JP3575093B2 - 加工制御方法 - Google Patents

加工制御方法 Download PDF

Info

Publication number
JP3575093B2
JP3575093B2 JP32909294A JP32909294A JP3575093B2 JP 3575093 B2 JP3575093 B2 JP 3575093B2 JP 32909294 A JP32909294 A JP 32909294A JP 32909294 A JP32909294 A JP 32909294A JP 3575093 B2 JP3575093 B2 JP 3575093B2
Authority
JP
Japan
Prior art keywords
processing
unit
normal direction
curve
design value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32909294A
Other languages
English (en)
Other versions
JPH08185211A (ja
Inventor
辰男 三浦
幸雄 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32909294A priority Critical patent/JP3575093B2/ja
Publication of JPH08185211A publication Critical patent/JPH08185211A/ja
Application granted granted Critical
Publication of JP3575093B2 publication Critical patent/JP3575093B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Numerical Control (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、曲線に沿った加工を行う加工制御方法に関する。
【0002】
【従来の技術】
従来、工具軸が曲線の法線に一致する様に工具軸を保持する工具ヘッドの位置を決定する加工法がある(特願平4−7707)。
また、X−Y−C軸加工においてワークの加工経過時間に対応して精度調整係数でワークの加工精度とワークの相対移動量を調整し、高速加工を行う加工法がある(特開平5−108124)。
【0003】
そして、単純インボリュート曲線を加工するためのX−C加工法がある(特公平6−28812)。この加工法では図10(a)に示すように単純インボリュート曲線5の基礎円50の接線51上を刃具Hが動くとき、単純インボリュート曲線5の法線52と刃具Hの切削面53が基礎円50の接線51上で直交するため、単純インボリュート曲線5は精度よく加工できる。
【0004】
さらに、基礎円近傍の様にインボリュート曲線の曲率半径が比較的小さい所では、NC機械のサーボ応答遅れやワークの熱変形等の影響により削り残しや切り込みが発生することが知られている。この問題を解決するため、インボリュート曲線の終点における削り残しや切り込みの法線方向の誤差量を求め、削り残しや切り込みの開始点から終点までを新たなインボリュート曲線で加工を行う加工法(特開平3−31911、特開平3−54610)がある。
【0005】
【発明が解決しようとする課題】
特願平4−7707の加工法では、工具ヘッドの位置が決まっている場合に工具軸が法線に一致するように伸縮する工具軸の長さを決定することが解決できなかった。
特開平5−108124の加工法では、設計値点を補間することはデータ量を増加させ加工速度を遅くしていた。
【0006】
特公平6−28812の加工法では、特殊インボリュート曲線(特開平5−108124)に沿って加工する場合、特殊インボリュート基礎円の接線上では特殊インボリュート曲線の法線と刃具切削面は基礎円接線上で直交せず、特殊インボリュート曲線は精度良く加工できなかった。同様に、点群によって構成される自由曲線も法線と切削面が直交しないため精度良く加工できなかった。またスクロール部品の例では、スクロール中心部の基礎円近傍では単純インボリュート曲線から外れる形状が存在し、単純インボリュート曲線と中心部形状を一度に加工することができないために精度よい製品ができなかった。
【0007】
特開平3−31911、特開平3−54610の加工法では、実際の加工においては加工誤差が存在するため、削り残しや切り込みの開始点を特定することは難しく、2つのインボリュート曲線のつなぎ目で加工精度が悪化するおそれがあった。また削り残しや切り込みの開始点や終点のみを問題としているので、その途中の形状で削り残しや切り込みが発生した場合には対処できなかった。
また、図10(b)に示すように指定された曲線が滑らかな曲線からオフセットした形状54を有する場合、形状遷移区間を通常の補間方式で補間すると、法線54の方向にバラ付きが生じていた。このためX−Y−CまたはX−CのNCプログラムを作成した場合、制御軸の移動量が極端にバラ付き、良好な加工ができなくなることがあった。
【0008】
本発明の目的は、短時間で精度よく任意の目標曲線に沿って加工することができる加工制御方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、指定された目標曲線上に設定された複数の設計値点を用いて前記目標曲線に沿って対象物を加工する加工制御方法において、前記対象物に加工を施す加工手段に前記目標曲線に沿った加工を行わせるための複数の前記設計値点のそれぞれにおける一連の動作位置を伝達する動作指示過程と、前記対象物の加工によって生じた加工曲線の形状を測定し、複数の前記設計値点のそれぞれについて複数の設計値点のそれぞれにおける前記目標曲線の法線上にあり前記加工曲線上にある制御点との法線方向誤差を計測する加工形状計測過程と、複数の前記設計値点のそれぞれで得られた複数の前記法線方向誤差に基づいて、以降の動作指示過程に複数の前記設計値点のそれぞれにおける前記動作位置の補正を指示する補正指示過程とを備える加工制御方法を技術的手段として採用する。
【0012】
【作用】
〔請求項1の作用〕
加工手段が動作指示過程で一連の動作位置を指示されて1個目の対象物を加工する。そして、加工形状計測過程で各設計値点について加工された1個目の対象物の法線方向誤差が計測される。次に補正指示過程で各制御点についてそれぞれの法線方向誤差に基づき動作位置の補正量が算出され動作指示過程に伝達される。
加工手段が動作指示過程で一連の補正された動作位置を指示され2個目の対象物を加工し、加工形状計測過程で各設計値点について法線方向誤差が計測され、補正指示過程で各制御点について動作位置の補正量が算出され動作指示過程に伝達する。このようにして3個目以降の対象物に対する加工も制御する。
これにより各設計値点に対する法線方向誤差が最終的に0へと収束していく。
【0013】
【発明の効果】
〔請求項1の効果〕
任意の目標曲線の全体を最初に一回指定することにより、精度良く目標曲線に沿って加工することができる。
【0014】
【実施例】
次に、本発明の加工制御方法を適用したNC加工システムを、図1〜図8に示す第1実施例に基づき説明する。
本実施例では、本発明の加工制御方法によりX−Y−C軸加工またはX−C軸加工を行うNC加工機の加工を制御する。
【0015】
〔実施例の構成〕
本実施例のNC加工システム1は、図1に示す様にワークを加工し加工後の形状を測定する加工測定部10と、加工測定部10からの形状データを用いて加工測定部10を指定された目標曲線に沿ってワークを加工するよう制御する制御部2とからなる。
加工測定部10は、図2に示すようにX−C軸加工を行いワークの形状を測定するX−C加工測定部11と、X−Y−C軸加工を行いワークの形状を測定するX−Y−C加工測定部14とからなる。
【0016】
X−C加工測定部11は、図2(a)に示すようにX−C軸加工を行う第1NC加工機12と、第1NC加工機12で加工されたワークの形状を倣い計測により測定する第1形状測定機13とからなる。
X−Y−C加工測定部14は、図2(b)に示すようにX−Y−C軸加工を行う第2NC加工機15と、第2NC加工機15で加工されたワークの形状を測定する第2形状測定機16とからなる。
第2形状測定機16は、時間短縮を計りうる倣い計測と精度を重視するポイント・トウ・ポイント計測との何れによるものでも可能である。
【0017】
制御部2は、第1NC加工機12および第2NC加工機15の加工動作を制御するための曲線データを生成する前処理部20と、前処理部20からの曲線データに基づき加工動作を制御する動作指示部21とを有する。そして動作指示部21に接続し動作指示部21に第1NC加工機12、第2NC加工機15およびワークの材料の特性データを送る特性データベース部26と、前記前処理部20、前記動作指示部21とが制御部2を構成する。
【0018】
前処理部20は、指定された目標曲線のデータを読み取る曲線データ読取り部17と、目標曲線上から加工制御に用いる設計値点群を生成する点群生成部18とを有する。そして、点群生成部18で生成された設計値点群を補間し各設計値点における法線を算出する法線算出部19と前記曲線データ読取り部17、前記点群生成部18とが前処理部20を構成する。
【0019】
動作指示部21は、ワークから測定されると共に各設計値点にそれぞれ対応し各設計値点を一致目標に制御される制御点3を滑らかに繋ぎ得るよう補正する法線方向補正部22と、法線方向補正部22のデータから制御点3と同数のNCプログラムを生成するNCプログラム生成部23とを有する。そして、前処理部20からのデータにより加工測定部10からのデータに処理を施し、法線方向加工誤差を算出する計測データ評価部24と、前記法線方向補正部22、前記NCプログラム生成部23とが動作指示部21を構成する。NCプログラム生成部23には生成したNCプログラムを出力するデータ出力部25が付設する。
【0020】
特性データベース部26は、法線方向補正部22に情報を送るための刃具特性データベース27、機械特性データベース28、材料特性データベース29などを有する。
刃具特性データベース27は、寸法、磨耗等の情報を納めている。
機械特性データベース28は、加工測定部10の追従性能、加工の方向性、外気温特性、設備劣化等の情報を納めている。
材料特性データベース29は、ワークの材料、取りしろ等の情報を納めている。
【0021】
〔実施例の作動〕
1)X−C軸加工を行う場合
曲線データ読取り部17に指定された曲線データを点群または設計式で入力する。そして曲線データ読取り部17は、図1に示すように、曲線データを点群生成部18に送る。
点群生成部18は、曲線データから基準となるN点の設計値点群(x,y)、…(x,y)を生成し法線算出部19に送る。
【0022】
法線算出部19は設計値点群(x,y)、…(x,y)をスプライン補間などにより滑らかに補間し、各設計値点群における法線ベクトル(hx,hy)、…(hx,hy)を算出する。
法線算出部19で作成された各設計値点での設計値と法線ベクトルは、法線方向補正部22および計測データ評価部24に送られる。
法線方向補正部22は、計測データ評価部24からの各制御点3の法線方向加工誤差値e、…eと、特性データベース部26からの刃具特性、機械特性、材料特性データなどから算出される誤差フィードバック定数p、…pとを用いて制御点3における法線と切削面30とが切削点31で直交するように法線方向の補正量heを次のように更新する。
【0023】
he(new)=he(old)+e・p



he(new)=he(old)+e・p
ここで添字newは補正後、添字oldは補正前を表し、he(old)、…he(old)は第1回目の加工時は0である。これにより各制御点3は法線方向に法線方向加工誤差が減少し収束するように補正される。
【0024】
補正方法の一例を図3に示す。各制御点3における法線方向加工誤差値は、正規分布曲線α、方形波曲線β、インパルス曲線γなどの補正フィルタにより分散され、周辺の制御点3に渡って補正量heが決定される。これにより、図4に示すように各制御点3における法線方向に補正が行われる。
NCプログラム生成部23は、法線方向補正部22で補正された各制御点3についての法線方向の補正量heのデータから目標曲線を一度に加工するためのX−C軸加工用NCプログラム(N点)を次式により生成する。
【0025】
=[{x−(r+he)・hx+{y−(r+he)・hy1/2
=tan−1[{y−(r+he)・hy}/{x−(r+he)・hx}]
ここでX、Cは図5に示すようにそれぞれX軸、C軸座標を与える制御量であり添字iは1からNの値をとる。またrは刃具Mの半径である。
NCプログラム生成部23により生成されたプログラムはデータ出力部25を経てX−C加工測定部11の第1NC加工機12に送られ、実際のワークの加工に供される。
【0026】
加工されたワークは、3次元測定機などの第1形状測定機13に送られ形状測定され、形状測定生データkx、kyが得られる。形状が倣いプローブ等で計測される場合、形状測定生データはN点になるとは限らない。
計測された形状測定生データkx、kyは計測データ評価部24に送られる。
計測データ評価部24は、前処理部20からの各設計値と設計値での法線ベクトルとに基づいて、形状測定機からの形状測定生データkx、kyに対しそれぞれ制御点3に合わせるようベストフィット処理を行った後、各制御点3について法線方向加工誤差e、…eを算出する。
【0027】
法線方向加工誤差e、…eは、法線方向補正部22へ送られる。
このように設計値・X−C軸加工用NCプログラム・法線方向加工誤差値が全て各制御点3の法線方向に対し一対一に対応する。
そして、1個目のワークを加工し計測、評価した結果を用いて制御点3における法線と切削面30とが切削点31で直交するようにX−C軸加工用NCプログラムを修正することで、2個目以降のワークの加工精度を向上する。即ち、法線方向補正部22→NCプログラム生成部23→第1NC加工機12→第1形状計測機→計測データ評価部24→法線方向補正部22というループを数回繰り返すことにより、計測データ評価部24から出力される各制御点3の法線方向加工誤差e、…eが最終的に0へと収束していく。
【0028】
2)X−Y−C軸加工を行う場合
前処理部20はX−C軸加工を行う場合と同様入力された曲線データからN点の設計値点群(x,y)、…(x,y)を生成し法線算出部19に送る。
法線算出部19は各設計値点群における法線ベクトル(hx,hy)、…(hx,hy)を算出する。
法線算出部19で作成された各設計値点での設計値と法線ベクトルは、法線方向補正部22および計測データ評価部24に送られる。
【0029】
法線方向補正部22は、計測データ評価部24からの各制御点3の法線方向加工誤差値e、…eと、特性データベース部26からの誤差フィードバック定数p、…pとを用いて制御点3における法線と切削面30とが切削点31で直交するように法線方向の補正量heを次のように更新する。
he(new)=he(old)+e・p



he(new)=he(old)+e・p
【0030】
これにより各制御点3は法線方向に法線方向加工誤差が減少し収束するように補正される。
NCプログラム生成部23は、法線方向補正部22で補正された各制御点3についての法線方向の補正量heのデータから目標曲線を一度に加工するためのX−Y−C軸加工用NCプログラム(N点)を次式により生成する。
Θ=tan−1(hy/hx
=x・cosΘ−y・sinΘ+he
=x・sinΘ+y・cosΘ
=90°−Θ
【0031】
ここでX、Y、Cは図6に示すようにそれぞれX軸、Y軸、C軸座標の制御量であり添字iは1からNの値をとる。
ここでXの取り方は次のようになる(図7参照)。
【0032】
a)法線とX軸が一致する場合
制御点3を表すX、刃具中心を表すX、Xを通る刃具Mの直径上で刃具の円周上のXと反対側の点Xの何れかの点。
【0033】
b)法線とX軸が交差する場合
刃具中心X
【0034】
c)制御点3群を補間する仮想点を用いる場合
仮想点32を制御点3とみなすことにより上記a)またはb)を適用する。
この仮想点32は、例えば制御点3から出る法線から角度θだけずれた軸をX軸とすることにより求めることができる。
NCプログラム生成部23により生成されたプログラムはデータ出力部25を経てX−Y−C加工測定部14の第2NC加工機15に送られ、実際のワークの加工に供される。
【0035】
加工されたワークは、3次元測定機などの第2形状測定機16に送られて形状測定され、形状測定生データkx、kyが得られる。形状が倣いプローブ等で計測される場合、形状測定生データkx、kyはN点になるとは限らない。
計測された形状測定生データkx、kyは計測データ評価部24に送られる。
計測データ評価部24は、X−C軸加工の場合と同様に各制御点3について法線方向加工誤差e、…eを算出する。
【0036】
法線方向加工誤差e、…eは、法線方向補正部22へ送られる。
このようにX−C軸加工の場合と同様に各制御点3の法線方向加工誤差e、…eが最終的に0へと収束していく。
【0037】
3)指定された目標曲線が滑らかな曲線からオフセットした形状を有する場合点群生成部18において設計値点群(x,y)、…(x,y)と共に法線方向の形状オフセット量qを生成し法線算出部19に送る。
法線算出部19ではオフセット前の設計点点列を用いて法線を作成する。
法線方向補正部22は、qを用いて法線方向の補正量heを次のように更新する(図8(a)参照、また図中のheのダッシュはオフセットを考慮したものであることを示す)。
【0038】
he(new)=he(old)+(e−q)・p



he(new)=he(old)+(e−q)・p
そしてqをパラメータとして管理することで、図8(b)に示すように真の加工誤差だけを正しくフィードバックすることができる。
【0039】
〔実施例の効果〕
点群によって構成される自由曲線や特殊インボリュート曲線等の目標曲線に対し、X−Y−C軸加工法、またX−C軸加工法において精度良く加工することができる。指定された目標曲線が滑らかな曲線からオフセットした形状を有する場合も、オフセットした形状を精度良く加工することができる。
X−Y−C軸加工またはX−C軸加工で目標曲線を一度に加工することができるため加工時間が短い。
【0040】
〔変形例〕
曲線データ読取り部17に、予め設計式より算出された設計値点群を読み取らせ、この設計値点群を法線算出部19に送るようにしてもよい。また曲線データ読取り部17に、予め設計式より算出された設計値点群および法線を読み取らせ、これを直接動作指示部21に送るようにしてもよい。
法線方向補正部22における補正には、エキスパートシステム等のAI技術を用いてもよい。
制御部2の各処理は、自動的に行われるようにしてもよい。
【0041】
〔第2実施例〕
つぎに本発明の加工制御方法を適用したNC加工システムを、図9に示す第2実施例に基づいて説明する。
本実施例では、本発明の加工制御方法によりX−Y−C軸加工を行うNC加工機の加工を制御する。
【0042】
〔実施例の構成〕
本実施例のNC加工システム4は、図9に示すようにX−Y−C軸加工を行いワークの形状を測定するX−Y−C加工測定部14と、X−Y−C加工測定部14におけるワークの加工を制御する制御部40とからなる。
X−Y−C加工測定部14は、X−Y−C軸加工を行う第2NC加工機15と、第2NC加工機15で加工されたワークの形状を測定する第2形状測定機16とからなる。
第2形状測定機16は、倣い計測とポイント・トウ・ポイント計測との何れによるものでも可能である。
【0043】
制御部40は、第2NC加工機15の加工動作を制御するための曲線データを生成する前処理部20と、前処理部20からの曲線データに基づき加工動作を制御する動作指示部41とを有する。そして動作指示部41に接続し動作指示部41に第2NC加工機15およびワークの材料の特性データを送る特性データベース部と、前記前処理部20、前記動作指示部41とが制御部40を構成する。
前処理部20は、指定された目標曲線から設計値点群を生成する点群生成部18と、点群生成部18で生成された設計値点群を補間し、各設計値点における法線を算出する法線算出部19とからなる。
【0044】
動作指示部41は、前処理部20からのデータによりNCプログラム(N点)を生成するNCプログラム生成部42と、前処理部20からのデータによりX−Y−C加工測定部14からのデータに処理を施し法線方向加工誤差を算出する計測データ評価部43とを有する。そして、計測データ評価部43からのデータによりNCプログラム生成部42からのプログラムに補正を施す法線方向補正部44と、前記NCプログラム生成部42、前記計測データ評価部43とが動作指示部41を構成する。NCプログラム生成部42には生成したNCプログラムを出力するデータ出力部25が付設する。
【0045】
特性データベース部45は、法線方向補正部44に送る情報を納めた刃具特性データベース46、機械特性データベース47、材料特性データベース48などを有する。
【0046】
〔実施例の作動〕
前処理部20は、点群生成部18において入力された曲線データからN点の設計値点群(x,y)、…(x,y)を生成し法線算出部19に送る。
法線算出部19は各設計値点群における法線ベクトル(hx,hy)、…(hx,hy)を算出する。
法線算出部19で作成された各設計値点での設計値(x,y)、…(x,y)と法線ベクトル(hx,hy)、…(hx,hy)は、NCプログラム生成部42、第2形状測定機16および計測データ評価部43に送られる。
【0047】
NCプログラム生成部42は、図13に示すように、前処理部20からのデータにより目標曲線を一度に加工するためのX−Y−C軸加工用NCプログラム(N点)を次式により生成する。
Θ=tan−1(hy/hx
=x・cosΘ−y・sinΘ
=x・sinΘ+y・cosΘ
=90°−Θ
ここで添字iは1からNの値をとる。
【0048】
法線方向補正部44は、計測データ評価部43からの各制御点の法線方向加工誤差値e、…eと、特性データベース部45からの誤差フィードバック定数p、…pとを用いて制御点における法線と切削面とが切削点で直交するようにNCプログラム生成部42で得られたXを次のように補正する。
(new)=X(old)+e・p
これにより各制御点は法線方向に法線方向加工誤差が減少し収束するように補正される。
法線方向補正部44で補正されたプログラムはデータ出力部25を経てX−Y−C加工測定部14の第2NC加工機15に送られ、実際のワークの加工に供される。
【0049】
加工されたワークは、3次元測定機などの第2形状測定機16に送られる。
第2形状測定機16では前処理部20からのデータより、法線方向計測誤差量keが得られる。
計測された法線方向計測誤差量keは計測データ評価部43に送られる。
計測データ評価部43は、各制御点について法線方向計測誤差量keと前処理部20からのデータとに基づき法線方向加工誤差e、…eを算出する。
法線方向加工誤差e、…eは、法線方向補正部44へ送られる。
このように設計値・X−Y−C軸加工用NCプログラム・法線方向加工誤差値が全て各制御点の法線方向に対し一対一に対応する。
【0050】
そして、1個目のワークを加工し計測、評価した結果を用いて制御点における法線と切削面とが切削点で直交するようにX−Y−C軸加工用NCプログラムを修正することで、2個目以降のワークの加工精度を向上する。即ち、法線方向補正部44→第2NC加工機15→第2形状計測機→計測データ評価部43→法線方向補正部44というループを数回繰り返すことにより、計測データ評価部43から出力される各制御点の法線方向加工誤差が最終的に0へと収束していく。
指定された目標曲線が滑らかな曲線からオフセットした形状を有する場合も、第1実施例と同様、法線方向の形状オフセット量qをパラメータとして管理することで真の加工誤差だけを正しくフィードバックすることができる。
【0051】
〔実施例の効果〕
自由曲線や特殊インボリュート曲線等の目標曲線に沿ったワークのX−Y−C軸加工を精度良く行うことができる。指定された目標曲線が滑らかな曲線からオフセットした形状を有する場合も、オフセットした形状を精度良く加工することができる。
X−C軸加工で目標曲線を一度に加工することができるため加工時間が短い。
【0052】
〔変形例〕
法線方向の補正量に対し、NCプログラムはX軸のみが補正されるので、法線方向補正部44とNCプログラム生成部42は入れ替えてもシステムとして成立する。
【図面の簡単な説明】
【図1】第1実施例にかかるNC加工システムの構成図である。
【図2】加工測定部の斜視図である。
【図3】法線方向補正法の一例を示す図である。
【図4】法線方向補正結果の一例を示す図である。
【図5】X−C軸加工における座標関係を示す図である。
【図6】X−Y−C軸加工における座標関係を示す図である。
【図7】X−Y−C軸加工におけるNCプログラムの生成法にかかる図である。
【図8】形状オフセットの加工にかかる図である。
【図9】第2実施例にかかるNC加工システムの構成図である。
【図10】従来のNC加工にかかる図である。
【符号の説明】
3 制御点
13 第1形状測定機(加工形状計測過程)
16 第2形状測定機(加工形状計測過程)
22、44 法線方向補正部(補正指示過程)
23、42 NCプログラム生成部(動作指示過程)
24、43 計測データ評価部(加工形状計測過程)
M 刃具(加工手段)
X X軸座標の制御量(動作位置)
Y Y軸座標の制御量(動作位置)
C C軸座標の制御量(動作位置)
e 法線方向加工誤差
(x、y) 設計値点
(hx、hy) 法線ベクトル

Claims (1)

  1. 指定された目標曲線上に設定された複数の設計値点を用いて前記目標曲線に沿って対象物を加工する加工制御方法において、
    前記対象物に加工を施す加工手段に前記目標曲線に沿った加工を行わせるための複数の前記設計値点のそれぞれにおける一連の動作位置を伝達する動作指示過程と、
    前記対象物の加工によって生じた加工曲線の形状を測定し、複数の前記設計値点のそれぞれについて複数の設計値点のそれぞれにおける前記目標曲線の法線上にあり前記加工曲線上にある制御点との法線方向誤差を計測する加工形状計測過程と、
    複数の前記設計値点のそれぞれで得られた複数の前記法線方向誤差に基づいて、以降の動作指示過程に複数の前記設計値点のそれぞれにおける前記動作位置の補正を指示する補正指示過程とを有する加工制御方法。
JP32909294A 1994-12-28 1994-12-28 加工制御方法 Expired - Lifetime JP3575093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32909294A JP3575093B2 (ja) 1994-12-28 1994-12-28 加工制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32909294A JP3575093B2 (ja) 1994-12-28 1994-12-28 加工制御方法

Publications (2)

Publication Number Publication Date
JPH08185211A JPH08185211A (ja) 1996-07-16
JP3575093B2 true JP3575093B2 (ja) 2004-10-06

Family

ID=18217527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32909294A Expired - Lifetime JP3575093B2 (ja) 1994-12-28 1994-12-28 加工制御方法

Country Status (1)

Country Link
JP (1) JP3575093B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269808A (ja) * 1996-03-29 1997-10-14 Fanuc Ltd Cncデータ補正方法
JP3038160B2 (ja) * 1996-12-10 2000-05-08 ファナック株式会社 旋盤におけるネジ切リ加工方法
AT505004B1 (de) * 2007-07-23 2008-10-15 Gruenberger Thomas Dr Verfahren und einrichtung zur einstellung einer bearbeitungsposition
WO2012032667A1 (ja) * 2010-09-07 2012-03-15 株式会社牧野フライス製作所 スクロール加工方法および加工装置
JP5800888B2 (ja) 2013-12-24 2015-10-28 ファナック株式会社 テーブル形式データによる運転でのスムージング機能を備えた数値制御装置
CN103777570B (zh) * 2014-01-07 2017-03-01 浙江大学 基于nurbs曲面的加工误差快速检测补偿方法
JP6435962B2 (ja) * 2015-03-30 2018-12-12 ブラザー工業株式会社 制御装置、工作機械及びコンピュータプログラム
CN106569458A (zh) * 2015-10-13 2017-04-19 上海铼钠克数控科技股份有限公司 基于误差迭代的加工误差动态补偿方法
DE112016005969T5 (de) 2015-12-24 2018-09-20 Mitsubishi Electric Corporation Werkzeugwegkorrekturvorrichtung und Werkzeugwegkorrekturverfahren
JP6608879B2 (ja) 2017-07-21 2019-11-20 ファナック株式会社 機械学習装置、数値制御装置、数値制御システム、及び機械学習方法
JP7061013B2 (ja) * 2018-05-08 2022-04-27 株式会社Ihi 経路補正方法及び多軸加工機の制御装置

Also Published As

Publication number Publication date
JPH08185211A (ja) 1996-07-16

Similar Documents

Publication Publication Date Title
US5471406A (en) Method of measuring elemental shapes of a workpiece on a coordinate measuring machine
JP3575093B2 (ja) 加工制御方法
EP2040028B1 (en) Measuring method for use on machine tools
US5892345A (en) Motion control for quality in jet cutting
JP4168060B2 (ja) 円錐状の加工面の加工を可能にした数値制御装置
US6456897B1 (en) Control method and numerical control for motion control of industrial machine tools
JP2008269316A (ja) 数値制御工作機械及び数値制御装置
CN111052015A (zh) 数控系统及电动机控制装置
JP2004299010A (ja) ロボットのたわみ補正装置及びたわみ補正方法
JP2001125613A (ja) 数値制御シミュレーション装置
KR0158481B1 (ko) 수치제어 공작기계에 있어서의 타원곡선의 형성방법
JP3879056B2 (ja) 数値制御曲面加工装置
JP4431880B2 (ja) 多軸数値制御装置用のncポストプロセッサ装置
KR940010398B1 (ko) 인볼류트 보간 오차 보정 방법
JP3511583B2 (ja) 数値制御方法
JPH0354610A (ja) インボリュート補間誤差補正方式
JP2000311010A (ja) 軌跡制御装置、プログラム作成装置およびプログラム変換装置
JP4356857B2 (ja) 多軸nc研磨加工機
JPH01222311A (ja) 多自由度作業機械の曲面倣い制御装置
JPH07210230A (ja) 力制御ロボットによるパイプ表面の倣い制御方法
JPH0728514A (ja) 機差導出方法
US4276792A (en) Method for continuous path control of a machine tool
JP2686293B2 (ja) 3次元レーザ加工方法
JP2001018182A (ja) ロボット機構較正演算方法及びシステム
US20240219884A1 (en) Control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term