JP3879056B2 - 数値制御曲面加工装置 - Google Patents

数値制御曲面加工装置 Download PDF

Info

Publication number
JP3879056B2
JP3879056B2 JP2001018606A JP2001018606A JP3879056B2 JP 3879056 B2 JP3879056 B2 JP 3879056B2 JP 2001018606 A JP2001018606 A JP 2001018606A JP 2001018606 A JP2001018606 A JP 2001018606A JP 3879056 B2 JP3879056 B2 JP 3879056B2
Authority
JP
Japan
Prior art keywords
coordinate system
curve
curved surface
feed speed
numerically controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001018606A
Other languages
English (en)
Other versions
JP2002222008A5 (ja
JP2002222008A (ja
Inventor
修久 金丸
純一 平井
宏 荒井
保 針原
修 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Software Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Software Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Software Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Software Engineering Co Ltd
Priority to JP2001018606A priority Critical patent/JP3879056B2/ja
Publication of JP2002222008A publication Critical patent/JP2002222008A/ja
Publication of JP2002222008A5 publication Critical patent/JP2002222008A5/ja
Application granted granted Critical
Publication of JP3879056B2 publication Critical patent/JP3879056B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、数値制御曲面加工装置に係り、特に、加工面粗さおよび加工面精度を良くするとともに高速加工を可能にする数値制御曲面加工装置に関する。
【0002】
【従来の技術】
従来の数値制御(NC)曲面加工装置に曲面加工させるための加工径路を加工プログラムで指令する際には、曲面を直線に近似した直線補間指令が用いられる。直線補間NCデータにより加工された形状は、図2(a)に示すように、元形状に対して直線分割で加工されており、加工面粗さが悪く、多くの手仕上げ工数を要する。また、工具位置決め時の加減速により、平均送り速度が低下し、加工時間が長く、しかも、加工面精度を上げるには、細かいピッチでの膨大なNCデータが必要であるという問題があった。
【0003】
これらの問題を解決するため、特開平10−228306号公報は、自由曲線切削指令により数値制御装置の各移動軸を制御し、自由曲線切削を実行する方法を提案している。
【0004】
また、この自由曲線補間の1つとして、図3に示すNURBS曲線による工具軌跡の補間方法が提案された。NURBS曲線とは、Non−Uniform Rational B−spline曲線の略であって、不等間隔有理化Bスプライン曲線である。NURBS曲線は、自由曲線の一種であり、曲線を構成する節点の間隔が不均一な有理式を用いて表現される自由曲線のことである。他の曲線が、曲線の定義に多項式を用いているのに対して、NURBS曲線は、有理式を用いていることが特徴である。
【0005】
これらを制御すると、曲線を局所的に容易に変形できる。また、他の曲線では正確に表現できなかった円柱,円錐,球,双曲線,楕円,放物線を統一的に取り扱うことが可能になる。
【0006】
図3において、NURBS曲線は、曲線を制御点Pi,ウエイトwi,ノットベクトルxiにより定義する。ここで、kは階数、Piは制御点、wiはウエイト、xiはノット(xi≦xi+1)、[x0,x1,…,xm](m=n+k)はノットベクトル、tはスプラインパラメータとする。
【0007】
Bスプライン基底関数N(t)をde Boor−Coxの再帰式で表現すると、数式(1),(2)のようになる。補間するNURBS曲線P(t)は、数式(3)のようになる。
【0008】
【数1】
Figure 0003879056
【0009】
【数2】
Figure 0003879056
【0010】
【数3】
Figure 0003879056
NURBS補間指令は、例えば、特開平8−305430号公報に記載されているように、以下のようなフォーマット
Figure 0003879056
で出力される。それぞれのコードは、
Figure 0003879056
という意味を持つ。
【0011】
NURBS補間加工においては、図2(c)に示すように、曲線を滑らかに加工できるため、手仕上げ工数が少ない。また、図2(d)に示すように、位置決め時の加減速が滑らかになって、平均送り速度が上がるので、加工時間を短くでき、高速加工が可能である。さらに、NURBS補間の制御点を効率良く設定できるから、NCデータが少なくなる利点があるとされている。
【0012】
本出願人は、特願平11−265042号において、上位CAMシステムからCLデータを読み込み、工具移動軌跡のNURBS曲線NCデータを作成する手法を出願している。また、NURBS曲線を作成する方法は、例えばLes Piegl, Wayne Tiller著「The NURBS BOOK』などに記載されている。
【0013】
【発明が解決しようとする課題】
ところで、前記NURBS補間指令のフオーマットおよびそこに与えるべき制御点ベクトル,ウエイト,ノット値を導出して数値制御加工装置を制御する方法は提供されているが、NURBS補間指令に与える送り速度の最適値を導出し、NCデータに変換する方法について、詳しくは考慮されていなかった。
【0014】
一般に、ワーク座標系送り速度から4軸以上を有するNC加工機械の機械座標系送り速度を導出する際には、ワーク座標系および機械座標系における加工時間が等しい条件で計算される。
【0015】
ワーク座標系での工具先端ベクトルの始点を(Xws,Yws,Zws),終点を(Xwe,Ywe,Zwe),弦長をLw,ワーク座標系送り速度をFw,機械座標系での制御点ベクトルの始点を(Xms,Yms,Zms,αms,βms),終点を(Xme,Yme,Zme,αme,βme),弦長をLmとして、機械座標系送り速度Fmを数式(4)で導出する。
【0016】
【数4】
Figure 0003879056
数式(4)を用いて、ワーク座標系送り速度値51およびワーク座標系・機械座標系の弦長から導出された機械座標系送り速度の分布は、各制御点間の平均送り速度計算のために、図4の上段に示すように、段状分布52になる。これは結果として、指定送り速度分布51と誤差を伴う実送り速度分布53とをもたらしており、工具が被削材に対して急激な加減速を伴って制御することになる。
【0017】
また、NURBS補間指令によるNCデータにおいて、その送り速度が完全には補間されていない場合は、直線補間での実送り速度53の加減速は緩和されるが、NURBS指令による実送り速度54の速度分布により、ワーク座標系の指定送り速度51との誤差を生じ、加工表面粗さが悪化し、切削工具の寿命が短くなり、数値制御加工装置に過剰な負担をかける。
【0018】
本発明の目的は、自由曲線で表現される工具移動軌跡を持つNCデータの実送り速度と切削諸元とを決定し最適化する手段を備えた数値制御曲面加工装置を提供することである。
【0019】
【課題を解決するための手段】
本発明は、上記目的を達成するために、直線移動3軸と少なくとも1つの回転軸とを有し数値制御自由曲線補間機能を持つ数値制御装置により数値制御される同時多軸制御NC加工機を含み送り速度を制御するNCデータを導出する手段を備えた数値制御曲面加工装置において、上位計算機で曲面形状が定義されたワーク座標系で加工方向に計算された工具先端位置ベクトルデータと工具主軸方向ベクトルおよびワーク座標系における送り速度とをCLデータとして読み込み、CLデータから同時多軸制御NC加工機の機械構成に基づきNC加工機を動作させるための工具移動軌跡として機械座標系で直線3軸の位置ベクトルと回転角度と送り速度に変換する送り速度変換手段と、送り速度変換手段により変換された機械座標系における位置ベクトルと回転角度とが制御点,ウエイト,ノットベクトルにより定義されるNURBS曲線により補間されたNCデータを作成する際にNURBS曲線のノットベクトルを利用して送り速度変換手段により変換された機械座標系の送り速度をNURBS曲線により補間して決定する送り速度決定手段と、送り速度決定手段により決定された送り速度を機械座標系の毎分送りの送り速度またはインバースタイム送りの送り速度に変換する手段と、上記NURBS曲線により補間されたNCデータを上記数値制御装置に伝送する手段とを備えた数値制御曲面加工装置を提案する。
【0020】
前記送り速度決定手段は、工具移動軌跡が補間される曲線の形態がNURBS曲線を含まない自由曲線で定義される場合に、工具移動軌跡が表現された形式の自由曲線と同じ形式で定義された送り速度を導出する手段とすることができる。
【0021】
また、前記送り速度決定手段は、工具移動軌跡が直線補間により表現されるCLデータおよびNCデータを読み込み、送り速度をNURBS曲線により補間して決定する手段としてもよい。
【0022】
この場合、前記数値制御曲面加工装置は、CLデータから数値制御曲面加工装置の機械構成に従って座標系変換により導出された工具送り速度を補間する曲線の制御点として用いる際に、制御点の値を変更しまたは制御点を追加しまたは制御点を削除する手段を備えることも可能である。
本発明においては、上位CAMシステム10から生成されたCLデータ11における工具移動軌跡をNURBS補間により規定のフォーマットで出力するNCデータを作成する際に、図4の下段に示すように、その工具送り速度の最適な値としてNURBS補間処理を施した機械座標系送り速度55を導出して、ワーク座標系における設定値との偏差のない実送り速度56により理想的な切削諸元を提供し、加工表面粗さおよび工具寿命の向上によるより滑らかな加工曲面を得、数値制御NC加工機の負担を減らすことができる。
【0023】
また、補間の形態として、NURBS曲線に限らず、一般的な自由曲線で補間定義を与える場合にも適用できる。
【0024】
【発明の実施の形態】
次に、図1〜図13を参照して、本発明による数値制御曲面加工装置の実施形態を説明する。
【0025】
図1は、本発明による数値制御曲面加工装置の実施形態の系統構成を示すブロック図である。本発明は、先に提案した特願平11−265042号の数値制御曲面加工装置に新たな機能を追加した発明である。すなわち、本発明の新たな機能を手段31および手段32として前記数値制御曲面加工装置に追加してある。
【0026】
上位CAMシステム10で作成された曲面データは、ワーク座標系で表示される工具移動径路に沿って一定の許容値内で多数の直線として分割される。前記方法により生成された個々の分割点における工具先端位置ベクトル情報と工具主軸方向ベクトル情報、およびワーク座標系送り速度情報を工具移動径路順に記述し、CLデータ11を作成する。
【0027】
作成された前記CLデータ11は、数値制御曲面加工装置50の機械構成に基づき、NC加工装置を動作させるためのNCデータに変換するため、本数値制御曲面加工装置の計算機20に取り込まれる。
【0028】
本数値制御曲面加工装置20は、ステップ21の機能によりCLデータを読み込む。
【0029】
ステップ22〜29において、特願11−265042号に示す数値制御曲面加工装置の実施の形態に従い、数値制御曲面加工装置50の機械構成に基づいた直線3軸および回転角度の位置ベクトルおよびNURBS曲線,機械座標系送り速度,機械座標系制御点のノットベクトルが導出される。
【0030】
NCデータ作成時に想定した工具長,工具径と実物の工具長,工具径との間には、誤差が必ず存在する。
【0031】
ステップ22で、計算機20は、前記誤差を補正するために、工具補正Noを指示し、数値制御装置40に対して補正データの出力を要求する。数値制御装置40は、指示された補正Noに対応する補正データを補正データ記憶エリア41から読み出し、計算機20に出力する。計算機20は、数値制御装置40から出力された補正データを読み込む。
【0032】
ステップ23で、計算機20は、補正したい方向に応じて、図5および数式(5)に示す方式で、CLデータを補正する。ここで、Cは工具先端位置ベクトル、Dは主軸方向ベクトル、PはCにおける切削点位置ベクトル、NはPでの法線ベクトルである。C1は主軸方向にd1だけ補正し、C2は法線方向にd2だけ補正し、C3は工具径方向にd3だけ補正した工具先端位置ベクトルである。
【0033】
【数5】
Figure 0003879056
通常のCLデータは、工具先端位置ベクトルと主軸方向ベクトルとを意味するので、C1のみの補正が可能である。加えて、CLデータを計算する時に使用した切削点位置ベクトルと法線ベクトルとが分かっていれば、上記C2,C3の補正やC1,C2,C3を組合せた補正が可能である。この方法で、CLデータを補正すると、補正したNURBS補間用NCデータ作成が可能になる。
【0034】
なお、『機械と工具』(1998年2月号)の12〜17頁の「NURBS補間と滑らか補間による高速高精度加工」におけるNURBS補間機能では、補正が許されていなかった。
【0035】
ステップ24で、図6に示す方式によって、加工精度を向上させる一方、データ量を削減するために、CLデータの間引きまたは追加を実行する。まず、工具先端位置ベクトルから最小2乗近似法により通過曲線を計算し、NURBS曲線51とし、ステップ52で、一定のトレランスの範囲外にあるCLデータを間引く。
【0036】
NURBS曲線は、図3および数式(1),(2),(3)のNURBS曲線の定義で与えられる。点列からNURBS曲線を作成する方法は、例えば、Les Piegl, Wayne Tiller著『The NURBS BOOK』などに記載されている。
【0037】
次に、間引いたCLデータの主軸方向ベクトルを基に、NURBS曲線53を計算する。ステップ54で、工具先端位置ベクトルの通過点に対応するNURBS曲線53上の主軸方向ベクトルを計算し、角度の変化量を計算する。元のCLデータとの差が公差値よりも大きければ、通過点を追加し、精度を向上させる。間引きまたは追加のための公差値は、0.01mmに設定してある。
【0038】
ステップ25で、ステップ24で計算されたNURBS曲線53を分割する。図7は、工具先端位置ベクトルの軌跡を示している。工具先端位置ベクトルのNURBS曲線(すなわちG06.2工具経路64)と折れ線工具経路(すなわちG01工具経路65)とから、パス分割位置63を求める。通過点の距離間隔が急に短くなったり、折れ線の角度が急変すると、NURBS曲線に乱れが生じる。そこで、間隔が短くなる箇所および折れ線の角度が大きく変化する箇所を見つけ出し、その点を曲線のパス分割点63として、パス分割点63で曲線を分割し、曲線の精度を向上させる。
【0039】
ステップ26で、CLデータを機械座標系に座標変換する。図1のテーブル2軸タイプの5軸加工機50でC軸テーブル回転中心とB軸回転中心とが直交した交点を機械座標系原点Omとする。C軸テーブル上にワークがセットされ、ワーク座標系原点がOwであるとする。このときに、機械座標系原点Omから見たワーク座標系Owの位置ベクトルをSとすると、ワーク座標系の工具先端位置ベクトル(X,Y,Z),主軸方向ベクトル(I,J,K)から、機械座標(Mx,My,Mz,B,C)への座標変換は、図8の座標系および数式(6),(7),(8),(9),(10)で表現できる。
【0040】
【数6】
Figure 0003879056
【0041】
【数7】
Figure 0003879056
【0042】
【数8】
Figure 0003879056
【0043】
【数9】
Figure 0003879056
【0044】
【数10】
Figure 0003879056
ここで、(Mx,My,Mz,B,C)は、X,Y,Z,B,C各機械軸の座標値を表す。この座標変換式は、各加工機に固有である。この変換方式は、テーブル1軸とテーブル1軸タイプ、主軸2軸タイプの加工機についても同様に設定できる。
【0045】
従来技術では、ワーク座標系で計算したNURBS曲線の制御点を主軸方向ベクトルに応じて機械座標系に座標変換した結果をそのまま5軸NURBS補間の制御点に適用し、ワーク座標系のノットベクトルと同じノットベクトルを5軸NURBS補間に適用している。
【0046】
ところが、一般的には、座標変換後も同じノットベクトルを使用して滑らかな曲線が得られるという保証はない。そのため、加工面の一部にうねりや歪みができる可能性があった。
【0047】
これに対して、本発明では、図9(b)に示すように、各機械座標系間の弦長をノットベクトルとして使用し、(Mx,My,Mz)の直線3軸と(B,C)の回転2軸との機械座標系でのNURBS曲線の制御点を、それぞれが連続的に滑らかに変化するように再計算させることにより、加工精度を向上させている。
【0048】
ステップ27で、ノットベクトルを計算する。図9のステップ81で、上記数式(6),(7),(8),(9),(10)を用いて、最初に全通過点の機械座標系(Mx,My,Mz,B,C)を計算する。各機械座標間の弦長(Li)を計算し、図9(b)のノットベクトルとする。(Mx,My,Mz)と(B,C)のノットベクトルとは、同じものを使用する。
【0049】
ステップ28で、ワーク座標系のCLデータから機械座標系に変換された(Mx,My,Mz)の直線3軸と(B,C)の回転2軸の点列データとステップ27で計算したノットベクトルとから、上記『The NURBS BOOK』などに示されているNURBS曲線の作成方法により、数式(1),(2),(3)で表されるNURBS曲線を作成する。
【0050】
ステップ28で、図9(b)のノットベクトルと図3および数式(1),(2),(3)のNURBS曲線の定義を用いて、直線3軸(Mx,My,Mz)および回転角度2軸(B,C)のNURBS曲線を計算する。
【0051】
ステップ29で、ブレンディング係数を計算する。図10(a)に示すように、ステップ28で計算したNURBS曲線を用いて加工した場合、曲線に膨らみが発生し、加工結果に凹凸91が生じる可能性がある。これに対処するため、まず、図10(b)に示すように、ステップ24で間引いた点92を含めてより精度を上げて、ワーク座標系の工具先端位置ベクトルの弦長を計算し、ワーク座標系のノットベクトルとする。次に、機械座標系のノットベクトルとワーク座標系のノットベクトルとに、ブレンディング係数をそれぞれかけて加算して得られたノットベクトルを機械座標系のノットベクトルとして採用する。
【0052】
このようにすると、加工結果の凹凸91に対処できる。本実施形態では、ブレンディング係数を3:1に設定したところ、スムーズに加工ができた。なお、この係数は、加工物に対応して変更できる。
【0053】
ステップ30で、機械座標系での送り速度を計算する。ワーク座標系での始点を(Xws,Yws,Zws),終点を(Xwe,Ywe,Zwe),弦長をLw,送り速度をFw,機械座標系での始点を(Xms,Yms,Zms,Bms,Cms),終点を(Xme,Yme,Zme,Bme,Cme),弦長をLm,送り速度をFmすると、機械座標系の送り速度Fmは、数式(11)により与えられる。
【0054】
【数11】
Figure 0003879056
ステップ31で機械座標系送り速度のNURBS曲線を導出する。図11に示すように、ワーク座標系位置ベクトル,ワーク座標系送り速度,機械座標系位置ベクトルから上記数式(4)によって導出された機械座標系送り速度は、機械座標系の直線3軸制御点のノットベクトルを用いて、前記『The NURBS BOOK』などに示されているNURBS曲線の作成方法により、数式(1),(2),(3)で表されるNURBS曲線を作成する。
【0055】
前記方法で作成された機械座標系送り速度のNURBS曲線の制御点は、図12に示すように、NURBS曲線の形態によりゼロ以下になることもあり得る。
【0056】
ステップ32で、送り速度NURBS曲線のブレンディング係数を計算する。図13に示す通り、ステップ31で計算した機械座標系送り速度NURBS曲線57は、ワーク座標系における実送り速度58で表され、全体的にワーク座標系指定送り速度59と比較して、送り速度の過不足60を生じる。これに対処するため、ステップ27で求められたノットベクトルにブレンディング係数を乗じて再度機械座標系送り速度NURBS曲線61を計算し、指定送り速度59まで最適化する。
【0057】
ステップ33では、ステップ28〜ステップ32で計算した機械座標系の直線3軸NURBS曲線の制御点をNURBS補間指令のX,Y,Zに代入し,回転角度2軸のNURBS曲線の制御点をα,βに代入し、ノットベクトルをKに代入し、ウエイトをRに代入し、機械座標系送り速度NURBS曲線の制御点をFに代入し、NURBS補間指令のフオーマットに従い、NCデータに変換する。
【0058】
ステップ34では、最後に変換されたNCデータを計算機20からのNCデータとして伝送し、NC制御装置40のNCデータ記憶エリア42に読み込み、格納する。
【0059】
NC制御装置40のNURBS補間機能を内蔵するNC制御機構43は、NCデータ記憶エリア42からNCデータを読み出し、解析しながら5軸または4軸制御NC加工機50を制御し、NC加工する。
【0060】
本発明は、NCデータ出力フオーマットが一般的な自由曲線によって提供されるとき、前記工具位置ベクトルおよび送り速度の補間方法として、同様な手順により機械座標系の直線3軸自由曲線の制御点であるX,Y,Zの値、回転2軸の自由曲線の制御点であるα,βの値,ノットベクトルK,ウエイトR,機械座標系送り速度の自由曲線の制御点であるFの値を導出し、NCデータに変換しNC加工することも可能である。
【0061】
本実施形態によれば、自由曲線を描く工具移動軌跡において、最適な実送り速度および切削諸元を決定する手段を備えたことから、切削工具寿命を延長できる。また、サーボ機構の制御による平均送り速度の低下を回避できるので、数値制御曲面加工装置への負担を軽減し、加工面荒さおよび加工面精度が良い曲面加工が可能になる。これらの改善の結果として、後工程となる手仕上げ作業を省略し、加工工数を大幅に低減できる。さらに、本発明では、工具移動軌跡の形状により、ブレンディング係数を変更できるようにしたので、速度変化量を考慮した微小な調整も可能となる。
【0062】
【発明の効果】
本発明の数値制御曲面加工装置によれば、自由曲線を描く工具移動軌跡において最適な実送り速度および切削諸元を決定することにより、切削工具寿命を延長できる。また、サーボ機構の制御による平均送り速度の低下を回避するので、数値制御曲面加工装置への負担を軽減し、加工面荒さおよび加工面精度が良い曲面加工が可能になる。その結果、後工程となる手仕上げ作業を省略でき、加工工数を大幅に低減できる。さらに、本発明では、速度変化量を考慮した微小な調整も可能となる。
【図面の簡単な説明】
【図1】本発明による数値制御曲面加工装置の実施形態の系統構成を示すブロック図である。
【図2】従来の直線補間加工方法と従来のNURBS補間加工方法とを比較して示す図である。
【図3】NURBS曲線と制御点との関係を示す図である。
【図4】送り速度のNURBS曲線補間によって変化するワーク座標系送り速度と機械座標系送り速度とを比較して示す図である。
【図5】CLデータの補正方法の一例を示す図である。
【図6】本発明によるCLデータの間引きまたは追加の方法を示す図である。
【図7】本発明によるNURBS曲線の分割の方法を示す図である。
【図8】本発明によるワーク座標系から機械座標系への変換における座標系相互の関係を示す図である。
【図9】本発明によるノットベクトル計算および機械座標系のNURBS曲線計算の方式を示す図である。
【図10】本発明によるブレンディング係数設定によるNURBS曲線のスムーズ化の方式を示す図である。
【図11】送り速度をNURBS曲線補間する際のノットベクトルの設定方法を示す図である。
【図12】機械座標系送り速度のNURBS曲線とその制御点の関係を示す図である。
【図13】ブレンディング係数による機械座標系送り速度の最適化を示す図である。
【符号の説明】
10 上位CAMシステム
11 CLデータ格納用外部ファイル
20 本方式を装備し実行する計算機
40 数値制御装置
41 補正データ記憶エリア
42 NCデータ記憶エリア
43 NC制御機構
50 5軸または4軸制御NC加工機

Claims (4)

  1. 直線移動3軸と少なくとも1つの回転軸とを有し数値制御自由曲線補間機能を持つ数値制御装置により数値制御される同時多軸制御NC加工機を含み送り速度を制御するNCデータを導出する手段を備えた数値制御曲面加工装置において、
    上位計算機で曲面形状が定義されたワーク座標系で加工方向に計算された工具先端位置ベクトルデータと工具主軸方向ベクトルおよびワーク座標系における送り速度とをCLデータとして読み込み、前記CLデータから前記同時多軸制御NC加工機の機械構成に基づき前記NC加工機を動作させるための工具移動軌跡として機械座標系で直線3軸の位置ベクトルと回転角度と送り速度に変換する送り速度変換手段と、
    前記送り速度変換手段により変換された機械座標系における位置ベクトルと回転角度とが制御点,ウエイト,ノットベクトルにより定義されるNURBS曲線により補間されたNCデータを作成する際に前記NURBS曲線のノットベクトルを利用して前記送り速度変換手段により変換された機械座標系の送り速度をNURBS曲線により補間して決定する送り速度決定手段と、
    前記送り速度決定手段により決定された送り速度を前記機械座標系の毎分送りの送り速度またはインバースタイム送りの送り速度に変換する手段と、
    上記NURBS曲線により補間されたNCデータを上記数値制御装置に伝送する手段とを備えたことを特徴とする数値制御曲面加工装置。
  2. 請求項1に記載の数値制御曲面加工装置において、
    前記送り速度決定手段は、工具移動軌跡が補間される曲線の形態がNURBS曲線を含まない自由曲線で定義される場合に、前記工具移動軌跡が表現された形式の自由曲線と同じ形式で定義された送り速度を導出する手段であることを特徴とする数値制御曲面加工装置。
  3. 請求項1または2に記載の数値制御曲面加工装置において、
    前記送り速度決定手段は、工具移動軌跡が直線補間により表現されるCLデータおよびNCデータを読み込み、前記送り速度をNURBS曲線により補間して決定する手段であることを特徴とする数値制御曲面加工装置。
  4. 請求項3に記載の数値制御曲面加工装置において、
    CLデータから前記数値制御曲面加工装置の機械構成に従って座標系変換により導出された工具送り速度を補間する曲線の制御点として用いる際に、前記制御点の値を変更しまたは制御点を追加しまたは制御点を削除する手段を備えたことを特徴とする数値制御曲面加工装置。
JP2001018606A 2001-01-26 2001-01-26 数値制御曲面加工装置 Expired - Fee Related JP3879056B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018606A JP3879056B2 (ja) 2001-01-26 2001-01-26 数値制御曲面加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001018606A JP3879056B2 (ja) 2001-01-26 2001-01-26 数値制御曲面加工装置

Publications (3)

Publication Number Publication Date
JP2002222008A JP2002222008A (ja) 2002-08-09
JP2002222008A5 JP2002222008A5 (ja) 2005-07-07
JP3879056B2 true JP3879056B2 (ja) 2007-02-07

Family

ID=18884605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018606A Expired - Fee Related JP3879056B2 (ja) 2001-01-26 2001-01-26 数値制御曲面加工装置

Country Status (1)

Country Link
JP (1) JP3879056B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182906A (zh) * 2015-09-24 2015-12-23 哈尔滨工业大学 基于高阶s型运动轨迹的位置与速度控制方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309288B2 (ja) * 2009-03-30 2013-10-09 広島県 加工誤差予測のためのコンピュータプログラム、加工誤差予測装置およびその予測結果に基づいて工具経路を修正する装置
JP5686975B2 (ja) * 2010-02-26 2015-03-18 三菱重工業株式会社 点列生成方法、点列生成プログラム、並びに点列生成装置及びこれを備えた工作機械
JP5737970B2 (ja) * 2011-01-28 2015-06-17 Dmg森精機株式会社 工作機械の制御システム
CN104035380B (zh) * 2014-05-12 2017-01-25 浙江理工大学 基于偏移量nurbs曲线的数控裁床运动控制方法
EP3144760A1 (de) 2015-09-15 2017-03-22 Siemens Aktiengesellschaft Verfahren zur bereitstellung eines verfahrprofils, steuereinrichtung, maschine sowie computerprogramm
CN108153246B (zh) * 2017-12-26 2020-07-10 哈工大机器人(合肥)国际创新研究院 一种基于指定速度的参数自适应s形速度规划插补方法
CN111452033A (zh) * 2019-01-18 2020-07-28 兰州交通大学 一种工业机器人双nurbs曲线铣削轨迹规划方法
CN110471368A (zh) * 2019-08-30 2019-11-19 长安大学 一种高速数控机床加工速度自适应的前瞻插补方法
CN111487929B (zh) * 2020-04-17 2021-04-20 中国航发北京航空材料研究院 一种基于双向比例调整的多约束数控加工进给率定制方法
CN112171277B (zh) * 2020-10-12 2022-08-09 合肥福春机械有限公司 一种两个斜坐标系之间的坐标转换方法
WO2022149569A1 (ja) * 2021-01-08 2022-07-14 ファナック株式会社 工作機械を備える加工システム、加工システムにおけるパラメータを修正するパラメータの修正方法、加工プログラムを修正するプログラム修正システム、およびプログラムの修正方法
CN113504764B (zh) * 2021-06-30 2024-07-05 浙江大学 基于位置矢量加权积分的连续线段数控加工路径平滑方法
CN113848808B (zh) * 2021-09-08 2023-03-28 华中科技大学 一种基于测量点云的刀具轨迹光顺和优化方法
CN113984207B (zh) * 2021-10-22 2024-02-06 上海济物光电技术有限公司 一种像切分器的飞刀加工方法
CN117631607B (zh) * 2023-10-19 2024-10-18 通用技术集团机床工程研究院有限公司上海分公司 密封圈模具加工方法、装置、数控设备、数控系统及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182906A (zh) * 2015-09-24 2015-12-23 哈尔滨工业大学 基于高阶s型运动轨迹的位置与速度控制方法
CN105182906B (zh) * 2015-09-24 2017-09-01 哈尔滨工业大学 基于高阶s型运动轨迹的位置与速度控制方法

Also Published As

Publication number Publication date
JP2002222008A (ja) 2002-08-09

Similar Documents

Publication Publication Date Title
JP3610485B2 (ja) 数値制御曲面加工装置
EP1235126B1 (en) Numerically controlled curved surface machining unit
JP3879056B2 (ja) 数値制御曲面加工装置
US6675061B2 (en) Numerically controlled curved surface machining unit
Liu et al. Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools
US5396160A (en) Method of real-time machine path planning from a math model
US7693588B2 (en) Method of curvature controlled data smoothing
Wang et al. NURBS interpolator with adaptive smooth feedrate scheduling and minimal feedrate fluctuation
Emami et al. A look-ahead command generator with control over trajectory and chord error for NURBS curve with unknown arc length
JPH08305430A (ja) 自由曲線補間方式
JPWO2014016943A1 (ja) 数値制御装置
JP4431880B2 (ja) 多軸数値制御装置用のncポストプロセッサ装置
JP3350569B2 (ja) 数値制御装置
JP4392533B2 (ja) 数値制御曲面加工装置
CN114115131A (zh) 一种应用于五轴数控机床的时间样条曲线拟合与插补方法
US4922431A (en) Method and apparatus of tool control in arbitrary plane operations
CN113946136B (zh) 数控系统的控制方法、数控系统及具有存储功能的装置
Yau et al. PC-based controller with real-time look-ahead NURBS interpolator
JP2686293B2 (ja) 3次元レーザ加工方法
JP3236579B2 (ja) 数値制御装置および曲線経路補間方法
JP3902353B2 (ja) 数値制御装置
JP2002366208A (ja) 工作機械の自由曲線補間方法及び数値制御装置
Zhang et al. A Curvature-Continuous Transition Method with Axis High-Order Kinematic Limitations along Linear Segments
Lin et al. Advanced curve machining method for 5-axis CNC machine tools
JPH0561524A (ja) 数値制御装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3879056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees