御処理によって出力されるデューティ比に係数Priを乗じて補正されたデューティ比を求め、このデューティ比によって各ゾーンTi のヒータが通電ON/OFF制御されることになる。
【0065】
従って、PID制御処理し各ゾーン常ON制御を行うような場合(デューティ比が1の場合)、最終昇温目標温度に到達するのが最も遅いゾーンのヒータは常にPri=Ui /Mt =Mt /Mt =1で1000ミリ秒×1=1000ミリ秒(デューティ比=1)となり常ON制御となる。また、他のゾーンのヒータは、1000ミリ秒×Pri(Pri<1)がON時間となり、ON/OFF制御がなされることになり最終的な昇温所要時間が、昇温カーブの傾きが最も小さいゾーンのヒータの昇温所要時間Ui =Mt に一致するように通電ON/OFF制御されることになる。結果的に、図11に示されるように最終昇温目標温度が各ゾーンとも同じ値に設定された場合では、昇温カーブの傾きが最も小さいゾーンのヒータ、例えば、図11の例でいえばシリンダ基部T3 の昇温特性に他のゾーンT0 ,T1 ,T2 の昇温特性が合わせられることになる。ただし、これはあらゆる場合において必ず全ての昇温カーブの傾きが、傾きの最も小さいゾーンの昇温カーブの傾きに一致するということを意味しない。例えば、図11においてシリンダ中央部T2 のゾーンの最終昇温目標温度の設定値がシリンダ基部T3 のゾーンの最終昇温目標温度の設定値よりも高ければ、シリンダ中央部T2 のゾーンの昇温カーブの傾きがシリンダ基部T3 のゾーンの昇温カーブの傾きよりも急になる場合が有り得る。上述の通電ON/OFF制御で一致するように制御されるのは飽くまで最終昇温目標温度までの昇温所要時間である。
【0066】
この構成によっても最初に述べた実施形態と同様、昇温過程における各ゾーンの現在温度の相互関係を各々のゾーンの最終昇温目標温度の相互関係に相関させることができ、また、各ゾーン毎の昇温所要時間の差をなくすことができる。
【0067】
なお、各ゾーンの現在温度が各々の最終昇温目標温度に到達した後は係数Priを乗じることのない通常のPID制御による温度制御が行われる。
【0068】
前記別の実施形態においては、各ゾーンの昇温時間を最も時間の要するゾーンの昇温時間に合わせるようにしたが、この最も時間の要するゾーンの昇温時間よりも長い時間で全てのゾーンを昇温させてもよい。この場合には、図7におけるステップb24の次に最大値記憶レジスタMt に記憶する昇温の最も遅いゾーンの昇温所要時間をディスプレイ29に表示させると共に、この表示した昇温所要時間よりも長い昇温所要時間よりも長い昇温所要時間を設定可能であることを趣旨とするメッセージ等を表示させ、作業者に昇温所要時間を最大値記憶レジスタMt に設定させる。また、予め昇温の最も遅いゾーンの昇温所要時間が分かっていれば、この昇温の最も遅いゾーンの昇温所要時間以上の長い昇温所要時間を設定可能とする(この場合には、ステップb22〜b27の処理は必要がなくなる)。こうして昇温所要時間が最大値記憶レジスタMt に設定された後は、(ステップb28〜b32の処理を行って係数を求め、設定された昇温所要時間で全てのゾーンが目標温度まで昇温させるようにする。
このように昇温時間を制御することによって、全ゾーンの昇温完了時刻を成形開始時刻直前にすることができ、無駄なヒータ通電時間を抑えることができ、省エネルギーになると共に樹脂の変化も最低限に抑えることができる。また、作業者によって昇温開始時刻が異なっても昇温完了時刻を同一時刻にすることができるから、成形開始時の熱の状態を各成形機毎あるいは各日時毎に安定化することができる。
【0069】
さらに、前記実施形態では全ゾーンの昇温完了時刻を一致させるようにしたが特別のゾーンのみこの特別のゾーンの測定昇温所要時間よりも長くかつ、他のゾーンの昇温所要時間と異なる昇温所要時間を設定し、その昇温完了時間を変えるようにしてもよい。例えば、物性的な変化が早い樹脂を使用するような場合、ノズルの昇温完了時刻を成形開始直前に設定したいとのような場合には、この特別のゾーンに対して昇温所要時間を別に設定するようにしてもよい。この場合には、この特別のゾーンに対してのみ他のゾーンとは異なる(前記例のノズルの昇温所要時間の場合は、他のゾーンの昇温所要時間よりも長い時間となる)昇温所要時間を設定し、図7の(ステップb28以下の処理で、特別なゾーンに対しては、このゾーンに設定された昇温完了時間をステップb29のMt とし係数を求め、他のゾーンに対しては共通の昇温完了時間(Mt)で、ステップb29以下の処理を行い係数を求めればよい。
【0070】
【発明の効果】
本発明によれば、射出成形機のノズルおよびシリンダの各部位の温度が最終昇温目標温度に達するまでの所要時間を制御することができ、また、昇温過程における各部位の温度の相互関係を各々の最終昇温目標温度の相互関係に相関させて維持することができる。この結果、ノズル部分の残留樹脂の熱分解や炭化等による成形異常や昇温過程における各部位の温度差によるスクリューやその先端部品の折損等といった事故を未然に防止することができる
【図面の簡単な説明】
【図1】本発明の方法を適用した射出成形機の制御装置の要部と該射出成形機のシリンダ周辺部の要部を示すブロック図である。
【図2】ノズルおよびシリンダ上の温度制御ゾーンを示す概念図である。
【図3】PMC用CPUによるシリンダおよびノズルの温度制御の概略を示すフローチャートである。
【図4】シリンダおよびノズルの温度制御の概略を示すフローチャートの続きである。
【図5】ヒータの通電ON/OFF時間のデューティ比を調整することにより昇温特性の異なる各ゾーンの最終的な昇温所要時間を一致させるようにした別の実施形態の測定演算処理の概略を示すフローチャートである。
【図6】測定演算処理の概略を示すフローチャートの続きである。
【図7】測定演算処理の概略を示すフローチャートの続きである。
【図8】本発明の一実施形態の作用原理を説明する線図である。
【図9】本発明の一実施形態の作用原理を説明する線図である(ステップの分割数を大きく設定した場合)。
【図10】本発明の一実施形態の作用原理を説明する線図である(ゾーン毎の最終昇温目標温度が異なる場合)。
【図11】従来の昇温制御の作用原理を説明する線図である。
【符号の説明】
3 射出シリンダ
4 ノズル
18 PMC用CPU
22 バス
23a 入力回路
23b 出力回路
24 不揮発性メモリ
30 AD変換器
100 制御装置

Claims (3)

  1. 射出成形機のノズルおよびシリンダの各部位に独立したヒータを設けてノズルおよびシリンダの温度を制御する射出成形機の温度制御方法において、設定目標温度に到達するに必要とされる昇温所要時間を各部位毎に測定し、昇温所要時間の最大値以上の昇温所要時間を設定し、該設定昇温所要時間に対する各部位毎の昇温所要時間の割合を求め、各部位のヒータの通電ON/OFF時間の通電時間または電力量を各々の割合に比例させて制御するようにしたことを特徴とする射出成形機の温度制御方法。
  2. 射出成形機のノズルおよびシリンダの各部位に独立したヒータを設けてノズルおよびシリンダの温度を制御する射出成形機の温度制御方法において、設定目標温度に到達するに必要とされる昇温所要時間を各部位毎に測定し、昇温所要時間の最大値に対する各部位毎の昇温所要時間の割合を求め、各部位のヒータの通電ON/OFF時間の通電時間または電力量を各々の割合に比例させて制御するようにしたことを特徴とする射出成形機の温度制御方法。
  3. 射出成形機のノズルおよびシリンダの各部位に独立したヒータを設けてノズルおよびシリンダの温度を制御する射出成形機の温度制御方法において、設定目標温度に到達するに必要とされる昇温所要時間を各部位毎に測定し、各部位に対して夫々測定した昇温所要時間よりも長い昇温所要時間を夫々設定し、各部位毎の設定昇温所要時間に対する対応する部位の前記測定した昇温所要時間の割合を求め、各部位のヒータの通電ON/OFF時間の通電時間または電力量を各々の割合に比例させて制御するようにしたことを特徴とする射出成形機の温度制御方法。
JP12083596A 1996-04-19 1996-04-19 射出成形機の温度制御方法 Expired - Fee Related JP3611667B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12083596A JP3611667B2 (ja) 1996-04-19 1996-04-19 射出成形機の温度制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12083596A JP3611667B2 (ja) 1996-04-19 1996-04-19 射出成形機の温度制御方法

Publications (2)

Publication Number Publication Date
JPH09277337A JPH09277337A (ja) 1997-10-28
JP3611667B2 true JP3611667B2 (ja) 2005-01-19

Family

ID=14796147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12083596A Expired - Fee Related JP3611667B2 (ja) 1996-04-19 1996-04-19 射出成形機の温度制御方法

Country Status (1)

Country Link
JP (1) JP3611667B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537162B2 (ja) * 2004-09-22 2010-09-01 東芝機械株式会社 射出成形機における多点温度制御方法
JP2006305778A (ja) * 2005-04-26 2006-11-09 Toshiba Mach Co Ltd 射出成形機の制御装置
JP5095516B2 (ja) * 2008-06-19 2012-12-12 株式会社日本製鋼所 射出成形機の制御方法
WO2012001492A1 (en) * 2010-06-28 2012-01-05 Pirelli Tyre S.P.A. Method for controlling the heating - up of an extrusion device for producing elastomeric semi - finished product
JP5839484B2 (ja) * 2012-06-12 2016-01-06 住友重機械工業株式会社 射出成形機
JP6985346B2 (ja) * 2019-09-04 2021-12-22 日精樹脂工業株式会社 成形機の加熱部の同時昇温方法および成形機の温度制御装置
CN116107367B (zh) * 2023-04-13 2023-06-16 成都瀚辰光翼生物工程有限公司 温度调节控制方法及装置、温度调控设备和可读存储介质

Also Published As

Publication number Publication date
JPH09277337A (ja) 1997-10-28

Similar Documents

Publication Publication Date Title
KR0155416B1 (ko) 사출 성형기의 온도 제어 방법
JP3611667B2 (ja) 射出成形機の温度制御方法
JPH0358821A (ja) 電動式射出成形機
US6328551B1 (en) Excessive load detecting device for an injection screw of an injection molding machine
US6861018B2 (en) Temperature control method and apparatus for injection molding structure
JP3984415B2 (ja) 射出成形機の温度制御方法
JP3462951B2 (ja) 射出成形機の温度制御装置
JPH09193225A (ja) 成形機の温度制御方法
JP3028281B2 (ja) 射出成形機の温度制御方法
JPS6364717A (ja) 射出成形機の制御方法
JP2632433B2 (ja) 射出成形機のモニタ装置
JPH082573B2 (ja) 射出成形機のシリンダ温度制御方法
JPH0262575A (ja) 定着装置
JPH07205230A (ja) 射出成形機におけるリザーバ内圧調整方法
JP3419191B2 (ja) 熱処理装置
JPS6361313A (ja) 複数の温度制御部を有する装置系の温度制御装置
JP3778988B2 (ja) 射出成形機のノズル温度制御方法
JPH08132501A (ja) 射出成形機の加熱筒温度の制御方法
JPH085102B2 (ja) スクリュー保護方法
WO2021246526A1 (ja) 射出成形機の制御装置及びプログラム
JP5882848B2 (ja) 射出成形機のヒータ電力測定装置
JP3005661B2 (ja) 射出成形機の温度制御装置
JPH1158481A (ja) 射出成形機の加熱装置の温度制御方法
JP2585104B2 (ja) 射出成形装置
JPH0619681B2 (ja) 温度制御装置の自動チユ−ニング装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees