JP3591511B2 - 電界放射型電子源の製造方法 - Google Patents

電界放射型電子源の製造方法 Download PDF

Info

Publication number
JP3591511B2
JP3591511B2 JP2001392701A JP2001392701A JP3591511B2 JP 3591511 B2 JP3591511 B2 JP 3591511B2 JP 2001392701 A JP2001392701 A JP 2001392701A JP 2001392701 A JP2001392701 A JP 2001392701A JP 3591511 B2 JP3591511 B2 JP 3591511B2
Authority
JP
Japan
Prior art keywords
electric field
oxide film
semiconductor
drift layer
strong electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001392701A
Other languages
English (en)
Other versions
JP2003197097A (ja
Inventor
勉 櫟原
卓哉 菰田
徹 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001392701A priority Critical patent/JP3591511B2/ja
Publication of JP2003197097A publication Critical patent/JP2003197097A/ja
Application granted granted Critical
Publication of JP3591511B2 publication Critical patent/JP3591511B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電界放射により電子線を放射するようにした電界放射型電子源の製造方法に関するものである。
【0002】
【従来の技術】
従来から、導電性基板の一表面側に酸化した多孔質半導体層よりなる強電界ドリフト層を形成し、強電界ドリフト層上に表面電極を形成した電界放射型電子源が提案されている。
【0003】
この種の電界放射型電子源10’は、例えば、図14に示すように導電性基板としてのn形シリコン基板1の主表面側に酸化した多孔質多結晶シリコン層(多孔質化された多結晶シリコン層)よりなる強電界ドリフト層6が形成され、強電界ドリフト層6上に金属薄膜(例えば、金薄膜)よりなる表面電極7が形成されている。また、n形シリコン基板1の裏面にはオーミック電極2が形成されており、n形シリコン基板1とオーミック電極2とで下部電極12を構成している。なお、図14に示す例では、下部電極12と強電界ドリフト層6との間にノンドープの多結晶シリコン層3を介在させてあるが、多結晶シリコン層3を介在させずに下部電極12上に強電界ドリフト層6を形成した構成も提案されている。
【0004】
図14に示す構成の電界放射型電子源10’から電子を放出させるには、表面電極7に対向配置された例えば透明導電膜(例えば、ITO膜)よりなるコレクタ電極21を設け、表面電極7とコレクタ電極21との間を真空とした状態で、表面電極7が下部電極12に対して高電位側となるように表面電極7と下部電極12との間に直流電圧Vpsを印加するとともに、コレクタ電極21が表面電極7に対して高電位側となるようにコレクタ電極21と表面電極7との間に直流電圧Vcを印加する。各直流電圧Vps,Vcを適宜に設定すれば、下部電極12から注入された電子が強電界ドリフト層6をドリフトし表面電極7を通して放出される(図14中の一点鎖線は表面電極7を通して放出された電子eの流れを示す)。なお、表面電極7の厚さは10〜15nm程度に設定されている。
【0005】
上述の強電界ドリフト層6は、下部電極12上にノンドープの多結晶シリコン層を形成した後に、該多結晶シリコン層を陽極酸化処理にて多孔質化することで多孔質多結晶シリコン層を形成し、この多孔質多結晶シリコン層を急速熱酸化法によって例えば900℃の熱処理温度で急速熱酸化することにより形成されており、図15に示すように、少なくとも、n形シリコン基板1の主表面側(つまり、下部電極12における表面電極7側)に列設された柱状の多結晶シリコンのグレイン51と、グレイン51の表面に形成された薄い絶縁膜52と、グレイン51間に介在する多数のナノメータオーダのシリコン微結晶63と、各シリコン微結晶63の表面に形成され当該シリコン微結晶63の結晶粒径よりも小さな膜厚の多数の絶縁膜64とから構成されると考えられる。要するに、強電界ドリフト層6は、多結晶シリコン層の各グレインの表面が多孔質化し各グレインの中心部分では結晶状態が維持されている。なお、各グレイン51は、下部電極12の厚み方向に延びている。また、各絶縁膜52,64はシリコン酸化膜により構成されている。
【0006】
上述の電界放射型電子源10’では、次のようなモデルで電子放出が起こると考えられる。すなわち、表面電極7と下部電極12との間に表面電極7を高電位側として直流電圧Vpsを印加するとともに、コレクタ電極21と表面電極7との間にコレクタ電極21を高電位側として直流電圧Vcを印加することにより、直流電圧Vpsが所定値(臨界値)に達すると、下部電極12から強電界ドリフト層6へ熱的励起により電子eが注入される。一方、強電界ドリフト層6に印加された電界の大部分は絶縁膜64にかかるから、注入された電子eは絶縁膜64にかかっている強電界により加速され、強電界ドリフト層6におけるグレイン51の間の領域を表面に向かって図15中の矢印の向き(図15における上向き)へドリフトし、表面電極7をトンネルし真空中に放出される。
【0007】
しかして、強電界ドリフト層6では下部電極12から注入された電子がシリコン微結晶63でほとんど散乱されることなく絶縁膜64にかかっている電界で加速されてドリフトし、表面電極7を通して放出され(弾道型電子放出現象)、強電界ドリフト層6で発生した熱がグレイン51を通して放熱されるから、電子放出時にポッピング現象が発生せず、安定して電子を放出することができる。なお、強電界ドリフト層6の表面に到達した電子はホットエレクトロンであると考えられ、表面電極7を容易にトンネルし真空中に放出される。
【0008】
ところで、上述の電界放射型電子源10’では、n形シリコン基板1とオーミック電極2とで下部電極12を構成しているが、図16に示すように、例えばガラス基板よりなる絶縁性基板11の一表面上に金属材料よりなる下部電極12を形成した電界放射型電子源10”も提案されている。ここに、上述の図14に示した電界放射型電子源10’と同様の構成要素には同一の符号を付して説明を省略する。
【0009】
図16に示す構成の電界放射型電子源10”から電子を放出させるには、表面電極7に対向配置された例えば透明導電膜(例えば、ITO膜)よりなるコレクタ電極21を設け、表面電極7とコレクタ電極21との間を真空とした状態で、表面電極7が下部電極12に対して高電位側となるように表面電極7と下部電極12との間に直流電圧Vpsを印加するとともに、コレクタ電極21が表面電極7に対して高電位側となるようにコレクタ電極21と表面電極7との間に直流電圧Vcを印加する。各直流電圧Vps,Vcを適宜に設定すれば、下部電極12から注入された電子が強電界ドリフト層6をドリフトし表面電極7を通して放出される(図16中の一点鎖線は表面電極7を通して放出された電子eの流れを示す)。なお、強電界ドリフト層6の表面に到達した電子はホットエレクトロンであると考えられ、表面電極7を容易にトンネルし真空中に放出される。
【0010】
上述の各電界放射型電子源10’,10”では、表面電極7と下部電極12との間に流れる電流をダイオード電流Ipsと呼び、コレクタ電極21と表面電極7との間に流れる電流をエミッション電流(放出電子電流)Ieと呼ぶことにすれば(図14および図16参照)、ダイオード電流Ipsに対するエミッション電流Ieの比率(=Ie/Ips)が大きいほど電子放出効率(=(Ie/Ips)×100〔%〕)が高くなる。なお、上述の電界放射型電子源10’,10”では、表面電極7と下部電極12との間に印加する直流電圧Vpsを10〜20V程度の低電圧としても電子を放出させることができ、直流電圧Vpsが大きいほどエミッション電流Ieが大きくなる。
【0011】
ところで、上述の電界放射型電子源10’,10”の製造プロセスにおいて強電界ドリフト層6を形成するにあたっては、下部電極12の一表面側に半導体層としてノンドープの多結晶シリコン層を形成する成膜工程と、多結晶シリコン層を陽極酸化処理にて多孔質化することにより多結晶シリコンのグレイン51およびシリコン微結晶63を含む多孔質多結晶シリコン層を形成する陽極酸化処理工程と、多孔質多結晶シリコン層を高温プロセスである急速熱酸化法によって急速熱酸化してグレイン51およびシリコン微結晶63の表面にそれぞれ薄い絶縁膜(シリコン酸化膜)52,64を形成する酸化工程とを有している。
【0012】
陽極酸化処理工程では、陽極酸化に用いる電解液としてフッ化水素水溶液とエタノールとを略1:1で混合した混合液を用いている。また、酸化工程では、例えば、ランプアニール装置を用い、基板温度を乾燥酸素中で室温から所定の熱処理温度(例えば、900℃)まで短時間で上昇させた後、基板温度を上記熱処理温度である900℃で所定の熱処理時間(例えば、1時間)だけ維持することにより酸化し、その後、基板温度を室温まで下降させている。
【0013】
【発明が解決しようとする課題】
しかしながら、上述の電界放射型電子源10’,10”では、長時間連続して駆動した場合にダイオード電流Ipsが経時的に減少し、それに伴ってエミッション電流Ieも減少してしまうという不具合があった。この種の不具合が発生する原因としては、絶縁膜64中のトラップに電子が捕獲されて絶縁膜64にかかる電界が緩和され、電子のトンネル確率が低下してしまうことが考えられる。
【0014】
そこで、上述の製造方法で形成された電界放射型電子源10’,10”の強電界ドリフト層6に関して種々の分析評価(例えば、フォトルミネッセンス測定、断面TEM観察、XPSによる組成分析など)を行った結果、強電界ドリフト層6の表面に近づくほど絶縁膜64の膜厚が大きくなってシリコン微結晶63が破壊され(つまり、シリコン微結晶63にダメージが発生し)、強電界ドリフト層6の表面近傍ではシリコン微結晶63が存在していないこという知見が得られた。したがって、従来の電界放射型電子源10’,10”では強電界ドリフト層6へ注入された電子の一部が電子の平均自由行程よりも厚い絶縁膜64で散乱されたり捕獲されたりするために電子放出効率が低下してしまったり、絶縁耐圧および寿命が低下してしまうことが考えられる。
【0015】
さらに、上述の製造方法では、酸化工程において比較的高温の熱処理温度(例えば、900℃)で比較的長い熱処理時間(例えば、1時間)を必要とするプロセスを採用しているので、プロセス時間が長くなってしまうという不具合や、上述の絶縁性基板11として比較的高価な石英ガラス基板に比べて比較的安価であるが耐熱温度の低い無アルカリガラス基板や低アルカリガラス基板を用いることができないという不具合があった。
【0016】
本発明は上記事由に鑑みて為されたものであり、その目的は、従来に比べて電子放出特性の経時安定性の向上および製造コストの低減が可能な電界放射型電子源の製造方法を提供することにある。
【0017】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化工程からなり、窒化処理が、急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
【0018】
また、酸化処理と窒化処理とを同一装置内で行うことができ、酸化処理と窒化処理との間で不純物が付着するのを防止することができる。
【0019】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程と、酸化工程の後で各酸化膜をアニールするアニール工程とからなり、窒化処理が、急速熱窒化法により規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
また、請求項2の発明では、請求項1の発明に比べて各絶縁膜の形成に伴う高温での熱処理時間をさらに短縮化できる。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になる。
【0020】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法で各半導体微結晶それぞれの表面に酸化膜を形成する第1の酸化工程と、第1の酸化工程の後で各酸化膜をアニールするアニール工程と、アニール工程の後で急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程とからなり、窒化処理が、急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
また、請求項3の発明では、請求項2の発明に比べて各絶縁膜中の欠陥を低減でき、電子放出特性を向上させることが可能になる。
【0021】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
また、請求項4の発明では、請求項1の発明に比べて各絶縁膜の形成に伴う高温での熱処理時間をさらに短縮化できる。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になる。
【0022】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する第1の酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程からなり、絶縁膜形成工程は、窒化処理の後で急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程と、第2の酸化工程の後で急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とを有することを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
また、請求項5の発明では、各絶縁膜中の欠陥を低減でき、電子放出特性を向上させることが可能になる。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく第1の酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、第1の酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になる。
【0023】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程と、アニール工程の後で急速熱窒化法により規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とからなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
また、請求項6の発明では、各絶縁膜中の欠陥を低減でき、電子放出特性を向上させることが可能になる。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になる。
【0024】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶を形成した後に、急速熱酸化法による第1の規定の熱処理温度まで上昇させてからの前記各半導体微結晶へのダメージの発生を抑制可能な熱処理時間での酸化処理と酸化処理後の急速熱窒化法による第2の規定の熱処理温度まで上昇させてからの前記各半導体微結晶へのダメージの発生を抑制可能な熱処理時間での窒化処理とからなる基本工程を複数回繰り返すことで各絶縁膜を形成することを特徴とし、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上し、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。
【0025】
請求項8の発明は、請求項1〜3,5〜7の発明において、前記熱処理時間が5分を超えないことを特徴とし、実施態様である。
【0026】
【発明の実施の形態】
(実施形態1)
本実施形態で説明する図2に示す構成の電界放射型電子源10では、導電性基板として抵抗率が導体の抵抗率に比較的近い単結晶のn形シリコン基板(例えば、抵抗率が略0.01Ωcm〜0.02Ωcmの(100)基板)1を用いている。
【0027】
本実施形態の電界放射型電子源10は、図2に示すように、n形シリコン基板1の主表面側に酸化した多孔質多結晶シリコン層よりなる強電界ドリフト層6が形成され、強電界ドリフト層6上に表面電極7が形成され、n形シリコン基板1の裏面にオーミック電極2が形成されている。なお、本実施形態では、n形シリコン基板1とオーミック電極2とで下部電極12を構成している。したがって、表面電極7は下部電極12に対向しており、下部電極12と表面電極7との間に強電界ドリフト層6が介在している。
【0028】
表面電極7は、例えば、Au,Pt,Crなどの仕事関数が小さく耐酸化性が高くて化学的に安定な金属からなる金属膜あるいはこれらの金属膜の積層膜により形成すればよい。なお、表面電極7の厚さは10〜15nm程度の範囲内で設定すればよい。
【0029】
図2に示す構成の電界放射型電子源10から電子を放出させるには、図3に示すように、表面電極7に対向配置された例えば透明導電膜(例えば、ITO膜)よりなるコレクタ電極21を設け、表面電極7とコレクタ電極21との間を真空とした状態で、表面電極7が下部電極12に対して高電位側となるように表面電極7と下部電極12との間に直流電圧Vpsを印加するとともに、コレクタ電極21が表面電極7に対して高電位側となるようにコレクタ電極21と表面電極7との間に直流電圧Vcを印加する。各直流電圧Vps,Vcを適宜に設定すれば、下部電極12から注入された電子が強電界ドリフト層6をドリフトし表面電極7を通して放出される(図3中の一点鎖線は表面電極7を通して放出された電子eの流れを示す)。
【0030】
本実施形態における電界放射型電子源10では、表面電極7と下部電極12との間に流れる電流をダイオード電流Ipsと呼び、コレクタ電極21と表面電極7との間に流れる電流をエミッション電流(放出電子電流)Ieと呼ぶことにすれば(図3参照)、ダイオード電流Ipsに対するエミッション電流Ieの比率(=Ie/Ips)が大きいほど電子放出効率(=(Ie/Ips)×100〔%〕)が高くなる。なお、本実施形態の電界放射型電子源10では、表面電極7と下部電極12との間に印加する直流電圧Vpsを10〜20V程度の低電圧としても電子を放出させることができ、直流電圧Vpsが大きいほどエミッション電流Ieが大きくなる。
【0031】
ところで、本実施形態における強電界ドリフト層6は、従来例と同様、図15に示すように、少なくとも、n形シリコン基板1の主表面側(つまり、下部電極12における表面電極7側)に列設された柱状の多結晶シリコンのグレイン(半導体結晶)51と、グレイン51の表面に形成された薄い絶縁膜52と、グレイン51間に介在する多数のナノメータオーダのシリコン微結晶(半導体微結晶)63と、各シリコン微結晶63の表面に形成され当該シリコン微結晶63の結晶粒径よりも小さな膜厚の多数の絶縁膜64とから構成されると考えられる。要するに、強電界ドリフト層6は、多結晶シリコン層の各グレインの表面が多孔質化し各グレインの中心部分では結晶状態が維持されている。なお、各グレイン51は、下部電極12の厚み方向に延びている。また、絶縁膜52,64については後述する製造方法の説明の際に詳述する。
【0032】
本実施形態の電界放射型電子源10では、次のようなモデルで電子放出が起こると考えられる。すなわち、表面電極7を真空中に配置し表面電極7と下部電極12との間に表面電極7を高電位側として直流電圧Vpsを印加するとともに、コレクタ電極21と表面電極7との間にコレクタ電極21を高電位側として直流電圧Vcを印加することにより、直流電圧Vpsが所定値(臨界値)に達すると、下部電極12(n形シリコン基板1)から強電界ドリフト層6へ熱的励起により電子eが注入される。一方、強電界ドリフト層6に印加された電界の大部分は絶縁膜64にかかるから、注入された電子eは絶縁膜64にかかっている強電界により加速され、強電界ドリフト層6におけるグレイン51の間の領域を表面に向かって図15中の矢印の向き(図15中の上向き)へドリフトし、表面電極7をトンネルして真空中に放出される。
【0033】
しかして、強電界ドリフト層6では下部電極12から注入された電子がシリコン微結晶63でほとんど散乱されることなく、絶縁膜64にかかっている強電界で加速されてドリフトし表面電極7を通して放出され(弾道型電子放出現象)、強電界ドリフト層6で発生した熱がグレイン51を通して放熱されるから、電子放出時にポッピング現象が発生せず、安定して電子を放出することができるものと考えられる。なお、強電界ドリフト層6の表面に到達した電子はホットエレクトロンであると考えられ、表面電極7を容易にトンネルし真空中に放出される。
【0034】
以下、本実施形態の電界放射型電子源10の製造方法について図1を参照しながら説明する。
【0035】
まず、n形シリコン基板1の裏面にオーミック電極2を形成した後、n形シリコン基板1の主表面(一表面)上に半導体層としてノンドープの多結晶シリコン層3を形成する成膜工程を行うことにより、図1(a)に示すような構造が得られる。なお、多結晶シリコン層3の成膜方法としては、例えば、CVD法(例えば、LPCVD法、プラズマCVD法、触媒CVD法など)やスパッタ法やCGS(Continuous Grain Silicon)法などを採用すればよい。
【0036】
ノンドープの多結晶シリコン層3を形成した後、電解液を用いた陽極酸化処理にて陽極酸化の対象となる半導体層である多結晶シリコン層3を多孔質化する陽極酸化処理工程を行うことにより、多孔質半導体層である多孔質多結晶シリコン層4が形成され、図1(b)に示すような構造が得られる。ここにおいて、陽極酸化処理工程により形成された多孔質多結晶シリコン層4は、多数の多結晶シリコンのグレイン51(図15参照)および多数のシリコン微結晶63(図15参照)を含んでいる。また、陽極酸化処理工程では、55wt%のフッ化水素水溶液とエタノールとを略1:1で混合した混合液からなる電解液の入った処理槽を利用しており、500Wのタングステンランプからなる光源により多結晶シリコン層3の表面に光照射を行いながら下部電極12と白金電極よりなる陰極との間に電流を流すことで多結晶シリコン層3を主表面から所定深さ(本実施形態では、下部電極12に達しない深さに設定してあるが、下部電極12に達する深さに設定してもよい)まで多孔質化している。
【0037】
上述の陽極酸化処理工程の終了した後に、エタノールによるリンスを行ってから、多孔質多結晶シリコン層4に含まれている各グレイン51および各シリコン微結晶63の表面に上述の絶縁膜52,64を形成する絶縁膜形成工程を行うことによって、上述のグレイン51、シリコン微結晶63、各絶縁膜52,64を含む強電界ドリフト層6が形成され、図1(c)に示すような構造が得られる。なお、絶縁膜形成工程については後述する。
【0038】
強電界ドリフト層6を形成した後は、金属材料(例えば、金)からなる表面電極7を蒸着法などによって形成することにより、図1(d)に示す構造の電界放射型電子源10が得られる。なお、本実施形態では、表面電極7を蒸着法により形成しているが、表面電極7の形成方法は蒸着法に限定されるものではなく、例えばスパッタ法を用いてもよい。
【0039】
ところで、上述の絶縁膜形成工程では、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚(シリコン微結晶63の結晶粒径よりも小さな膜厚)程度の酸化膜(シリコン酸化膜)を形成する酸化処理と、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜(シリコン酸化膜)の膜質を改善する窒化処理とを有している。
【0040】
酸化処理は、急速熱酸化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間(以下、第1の規定の熱処理時間と称す)で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成する酸化工程からなる。この酸化工程では、ランプアニール装置を用い、例えば酸素ガス雰囲気中において第1の規定の熱処理温度(例えば、900℃)で上記第1の規定の熱処理時間(例えば、5分)だけ酸化を行う。すなわち、第1の規定の熱処理時間は従来の急速熱酸化法による酸化工程での所定の熱処理時間(1時間)に比べて大幅に短縮してある。ここに、第1の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第1の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。
【0041】
また、窒化処理は、急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間(以下、第2の規定の熱処理時間と称す)で各酸化膜を窒化する窒化工程からなる。この窒化工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において第2の規定の熱処理温度(例えば、900℃)で上記第2の規定の熱処理時間(例えば、5分)だけ窒化を行う。ここに、第2の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第2の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。また、本実施形態では、窒化工程においてNOガスを利用しているので、各酸化膜の窒化と同時に酸化も進むから、結果的に各絶縁膜52,64は酸窒化膜(シリコン酸窒化膜)になる。なお、窒化工程で用いるガスはNOガスに限らず、例えばNOガス,NHガスなどを用いてもよい。
【0042】
しかして、上述の製造方法によれば、絶縁膜52,64を形成する絶縁膜形成工程において、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成するとともにグレイン51の表面に酸化膜を形成し、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜を窒化して膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、本実施形態では、上記酸化処理と上記窒化処理とを同一装置内で行うことができるので、上記酸化処理と上記窒化処理との間で不純物が付着するのを防止することができる。
【0043】
上述の製造方法にて製造した電界放射型電子源10の電子放出特性を図4に、電子放出特性の経時変化を測定した結果を図5にそれぞれ示し、また、絶縁膜形成工程において急速熱窒化法のみを採用し熱処理温度を900℃、熱処理時間を5分とした比較例1の電界放射型電子源の電子放出特性を図6に、比較例1の電子放出特性の経時変化を測定した結果を図7にそれぞれ示し、また、絶縁膜形成工程において急速熱窒化法のみを採用し熱処理温度を900℃、熱処理時間を60分とした比較例2の電界放射型電子源の電子放出特性を図8に、比較例2の電子放出特性の経時変化を測定した結果を図9にそれぞれ示す。
【0044】
電界放射型電子源10および各比較例1,2の電界放射型電子源の電子放出特性の測定は、真空チャンバ(図示せず)内に電界放射型電子源10ないし比較例1,2の電界放射型電子源を導入して、上述の図14のように、表面電極7に対向してコレクタ電極21を配置し、表面電極7を下部電極12に対して高電位側として直流電圧Vpsを印加するとともに、コレクタ電極21を表面電極7に対して高電位側として直流電圧Vcを印加することによって行った。
【0045】
図4,6,8は直流電圧Vcを100V一定、真空チャンバ内の真空度を5×10−5Paとしたときの電子放出特性の測定結果を示したものであって、横軸が直流電圧Vps、縦軸が電流密度であり、「イ」がダイオード電流Ipsの電流密度、「ロ」がエミッション電流Ieの電流密度を示している。また、図5,7,9はは直流電圧Vcを100V一定、真空チャンバ内の真空度を5×10−5Paとしたときの電子放出特性の経時変化の測定結果を示したものであって、横軸が駆動開始からの経過時間、左側の縦軸が電流密度、右側の縦軸が電子放出効率であり、「イ」がダイオード電流Ipsの電流密度、「ロ」がエミッション電流Ieの電流密度、「ハ」が電子放出効率を示している。ただし、図5は直流電圧Vpsを15V一定とした場合、図7は直流電圧Vpsを11V一定とした場合、図9は直流電圧Vpsを15V一定とした場合の測定結果である。図4〜9から、本実施形態の電界放射型電子源10では比較例1,2の電界放射型電子源に比べて電子放出特性の経時安定性が向上していることが分かる。
【0046】
ところで、本実施形態では、n形シリコン基板1とオーミック電極2とで下部電極12を構成しているが、絶縁性基板(例えば、ガラス基板、セラミック基板など)の一表面側に金属材料や高濃度ドープされた多結晶シリコン層からなる下部電極12を形成した構成を採用するようにしてもよい。また、n形シリコン基板1の表面側の一部を上述の陽極酸化処理工程にて多孔質化することで多孔質半導体層たる多結晶シリコン層を形成し、この多孔質シリコン層に対して上述の絶縁膜形成工程を行うようにしてもよい。
【0047】
(実施形態2)
本実施形態では、実施形態1で説明した製造方法において絶縁膜形成工程が相違するだけなので、絶縁膜形成工程についてのみ説明する。
【0048】
ただし、本実施形態においても、絶縁膜形成工程では、各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚(シリコン微結晶63の結晶粒径よりも小さな膜厚)程度の酸化膜(シリコン酸化膜)を形成する酸化処理と、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜(シリコン酸化膜)の膜質を改善する窒化処理とを有している。
【0049】
ここにおいて、本実施形態における酸化処理は、電気化学的な方法により各シリコン微結晶63の表面に酸化膜を形成する酸化工程と、酸化工程の後で各酸化膜をアニールするアニール工程とからなる。酸化工程では、上述の陽極酸化処理工程の終了後にエタノールによるリンスを行ってから、所定濃度(例えば1mol/l=1M)の硫酸水溶液の入った処理槽を利用し、下部電極12と白金電極よりなる陰極との間に定電圧を印加する電気化学的な方法により各グレイン51および各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成する。ここに、酸化工程で用いる電解液は硫酸水溶液に限らず、例えば、硝酸水溶液、王水などを用いてもよいし、あるいは有機溶媒中に溶質を溶かした電解液を用いてもよい。酸化工程の後のアニール工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において所定のアニール温度(例えば、450℃)で所定のアニール時間(例えば、1時間)だけアニールを行う。なお、アニール温度は、500℃以下に設定することが好ましい。電気化学的な方法による酸化膜は室温で形成することができるので、アニール温度を500℃以下に設定することで、実施形態1に比べて酸化工程における高温(例えば、900℃)での熱処理をなくすことができる。また、アニール温度を500℃以下に設定することで、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合に酸化工程がガラス基板に与える影響をなくすことができる。
【0050】
また、窒化処理は、急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間(以下、実施形態1と同様に第2の規定の熱処理時間と称す)で各酸化膜を窒化する窒化工程からなる。この窒化工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において第2の規定の熱処理温度(例えば、900℃)で上記第2の規定の熱処理時間(例えば、5分)だけ窒化を行う。ここに、第2の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第2の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。また、本実施形態では、窒化工程においてNOガスを利用しているので、各酸化膜の窒化と同時に酸化も進むから、結果的に各絶縁膜52,64は酸窒化膜(シリコン酸窒化膜)になる。なお、窒化工程で用いるガスはNOガスに限らず、例えばNOガス,NHガスなどを用いてもよい。
【0051】
本実施形態の製造方法によれば、実施形態1と同様、絶縁膜52,64を形成する絶縁膜形成工程において、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成するとともにグレイン51の表面に酸化膜を形成し、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜を窒化して膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、実施形態1に比べて、絶縁膜形成工程における高温(例えば、900℃)での熱処理時間をさらに短縮化できる。また、各シリコン微結晶63を湿式の陽極酸化処理を利用して形成しているので、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に酸化膜を形成することが可能になるから、各シリコン微結晶63およびグレイン51それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に良質な酸化膜を形成することが可能になる。
【0052】
本実施形態の製造方法にて製造した電界放射型電子源10の電子放出特性を図10に、電子放出特性の経時変化を測定した結果を図11にそれぞれ示す。
【0053】
本実施形態の電界放射型電子源10の電子放出特性の測定は、真空チャンバ(図示せず)内に電界放射型電子源10を導入して、上述の図14のように、表面電極7に対向してコレクタ電極21を配置し、表面電極7を下部電極12に対して高電位側として直流電圧Vpsを印加するとともに、コレクタ電極21を表面電極7に対して高電位側として直流電圧Vcを印加することによって行った。
【0054】
図10は直流電圧Vcを100V一定、真空チャンバ内の真空度を5×10−5Paとしたときの電子放出特性の測定結果を示したものであって、横軸が直流電圧Vps、縦軸が電流密度であり、「イ」がダイオード電流Ipsの電流密度、「ロ」がエミッション電流Ieの電流密度を示している。また、図11は直流電圧Vcを100V一定、直流電圧Vpsを16V一定、真空チャンバ内の真空度を5×10−5Paとしたときの電子放出特性の経時変化の測定結果を示したものであって、横軸が駆動開始からの経過時間、左側の縦軸が電流密度、右側の縦軸が電子放出効率であり、「イ」がダイオード電流Ipsの電流密度、「ロ」がエミッション電流Ieの電流密度、「ハ」が電子放出効率を示している。図10,11および実施形態1で説明した比較例1,2に関する測定結果を示した図6〜9から、本実施形態の電界放射型電子源10では比較例1,2の電界放射型電子源に比べて電子放出特性の経時安定性が向上していることが分かる。
【0055】
(実施形態3)
本実施形態では、実施形態1で説明した製造方法において絶縁膜形成工程が相違するだけなので、絶縁膜形成工程についてのみ説明する。
【0056】
ただし、本実施形態においても、絶縁膜形成工程では、各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚(シリコン微結晶63の結晶粒径よりも小さな膜厚)程度の酸化膜(シリコン酸化膜)を形成する酸化処理と、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜(シリコン酸化膜)の膜質を改善する窒化処理とを有している。
【0057】
ここにおいて、本実施形態における酸化処理は、電気化学的な方法により各シリコン微結晶63の表面に酸化膜を形成する第1の酸化工程と、第1の酸化工程の後で各酸化膜をアニールするアニール工程と、アニール工程の後で急速熱酸化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程とからなる。第1の酸化工程では、上述の陽極処理工程の終了後にエタノールによるリンスを行ってから、所定濃度(例えば1mol/l=1M)の硫酸水溶液の入った処理槽を利用し、下部電極12と白金電極よりなる陰極との間に定電圧を印加する電気化学的な方法により各グレイン51および各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成する。ここに、第1の酸化工程で用いる電解液は硫酸水溶液に限らず、例えば、硝酸水溶液、王水などを用いてもよいし、あるいは有機溶媒中に溶質を溶かした電解液を用いてもよい。第1の酸化工程の後のアニール工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において所定のアニール温度(例えば、450℃)で所定のアニール時間(例えば、1時間)だけアニールを行う。アニール温度は、500℃以下に設定することが好ましい。アニール温度を500℃以下に設定することで、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にアニール工程がガラス基板に与える影響をなくすことができる。第2の酸化工程では、ランプアニール装置を用い、例えば酸素ガス雰囲気中において第1の規定の熱処理温度(例えば、900℃)で第1の規定の熱処理時間(例えば、5分)だけ酸化を行う。すなわち、第1の規定の熱処理時間は従来の急速熱酸化法による酸化工程での所定の熱処理時間(1時間)に比べて大幅に短縮してある。ここに、第1の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第1の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。
【0058】
また、窒化処理は、急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間(以下、第2の規定の熱処理時間と称す)で各酸化膜を窒化する窒化工程からなる。この窒化工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において第2の規定の熱処理温度(例えば、900℃)で上記第2の規定の熱処理時間(例えば、5分)だけ窒化を行う。ここに、第2の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第2の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。また、本実施形態では、窒化工程においてNOガスを利用しているので、各酸化膜の窒化と同時に酸化も進むから、結果的に各絶縁膜52,64は酸窒化膜(シリコン酸窒化膜)になる。なお、窒化工程で用いるガスはNOガスに限らず、例えばNOガス,NHガスなどを用いてもよい。
【0059】
本実施形態の製造方法によれば、実施形態1と同様、絶縁膜52,64を形成する絶縁膜形成工程において、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成するとともにグレイン51の表面に酸化膜を形成し、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜を窒化して膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、実施形態2の製造方法に比べて、各絶縁膜52,64中の欠陥を低減でき、電子放出特性を向上できる。また、各シリコン微結晶63を湿式の陽極酸化処理を利用して形成しているので、陽極酸化処理の後に大気中に曝すことなく第1の酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に酸化膜を形成することが可能になるから、各シリコン微結晶63およびグレイン51それぞれの表面に自然酸化膜が形成されるのを防止することができ、第1の酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に良質な酸化膜を形成することが可能になる。
【0060】
(実施形態4)
本実施形態では、実施形態1で説明した製造方法において絶縁膜形成工程が相違するだけなので、絶縁膜形成工程についてのみ説明する。
【0061】
ただし、本実施形態においても、絶縁膜形成工程では、各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚(シリコン微結晶63の結晶粒径よりも小さな膜厚)程度の酸化膜(シリコン酸化膜)を形成する酸化処理と、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜(シリコン酸化膜)の膜質を改善する窒化処理とを有している。
【0062】
ここにおいて、本実施形態における酸化処理は、電気化学的な方法により各シリコン微結晶63の表面に酸化膜を形成する酸化工程からなる。酸化工程では、上述の陽極処理工程の終了後にエタノールによるリンスを行ってから、所定濃度(例えば1mol/l=1M)の硫酸水溶液の入った処理槽を利用し、下部電極12と白金電極よりなる陰極との間に定電圧を印加する電気化学的な方法により各グレイン51および各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成する。ここに、酸化工程で用いる電解液は硫酸水溶液に限らず、例えば、硝酸水溶液、王水などを用いてもよいし、あるいは有機溶媒中に溶質を溶かした電解液を用いてもよい。
【0063】
また、窒化処理は、窒化ガス雰囲気中で各酸化膜をアニールするアニール工程からなる。アニール工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において所定のアニール温度(例えば、450℃)で所定のアニール時間(例えば、1時間)だけアニールを行う。アニール温度は、500℃以下に設定することが好ましい。アニール温度を500℃以下に設定することで、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にアニール工程がガラス基板に与える影響をなくすことができる。
【0064】
本実施形態の製造方法によれば、実施形態1と同様、絶縁膜52,64を形成する絶縁膜形成工程において、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成するとともにグレイン51の表面に酸化膜を形成し、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜を窒化して膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、実施形態2の製造方法に比べて、各絶縁膜52,64中の欠陥を低減でき、電子放出特性を向上できる。また、各シリコン微結晶63を湿式の陽極酸化処理を利用して形成しているので、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に酸化膜を形成することが可能になるから、各シリコン微結晶63およびグレイン51それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に良質な酸化膜を形成することが可能になる。
【0065】
(実施形態5)
本実施形態では、実施形態1で説明した製造方法において絶縁膜形成工程が相違するだけなので、絶縁膜形成工程についてのみ説明する。
【0066】
ただし、本実施形態においても、絶縁膜形成工程では、各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚(シリコン微結晶63の結晶粒径よりも小さな膜厚)程度の酸化膜(シリコン酸化膜)を形成する酸化処理と、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜(シリコン酸化膜)の膜質を改善する窒化処理とを有している。
【0067】
ここにおいて、本実施形態における酸化処理は、電気化学的な方法により各シリコン微結晶63の表面に酸化膜を形成する第1の酸化工程からなる。第1の酸化工程では、上述の陽極処理工程の終了後にエタノールによるリンスを行ってから、所定濃度(例えば1mol/l=1M)の硫酸水溶液の入った処理槽を利用し、下部電極12と白金電極よりなる陰極との間に定電圧を印加する電気化学的な方法により各グレイン51および各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成する。ここに、第1の酸化工程で用いる電解液は硫酸水溶液に限らず、例えば、硝酸水溶液、王水などを用いてもよいし、あるいは有機溶媒中に溶質を溶かした電解液を用いてもよい。
【0068】
また、窒化処理は、窒化ガス雰囲気中で各酸化膜をアニールするアニール工程からなる。アニール工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において所定のアニール温度(例えば、450℃)で所定のアニール時間(例えば、1時間)だけアニールを行う。アニール温度は、500℃以下に設定することが好ましい。アニール温度を500℃以下に設定することで、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にアニール工程がガラス基板に与える影響をなくすことができる。
【0069】
また、本実施形態の製造方法における絶縁膜形成工程では、上記窒化処理の後で急速熱酸化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程と、第2の酸化工程の後で急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とを有している。
【0070】
第2の酸化工程では、ランプアニール装置を用い、例えば酸素ガス雰囲気中において第1の規定の熱処理温度(例えば、900℃)で第1の規定の熱処理時間(例えば、5分)だけ酸化を行う。すなわち、第1の規定の熱処理時間は従来の急速熱酸化法による酸化工程での所定の熱処理時間(1時間)に比べて大幅に短縮してある。ここに、第1の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第1の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。
【0071】
また、窒化工程は、急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間(以下、第2の規定の熱処理時間と称す)で各酸化膜を窒化する工程からなる。この窒化工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において第2の規定の熱処理温度(例えば、900℃)で上記第2の規定の熱処理時間(例えば、5分)だけ窒化を行う。ここに、第2の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第2の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。また、本実施形態では、窒化工程においてNOガスを利用しているので、各酸化膜の窒化と同時に酸化も進むから、結果的に各絶縁膜52,64は酸窒化膜(シリコン酸窒化膜)になる。なお、窒化工程で用いるガスはNOガスに限らず、例えばNOガス,NHガスなどを用いてもよい。
【0072】
本実施形態の製造方法によれば、実施形態1と同様、絶縁膜52,64を形成する絶縁膜形成工程において、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成するとともにグレイン51の表面に酸化膜を形成し、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜を窒化して膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、実施形態2の製造方法に比べて、各絶縁膜52,64中の欠陥を低減でき、電子放出特性を向上できる。また、各シリコン微結晶63を湿式の陽極酸化処理を利用して形成しているので、陽極酸化処理の後に大気中に曝すことなく第1の酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に酸化膜を形成することが可能になるから、各シリコン微結晶63およびグレイン51それぞれの表面に自然酸化膜が形成されるのを防止することができ、第1の酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に良質な酸化膜を形成することが可能になる。
【0073】
本実施形態の製造方法にて製造した電界放射型電子源10の電子放出特性を図12に、電子放出特性の経時変化を測定した結果を図13にそれぞれ示す。
【0074】
本実施形態の電界放射型電子源10の電子放出特性の測定は、真空チャンバ(図示せず)内に電界放射型電子源10を導入して、上述の図14のように、表面電極7に対向してコレクタ電極21を配置し、表面電極7を下部電極12に対して高電位側として直流電圧Vpsを印加するとともに、コレクタ電極21を表面電極7に対して高電位側として直流電圧Vcを印加することによって行った。
【0075】
図12は直流電圧Vcを100V一定、真空チャンバ内の真空度を5×10−5Paとしたときの電子放出特性の測定結果を示したものであって、横軸が直流電圧Vps、縦軸が電流密度であり、「イ」がダイオード電流Ipsの電流密度、「ロ」がエミッション電流Ieの電流密度を示している。また、図13は直流電圧Vcを100V一定、直流電圧Vpsを15V一定、真空チャンバ内の真空度を5×10−5Paとしたときの電子放出特性の経時変化の測定結果を示したものであって、横軸が駆動開始からの経過時間、左側の縦軸が電流密度、右側の縦軸が電子放出効率であり、「イ」がダイオード電流Ipsの電流密度、「ロ」がエミッション電流Ieの電流密度、「ハ」が電子放出効率を示している。図12,13および実施形態1で説明した比較例1,2に関する測定結果を示した図6〜9から、本実施形態の電界放射型電子源10では比較例1,2の電界放射型電子源に比べて電子放出特性の経時安定性が向上していることが分かる。
【0076】
(実施形態6)
本実施形態では、実施形態1で説明した製造方法において絶縁膜形成工程が相違するだけなので、絶縁膜形成工程についてのみ説明する。
【0077】
ただし、本実施形態においても、絶縁膜形成工程では、各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚(シリコン微結晶63の結晶粒径よりも小さな膜厚)程度の酸化膜(シリコン酸化膜)を形成する酸化処理と、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜(シリコン酸化膜)の膜質を改善する窒化処理とを有している。
【0078】
ここにおいて、本実施形態における酸化処理は、電気化学的な方法により各シリコン微結晶63の表面に酸化膜を形成する第1の酸化工程からなる。第1の酸化工程では、上述の陽極処理工程の終了後にエタノールによるリンスを行ってから、所定濃度(例えば1mol/l=1M)の硫酸水溶液の入った処理槽を利用し、下部電極12と白金電極よりなる陰極との間に定電圧を印加する電気化学的な方法により各グレイン51および各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成する。ここに、第1の酸化工程で用いる電解液は硫酸水溶液に限らず、例えば、硝酸水溶液、王水などを用いてもよいし、あるいは有機溶媒中に溶質を溶かした電解液を用いてもよい。
【0079】
また、窒化処理は、窒化ガス雰囲気中で各酸化膜をアニールするアニール工程と、アニール工程の後で急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とからなる。アニール工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において所定のアニール温度(例えば、450℃)で所定のアニール時間(例えば、1時間)だけアニールを行う。アニール温度は、500℃以下に設定することが好ましい。アニール温度を500℃以下に設定することで、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にアニール工程がガラス基板に与える影響をなくすことができる。また窒化工程では、ランプアニール装置を用い、例えばNOガス雰囲気中において第2の規定の熱処理温度(例えば、900℃)で上記第2の規定の熱処理時間(例えば、5分)だけ窒化を行う。ここに、第2の規定の熱処理時間は、製造した電界放射型電子源10の電子放出特性の測定結果から5分以内に設定することでが望ましいことを確認している。ただし、第2の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。また、本実施形態では、窒化工程においてNOガスを利用しているので、各酸化膜の窒化と同時に酸化も進むから、結果的に各絶縁膜52,64は酸窒化膜(シリコン酸窒化膜)になる。なお、窒化工程で用いるガスはNOガスに限らず、例えばNOガス,NHガスなどを用いてもよい。
【0080】
本実施形態の製造方法によれば、実施形態1と同様、絶縁膜52,64を形成する絶縁膜形成工程において、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各シリコン微結晶63それぞれの表面に上記膜厚程度の酸化膜を形成するとともにグレイン51の表面に酸化膜を形成し、各シリコン微結晶63へのダメージの発生を抑制可能な処理で各酸化膜を窒化して膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、実施形態2の製造方法に比べて、各絶縁膜52,64中の欠陥を低減でき、電子放出特性を向上できる。また、各シリコン微結晶63を湿式の陽極酸化処理を利用して形成しているので、陽極酸化処理の後に大気中に曝すことなく第1の酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に酸化膜を形成することが可能になるから、各シリコン微結晶63およびグレイン51それぞれの表面に自然酸化膜が形成されるのを防止することができ、第1の酸化工程にて各シリコン微結晶63および各グレイン51それぞれの表面に良質な酸化膜を形成することが可能になる。
【0081】
(実施形態7)
本実施形態では、実施形態1で説明した製造方法において絶縁膜形成工程が相違するだけなので、絶縁膜形成工程についてのみ説明する。
【0082】
本実施形態における絶縁膜形成工程では、急速熱酸化法による各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な熱処理時間での酸化処理と酸化処理後の急速熱窒化法による各シリコン微結晶(半導体微結晶)63へのダメージの発生を抑制可能な熱処理時間での窒化処理とからなる基本工程を複数回繰り返すことで各絶縁膜52,64を形成する。ここにおいて、酸化処理では、シリコン微結晶63の表面側を酸化し、窒化処理では膜質を改善している。
【0083】
酸化処理では、ランプアニール装置を用い、例えば酸素ガス雰囲気中において第1の規定の熱処理温度(例えば、900℃)で第1の規定の熱処理時間(例えば、5分)だけ酸化を行う。すなわち、第1の規定の熱処理時間は従来の急速熱酸化法による酸化工程での所定の熱処理時間(1時間)に比べて大幅に短縮してある。ただし、第1の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。
【0084】
また、窒化処理は、急速熱窒化法により各シリコン微結晶63へのダメージの発生を抑制可能な熱処理時間(以下、第2の規定の熱処理時間と称す)で各酸化膜を窒化する。この窒化処理では、ランプアニール装置を用い、例えばNOガス雰囲気中において第2の規定の熱処理温度(例えば、900℃)で上記第2の規定の熱処理時間(例えば、5分)だけ窒化を行う。ただし、第2の規定の熱処理温度まで基板温度を上昇させる昇温期間の昇温速度は20℃/sec以上、望ましくは150℃/sec以上に設定する。また、本実施形態では、窒化処理においてNOガスを利用しているので、各酸化膜の窒化と同時に酸化も進むから、結果的に各絶縁膜52,64は酸窒化膜(シリコン酸窒化膜)になる。なお、窒化処理で用いるガスはNOガスに限らず、例えばNOガス,NHガスなどを用いてもよい。
【0085】
本実施形態の製造方法によれば、実施形態1と同様、従来のように急速熱酸化法により比較的長い熱処理時間(例えば、1時間)で各絶縁膜52,64を形成する場合に比べて、電子放出特性の経時安定性が向上する。しかも、各絶縁膜52,64の形成に伴う高温での熱処理時間を短縮化できるから、図16に示した従来構成のように下部電極12をガラス基板のような絶縁性基板11上に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れる。また、実施形態2の製造方法に比べて、各絶縁膜52,64中の欠陥を低減でき、電子放出特性を向上できる。
【0086】
【発明の効果】
請求項1の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化工程からなり、窒化処理が、急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
【0087】
また、酸化処理と窒化処理とを同一装置内で行うことができ、酸化処理と窒化処理との間で不純物が付着するのを防止することができるという効果がある。
【0088】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程と、酸化工程の後で各酸化膜をアニールするアニール工程とからなり、窒化処理が、急速熱窒化法により規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
また、請求項2の発明では、請求項1の発明に比べて各絶縁膜の形成に伴う高温での熱処理時間をさらに短縮化できるという効果がある。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になるという利点がある。
【0089】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法で各半導体微結晶それぞれの表面に酸化膜を形成する第1の酸化工程と、第1の酸化工程の後で各酸化膜をアニールするアニール工程と、アニール工程の後で急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程とからなり、窒化処理が、急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
また、請求項3の発明では、請求項2の発明に比べて各絶縁膜中の欠陥を低減でき、電子放出特性を向上させることが可能になるという効果がある。
【0090】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程からなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
また、請求項4の発明では、請求項1の発明に比べて各絶縁膜の形成に伴う高温での熱処理時間をさらに短縮化できるという効果がある。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になるという利点がある。
【0091】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する第1の酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程からなり、絶縁膜形成工程は、窒化処理の後で急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程と、第2の酸化工程の後で急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とを有することを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
また、請求項5の発明では、各絶縁膜中の欠陥を低減でき、電子放出特性を向上させることが可能になるという効果がある。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく第1の酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、第1の酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になるという利点がある。
【0092】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程と、アニール工程の後で急速熱窒化法により規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とからなることを特徴とし、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成し、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善するので、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
また、請求項6の発明では、各絶縁膜中の欠陥を低減でき、電子放出特性を向上させることが可能になるという効果がある。また、各半導体微結晶を湿式の陽極酸化処理を利用して形成する場合に、陽極酸化処理の後に大気中に曝すことなく酸化工程にて各半導体微結晶の表面に酸化膜を形成することが可能になるので、各半導体微結晶それぞれの表面に自然酸化膜が形成されるのを防止することができ、酸化工程にて各半導体微結晶それぞれの表面に良質な酸化膜を形成することが可能になるという利点がある。
【0093】
請求項の発明は、下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶を形成した後に、急速熱酸化法による第1の規定の熱処理温度まで上昇させてからの前記各半導体微結晶へのダメージの発生を抑制可能な熱処理時間での酸化処理と酸化処理後の急速熱窒化法による第2の規定の熱処理温度まで上昇させてからの前記各半導体微結晶へのダメージの発生を抑制可能な熱処理時間での窒化処理とからなる基本工程を複数回繰り返すことで各絶縁膜を形成することを特徴とし、従来のように急速熱酸化法により比較的長い熱処理時間で各絶縁膜を形成する場合に比べて、電子放出特性の経時安定性が向上するという効果があり、しかも、各絶縁膜の形成に伴う高温での熱処理時間を短縮化できるから下部電極をガラス基板に形成するような場合にガラス基板として石英ガラス基板に比べて比較的安価な無アルカリガラス基板や低アルカリガラス基板などの耐熱温度が比較的低いガラス基板を採用することが可能となり、低コスト化を図れるという効果がある。
【図面の簡単な説明】
【図1】実施形態1の電界放射型電子源の製造方法を説明するための主要工程断面図である。
【図2】同上の電界放射型電子源の概略断面図である。
【図3】同上の電界放射型電子源の動作説明図である。
【図4】同上の電界放射型電子源の電子放出特性図である。
【図5】同上の電界放射型電子源の電子放出特性図である。
【図6】同上の比較例1の電界放射型電子源の電子放出特性図である。
【図7】同上の比較例1の電界放射型電子源の電子放出特性図である。
【図8】同上の比較例2の電界放射型電子源の電子放出特性図である。
【図9】同上の比較例2の電界放射型電子源の電子放出特性図である。
【図10】実施形態2の電界放射型電子源の電子放出特性図である。
【図11】同上の電界放射型電子源の電子放出特性図である。
【図12】実施形態5の電界放射型電子源の電子放出特性図である。
【図13】同上の電界放射型電子源の電子放出特性図である。
【図14】従来例を示す電界放射型電子源の動作説明図である。
【図15】同上の動作説明図である。
【図16】他の従来例を示す電界放射型電子源の動作説明図である。
【符号の説明】
1 n形シリコン基板
2 オーミック電極
3 多結晶シリコン層
4 多孔質多結晶シリコン層
6 強電界ドリフト層
10 電界放射型電子源
12 下部電極

Claims (8)

  1. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化工程からなり、窒化処理が、急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とする電界放射型電子源の製造方法。
  2. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程と、酸化工程の後で各酸化膜をアニールするアニール工程とからなり、窒化処理が、急速熱窒化法により規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とする電界放射型電子源の製造方法。
  3. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法で各半導体微結晶それぞれの表面に酸化膜を形成する第1の酸化工程と、第1の酸化工程の後で各酸化膜をアニールするアニール工程と、アニール工程の後で急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程とからなり、窒化処理が、急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程からなることを特徴とする電界放射型電子源の製造方法。
  4. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を 高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程からなることを特徴とする電界放射型電子源の製造方法。
  5. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する第1の酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程からなり、絶縁膜形成工程は、窒化処理の後で急速熱酸化法により第1の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜をさらに酸化する第2の酸化工程と、第2の酸化工程の後で急速熱窒化法により第2の規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とを有することを特徴とする電界放射型電子源の製造方法。
  6. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶へのダメージの発生を抑制可能な処理で各半導体微結晶それぞれの表面に前記膜厚程度の酸化膜を形成する酸化処理と、各半導体微結晶へのダメージの発生を抑制可能な処理で各酸化膜の膜質を改善する窒化処理とを有し、酸化処理が、電気化学的な方法により各半導体微結晶それぞれの表面に酸化膜を形成する酸化工程からなり、窒化処理が、各酸化膜を窒化性ガス雰囲気中でアニールするアニール工程と、アニール工程の後で急速熱窒化法により規定の熱処理温度まで上昇させ各半導体微結晶へのダメージの発生を抑制可能な熱処理時間で各酸化膜を窒化する窒化工程とからなることを特徴とする電界放射型電子源の製造方法。
  7. 下部電極と、下部電極の一表面側に形成された強電界ドリフト層と、強電界ドリフト層上に形成された表面電極とを備え、強電界ドリフト層がナノメータオーダの多数の半導体微結晶と各半導体微結晶それぞれの表面に形成され半導体微結晶の結晶粒径よりも小さな膜厚の多数の絶縁膜とを有し、表面電極と下部電極との間に表面電極を高電位側として電圧を印加することにより下部電極から注入された電子が強電界ドリフト層をドリフトし表面電極を通して放出される電界放射型電子源の製造方法であって、強電界ドリフト層における各絶縁膜を形成する絶縁膜形成工程では、各半導体微結晶を形成した後に、急速熱酸化法による第1の規定の熱処理温度まで上昇させてからの前記各半導体微結晶へのダメージの発生を抑制可能な熱処理時間での酸化処理と酸化処理後の急速熱窒化法による第2の規定の熱処理温度まで上昇させてからの前記各半導体微結晶へのダメー ジの発生を抑制可能な熱処理時間での窒化処理とからなる基本工程を複数回繰り返すことで各絶縁膜を形成することを特徴とする電界放射型電子源の製造方法。
  8. 前記熱処理時間が5分を超えないことを特徴とする請求項1〜3,5〜7のいずれかに記載の電界放射型電子源の製造方法。
JP2001392701A 2001-12-25 2001-12-25 電界放射型電子源の製造方法 Expired - Fee Related JP3591511B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392701A JP3591511B2 (ja) 2001-12-25 2001-12-25 電界放射型電子源の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392701A JP3591511B2 (ja) 2001-12-25 2001-12-25 電界放射型電子源の製造方法

Publications (2)

Publication Number Publication Date
JP2003197097A JP2003197097A (ja) 2003-07-11
JP3591511B2 true JP3591511B2 (ja) 2004-11-24

Family

ID=27599930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392701A Expired - Fee Related JP3591511B2 (ja) 2001-12-25 2001-12-25 電界放射型電子源の製造方法

Country Status (1)

Country Link
JP (1) JP3591511B2 (ja)

Also Published As

Publication number Publication date
JP2003197097A (ja) 2003-07-11

Similar Documents

Publication Publication Date Title
KR100549236B1 (ko) 전계방사형 전자원 및 그의 제조방법
JP3591511B2 (ja) 電界放射型電子源の製造方法
JP3969057B2 (ja) 絶縁薄膜の形成方法、絶縁薄膜の形成装置、電界放射型電子源およびmosfet
JP3648603B2 (ja) 電界放射型電子源の製造方法
JP4321009B2 (ja) 電界放射型電子源の製造方法
JP3678193B2 (ja) 電界放射型電子源の製造方法
JP3508652B2 (ja) 電界放射型電子源およびその製造方法
JP3648599B2 (ja) 電界放射型電子源の製造方法
JP3809808B2 (ja) 電界放射型電子源の製造方法
JP3687520B2 (ja) 電界放射型電子源およびその製造方法
JP3528762B2 (ja) 電界放射型電子源およびその製造方法
JP3669291B2 (ja) 電界放射型電子源の製造方法
JP3478206B2 (ja) 電界放射型電子源の製造方法
JP3648602B2 (ja) 電界放射型電子源の製造方法
JP4616538B2 (ja) 電界放射型電子源の製造方法
JP3963121B2 (ja) 陽極酸化方法、電気化学酸化方法、電界放射型電子源およびその製造方法
JP3508651B2 (ja) 電界放射型電子源およびその製造方法
JP3648601B2 (ja) 電界放射型電子源の製造方法
JP2003229050A (ja) 電界放射型電子源の製造方法、電界放射型電子源
TW543209B (en) Field-emission type electron source and method of manufacturing the same
JP3478279B2 (ja) 電界放射型電子源の製造方法
JP2003187688A (ja) 電界放射型電子源およびその製造方法
JP2007092105A (ja) シリコン酸化膜の形成方法
JP3480464B2 (ja) 電界放射型電子源の製造方法
JP2003129292A (ja) 陽極酸化装置、電界放射型電子源およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees