JP3562284B2 - バイポーラトランジスタおよびその製造方法 - Google Patents

バイポーラトランジスタおよびその製造方法 Download PDF

Info

Publication number
JP3562284B2
JP3562284B2 JP00449298A JP449298A JP3562284B2 JP 3562284 B2 JP3562284 B2 JP 3562284B2 JP 00449298 A JP00449298 A JP 00449298A JP 449298 A JP449298 A JP 449298A JP 3562284 B2 JP3562284 B2 JP 3562284B2
Authority
JP
Japan
Prior art keywords
layer
germanium
crystal silicon
single crystal
type single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00449298A
Other languages
English (en)
Other versions
JPH11204539A (ja
Inventor
克矢 小田
勝由 鷲尾
栄司 大植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00449298A priority Critical patent/JP3562284B2/ja
Publication of JPH11204539A publication Critical patent/JPH11204539A/ja
Application granted granted Critical
Publication of JP3562284B2 publication Critical patent/JP3562284B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バイポーラトランジスタおよびその製造方法に係り、特に単結晶シリコン・ゲルマニウムを真性ベース層として用いたバイポーラトランジスタおよびその製造方法に関する。
【0002】
【従来の技術】
従来の単結晶シリコン・ゲルマニウムを真性ベース層として用いたバイポーラトランジスタは、例えば1990年 IEDM テクニカル ダイジェスト (IEDM Technical Digest)p.607に記載されている。
【0003】
この従来例のバイポーラトランジスタの断面構造を図2に示す。図2において、符号21はシリコン基板を示し、このシリコン基板21上に形成した高濃度n型埋込層22上に、コレクタ層となる低濃度n型シリコン層23のエピタキシャル成長を行った後、コレクタ・ベース絶縁膜24と多結晶シリコンからなるベース引き出し多結晶シリコン26とエミッタ・ベース分離絶縁膜28を形成し、エミッタ・ベース分離絶縁膜28とベース引き出し電極26をエッチングして開口部を形成する。ベース引き出し電極26の側壁を絶縁膜29によって覆った後、コレクタ・ベース分離絶縁膜24をエッチングし、ベース引き出し電極26のひさしを形成する。
【0004】
単結晶シリコン・ゲルマニウムをエピタキシャル成長し、真性ベース31を形成する。単結晶シリコン・ゲルマニウム層のエピタキシャル成長と同時にベース引き出し電極26のせりだしの底面から多結晶シリコン・ゲルマニウムからなる外部ベース32が堆積するため、成長を続けることにより真性ベース層31とベース引き出し電極26とが外部ベース32を介して接続する。外部ベース32とエミッタとの導通を防ぐため、この後さらにエミッタ・ベース分離絶縁膜33を形成する。そしてリンが高濃度にドープされたn型多結晶シリコン層37を開口部に堆積,アニールを行ってリンを真性ベース層31へ拡散させることにより、エミッタ層35を形成する。
【0005】
【発明が解決しようとする課題】
前述した従来の単結晶シリコン・ゲルマニウムを真性ベース層に用いたバイポーラトランジスタでは、ベース引き出し電極26のせりだしの下部に形成される多結晶シリコン・ゲルマニウム層32の表面の凹凸により、単結晶シリコン・ゲルマニウム層31と接触したときの界面に隙間ができる。この隙間が形成されると、反応ガスが供給されないために、その後エピタキシャル成長を続けても隙間が埋まることはない。
【0006】
その結果、真性ベース31とベース引き出し電極26の接続が不完全になるために、ベース抵抗が増加するという問題がある。また、多結晶シリコン・ゲルマニウム層32の凹凸が一様でないために、トランジスタ間でのベース抵抗のばらつきが大きくなるという問題がある。さらに、真性ベース31とベース引き出し電極26間を接合するために形成したひさし部分の容量のため、回路の高速動作が抑制されるという問題がある。
【0007】
本発明の目的は、単結晶シリコン・ゲルマニウム層を真性ベース層として用いたバイポーラトランジスタにおいて、高速動作を可能にするために、外部ベース抵抗が低く、ベース抵抗のばらつきが少なく、かつコレクタ・ベース間の容量が小さいバイポーラトランジスタおよびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明に係るバイポーラトランジスタは、第1導電型単結晶シリコン層、例えば図1で言えば、第1のコレクタ領域となる低濃度n型コレクタ層3と、上記第1導電型単結晶シリコン層表面上に設けられた開口部を有する第1の絶縁膜すなわちコレクタ・ベース分離絶縁膜4と第2の絶縁膜すなわち第2のコレクタ・ベース分離絶縁膜5と前記第1導電型と反対導電型の第2導電型多結晶層すなわちp型多結晶シリコンからなるベース引き出し電極7と第3の絶縁層すなわちエミッタ・ベース分離絶縁膜9とからなる多層膜と、前記開口部に設けられた第1導電型単結晶シリコン・ゲルマニウム層すなわち単結晶シリコン・ゲルマニウムからなる低濃度n型コレクタ層12と、上記第1導電型単結晶シリコン・ゲルマニウム層上に設けられた第2導電型単結晶シリコン・ゲルマニウム層すなわち単結晶シリコン・ゲルマニウムからなるp型真性ベース層13と、上記第2導電型単結晶シリコン・ゲルマニウム層と前記第2の絶縁膜5と前記第2導電型多結晶層7とのいずれとも接して設けられた第2導電型多結晶シリコン・ゲルマニウム層すなわち多結晶シリコン・ゲルマニウムからなるp型外部ベース層14とを少なくとも有し、前記第2導電型単結晶シリコン・ゲルマニウム層13が第2の絶縁膜5と第2導電型結晶シリコン・ゲルマニウム層14のみを介して接触することを特徴とするものである。
【0009】
前記バイポーラトランジスタにおいて、第2導電型ベース引き出し層は、多結晶シリコン層又は多結晶シリコン・ゲルマニウム層とすればよい。
【0010】
また、前記第2導電型多結晶シリコン・ゲルマニウムからなる外部ベース層の最も厚い部分の厚さ、すなわち図1で言えば、p型外部ベース層14の最も厚い部分の厚さが少なくとも5nmであれば好適である。
【0011】
前記第2導電型単結晶シリコン・ゲルマニウム層上に設けられ、かつ第2導電型単結晶シリコン・ゲルマニウム層よりも不純物濃度の低い第2の第2導電型単結晶層を更に設ければ、すなわち図10に示すように、真性ベース領域13とベース引き出し電極7とが外部ベース14によって接合した構造に単結晶からなる低濃度のキャップ層41を更に設ければ好適である。
【0012】
この場合、前記第2の第2導電型単結晶層は、単結晶シリコン層または単結晶シリコン・ゲルマニウム層とすればよい。
【0013】
また、前記第2導電型単結晶シリコン・ゲルマニウム層上に設けられた第2の第1導電型単結晶層、すなわち真性ベース上にエピタキシャル成長を用いて形成されたエミッタ層となる単結晶層を更に設ければ好適である。
【0014】
この場合、前記第2の第1導電型単結晶層は、単結晶シリコン層または単結晶シリコン・ゲルマニウム層とすればよい。
【0015】
前記いずれかのバイポーラトランジスタにおいて、前記第2の絶縁膜、すなわち図1で言えば、第2のコレクタ・ベース分離絶縁膜5がシリコン窒化膜であれば好適である。
【0016】
更に、前記いずれかのバイポーラトランジスタにおいて、前記第3の絶縁膜、すなわち図1で言えば、エミッタ・ベース分離絶縁膜9,10がシリコン酸化膜であれば好適である。
【0017】
前記いずれかのバイポーラトランジスタにおいて、前記第2導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が、前記第1導電型単結晶シリコン層側から表面に向かうに従い減少するプロファイル、すなわち図15及び図17に示すように、ベース中のゲルマニウム組成比がコレクタ側からエミッタ側に向かって減少するプロファイルを有すれば好適である。
【0018】
或いは、前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が、前記第1導電型単結晶シリコン層側から表面に向かうに従い増加するプロファイル、すなわち図19に示すように、低濃度コレクタ層中のゲルマニウム組成比がコレクタ側からエミッタ側に向かって増加するプロファイルを有すれば好適である。
【0019】
或いは、前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が、前記第1導電型単結晶シリコン層側から表面に向かうに従い増加し、表面側でゲルマニウム組成比が一定となるプロファイル、すなわち図21に示すように、低濃度コレクタ層中のゲルマニウム組成比がコレクタ側からエミッタ側に向かって増加し、低濃度コレクタ層中のベース側でゲルマニウム組成比が一定となるプロファイルとしてもよい。
【0020】
また、前記第2導電型単結晶シリコン・ゲルマニウム層および前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が前記第1導電型単結晶シリコン層側から表面に向かうに従い減少し、その傾きが前記第2導電型単結晶シリコン・ゲルマニウム中と前記第1導電型単結晶シリコン・ゲルマニウム層中とで異なるプロファイル、すなわち図23に示すように真性ベース中と低濃度n型コレクタ層中でゲルマニウム組成比プロファイルの傾きが異なるようにしてもよい。
【0021】
或いは、前記第2導電型単結晶シリコン・ゲルマニウム層および前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が前記第1導電型単結晶シリコン層側から表面に向かうに従い減少し、その傾きが前記第2導電型単結晶シリコン・ゲルマニウム中と前記第1導電型単結晶シリコン・ゲルマニウム層中とで異なり、さらに前記第1導電型単結晶シリコン側で上記第1導電型単結晶シリコン側から表面に向かうに従ってゲルマニウム組成比が増加する領域を有するプロファイル、すなわち図25に示すように、真性ベース中でのゲルマニウム組成比はコレクタ側からエミッタ側に向かって減少し、低濃度n型コレクタ層中でのゲルマニウム組成比がコレクタ側からエミッタ側にかけて初めは増加して途中から減少するプロファイルとすることもできる。
【0022】
本発明に係るバイポーラトランジスタの製造方法は、第1導電型単結晶シリコン層と、上記第1導電型単結晶シリコン層表面上に設けられた開口部を有する第1の絶縁膜と第2の絶縁膜と前記第1導電型と反対導電型の第2導電型多結晶層と第3の絶縁層とからなる多層膜と、前記開口部に設けられた第1導電型単結晶シリコン・ゲルマニウム層と、上記第1導電型単結晶シリコン・ゲルマニウム層上に設けられた第2導電型単結晶シリコン・ゲルマニウム層と、上記第2導電型単結晶シリコン・ゲルマニウム層と第2の絶縁膜と第2導電型多結晶層とのいずれとも接して設けられた第2導電型多結晶シリコン・ゲルマニウム層と、を少なくとも有し、前記第2導電型単結晶シリコン・ゲルマニウム層が第2の絶縁膜と第2導電型結晶シリコン・ゲルマニウム層のみを介して接触することを特徴とするバイポーラトランジスタの製造方法であって、前記第2導電型単結晶シリコン・ゲルマニウム層を形成する工程が、エピタキシャル成長によって形成する工程であって、前記エピタキシャル成長を、成長時の温度が500℃〜700℃で、かつ、成長時の圧力が100Paを超えない条件で行うことを特徴とする。
【0023】
また、本発明に係る光受信システムは、光信号を受け電気信号を出力する受光素子と、上記受光素子からの電気信号を受ける第1の増幅回路と、上記第1の増幅回路の出力を受ける第2の増幅回路と、所定のクロック信号に同期して前記第2の増幅回路の出力をディジタル信号に変換する識別器とを有する光受信システムであって、前記第1の増幅回路は、前記受光素子にそのベースが接続された第1のバイポーラトランジスタと、上記第1のバイポーラトランジスタのコレクタにベースが接続されると共にコレクタが前記第2の増幅回路の入力に接続された第2のバイポーラトランジスタとを有し、前記第1又は第2のバイポーラトランジスタの少なくとも一つが前述したいずれかに記載のバイポーラトランジスタにより構成されたことを特徴とするものである。
【0024】
また、前記光受信システムにおいて、前記第1および第2のバイポーラトランジスタのいずれもを、前述したいずれかのバイポーラトランジスタにより構成してもよい。
【0025】
さらに、前記第1および第2のバイポーラトランジスタが単一の半導体チップ上に形成されると共に、上記半導体チップと前記受光素子とが単一の基板上に実装されていれば好適である。
【0026】
【発明の実施の形態】
本発明に係るバイポーラトランジスタの好適な実施の形態は、シリコン基板上の第1のコレクタ領域に形成された第1の絶縁膜の開口部上のみに、低濃度の単結晶シリコン・ゲルマニウムからなる第2のコレクタ層が設けられていて、しかも多結晶シリコンからなるベース引き出し電極と、前記第2のコレクタ層上に設けられ、かつ、単結晶シリコン・ゲルマニウムからなる真性ベース領域とが、多結晶シリコン・ゲルマニウムからなる外部ベースを介して接触する構造であり、単結晶シリコン・ゲルマニウムと第2の絶縁膜とが多結晶シリコン・ゲルマニウムを介してのみつながっている構造を有するものである。
【0027】
このように単結晶シリコン・ゲルマニウム層からなる真性ベースと第2の絶縁膜との間に多結晶シリコン・ゲルマニウムからなる外部ベースを設けたことにより、真性ベースと外部ベースが、真性ベースの形成初期からつながる構造となり、更に真性ベースと外部ベースの接触面積が増加するため、つなぎ部分のベース抵抗のばらつきを低減すると共に、ベース抵抗を低減することができる。しかも、真性ベースと外部ベースの接触面積が増加することから、ベース引き出し電極のせりだしの長さを短縮しても、真性ベースと外部ベースが接触抵抗を増加させることなく接続できるため、コレクタ・ベース間容量を低減することができる。しかもエミッタ・ベースを自己整合的に形成するため、エミッタ・ベース間容量が低減できる。従って、本発明に係るバイポーラトランジスタは、高速動作が可能となる。
【0028】
また、本発明に係るバイポーラトランジスタの製造方法の好適な実施の形態は、上記バイポーラトランジスタを構成する真性ベース層および低濃度キャップ層の単結晶シリコン・ゲルマニウムをエピタキシャル成長によって形成するときの温度が500℃以上700℃以下で、かつ、形成するときの圧力が100Paを超えないことを特徴とする。
【0029】
このようなエピタキシャル成長条件で行うことにより、単結晶シリコン上に、単結晶シリコン・ゲルマニウムを成長しても、ゲルマニウムの組成比と成長膜厚によってはシリコン窒化膜上には多結晶シリコン・ゲルマニウム層が堆積するが、シリコン酸化膜状には多結晶シリコン・ゲルマニウムが堆積しないようにすることができる。このため、真性ベースを形成する際に、多結晶層からなるベース引き出し電極のせりだしの底面と、第2の絶縁膜の側面のみに多結晶シリコン・ゲルマニウムを形成することができ、真性ベースの成長初期段階から、真性ベースとベース引き出し電極とが外部ベースを介して接続された状態とすることができる。
【0030】
以下では、本発明に係るバイポーラトランジスタおよびその製造方法の更に具体的な実施例につき、添付図面を参照しながら以下詳細に説明する。
【0031】
<実施例1>
図1は、本発明に係るバイポーラトランジスタの第1の実施例を示す断面構造図である。以下、図1に示した構造のバイポーラトランジスタの製造方法を説明する。
【0032】
まず、エミッタおよびコレクタ領域に高濃度n型埋込層2を形成したp型シリコン基板1の全面に低濃度n型コレクタ層3をエピタキシャル成長する。
【0033】
次いで、シリコン酸化膜からなる第1のコレクタ・ベース分離絶縁膜4,シリコン窒化膜からなる第2のコレクタ・ベース分離絶縁膜5を堆積し、コレクタ部分に開口部を形成する。多結晶シリコンからなるコレクタ引き出し電極8,エミッタの開口部周辺に多結晶シリコンからなるベース引き出し電極7,シリコン酸化膜からなるエミッタ・ベース分離絶縁膜9を形成した後、コレクタ部分を開口して、この開口部にn型のドーパントであるリンをイオン打ち込みによって注入し、高濃度n型コレクタ引き出し層6を形成する。
【0034】
次いで、第1のコレクタ・ベース分離絶縁膜4,第2のコレクタ・ベース分離絶縁膜5,ベース引き出し電極7,エミッタ・ベース分離絶縁膜9の開口部およびベース引き出し電極の側壁のエミッタ・ベース分離絶縁膜10を形成する。
【0035】
開口部に単結晶シリコン・ゲルマニウムからなる低濃度n型コレクタ層12,単結晶シリコン・ゲルマニウムからなるp型真性ベース層13,多結晶シリコン・ゲルマニウムからなるp型外部ベース層14を形成する。
【0036】
エミッタ・ベース分離絶縁膜15で外部ベースを覆った後、高濃度n型多結晶シリコンからなるエミッタ電極16を堆積し、アニールを行うことによって単結晶シリコン・ゲルマニウム層内にエミッタ領域17を形成する。
【0037】
絶縁膜18を堆積した後、絶縁膜のエミッタ・ベースおよびコレクタ部分に開口部を形成し、最後にエミッタ・ベースおよびコレクタの各開口部に電極19を形成する。
【0038】
なお、上記バイポーラトランジスタにおいて、ベース引き出し電極7に多結晶シリコン・ゲルマニウムを用いてもよい。以下の実施例でも、これらの層に関しては同様である。
【0039】
ここで、上記のように形成した本実施例のバイポーラトランジスタのゲルマニウム組成比および不純物プロファイルを図3に、エネルギーバンド構造を図4にそれぞれ示す。図3(a)からわかるように、ゲルマニウムはベース層だけでなくコレクタ領域にも含まれている。その結果、図4に示すように、シリコンとシリコン・ゲルマニウムのバンドギャップの違いによるエネルギー障壁はコレクタ・ベース間の空乏層中に含まれることになり、エミッタから注入されたキャリアは、障壁の影響を受けることなくコレクタへ達することができる。なお、図3 (b)において、エミッタ領域はリン(P)の不純物濃度,ベース領域はボロン(B)の不純物濃度,低濃度n型コレクタ領域にはリン(P)の不純物濃度,高濃度n型埋込層には砒素(As)の不純物濃度をそれぞれ示している。
【0040】
図5および図6に、本実施例のバイポーラトランジスタの要部である活性領域の製造方法のフロー図を示す。
【0041】
高濃度n型埋込層2上に単結晶シリコンからなる低濃度n型コレクタ層3をエピタキシャル成長により形成する。次に、シリコン酸化膜からなる第1のコレクタ・ベース分離絶縁膜4と、シリコン窒化膜からなる第2のコレクタ・ベース分離絶縁膜5と、多結晶シリコン(または、多結晶シリコン・ゲルマニウム)からなるベース引き出し電極7と、エミッタ・ベース分離絶縁膜9を形成し、エッチングによりエミッタ・ベース分離絶縁膜9とベース引き出し電極7の開口部を形成する。ベース引き出し電極7の側壁にもエミッタ・ベース分離絶縁膜10を形成した後、リンをイオン打ち込みすることにより開口部の領域のみに第2の低濃度コレクタ領域11を形成する(図5(a)参照)。
【0042】
次いで、異方性エッチングにより第2のコレクタ・ベース分離絶縁膜5をエッチングした後、等方性エッチングにより第1のコレクタ・ベース分離絶縁膜4をエッチングする(図5(b)参照)。そして、ベースコレクタ界面にエネルギー障壁ができないよう、第1の低濃度n型コレクタ層3上に単結晶シリコン・ゲルマニウムからなる第3の低濃度n型コレクタ層12をエピタキシャル成長によって形成する。このとき、単結晶シリコン上における単結晶シリコン・ゲルマニウムの成長開始時間と絶縁膜上における多結晶シリコン・ゲルマニウムの成長開始時間の差を利用し、第2のコレクタ・ベース分離絶縁膜5,第1のエミッタ・ベース分離絶縁膜9,第2のエミッタ・ベース分離絶縁膜10上に多結晶シリコン・ゲルマニウムが堆積しない条件で成長を行う。
【0043】
図7にエピタキシャル成長温度が650℃、且つ成長圧力が1Paの場合、シリコン酸化膜上およびシリコン窒化膜上に多結晶シリコン・ゲルマニウムが堆積を始めるまでに単結晶シリコン上に成長する単結晶シリコン・ゲルマニウムの膜厚すなわち選択成長の臨界膜厚と、単結晶シリコン・ゲルマニウム中に含まれるゲルマニウムの組成比との関係を示す。
【0044】
図7より、シリコンだけの場合(Ge組成比=0%)でも、単結晶シリコン上に成長する単結晶シリコンの厚さが100nm以下ではシリコン酸化膜上およびシリコン窒化膜上には多結晶シリコンは堆積しない。また、シリコン・ゲルマニウムの場合、ゲルマニウムの組成比を上げるに従いこの膜厚は大きくなり、組成比が30%では単結晶シリコン上に約200nmの単結晶シリコン・ゲルマニウムが成長してもシリコン酸化膜上およびシリコン窒化膜上には多結晶シリコン・ゲルマニウムは堆積しない。従ってこの臨界膜厚以下の低濃度コレクタ層を選択成長しても、コレクタ・ベース分離絶縁膜の側壁およびエミッタ・ベース分離絶縁膜上には低濃度多結晶シリコン・ゲルマニウムは堆積しない(図5(c)参照)。
【0045】
なお、このような成長を行うにはガスソースMBE(Molecular Beam Epitaxy)法やCVD(Chemical Vapor Deposition)法を用いることができるが、選択性の制御が良好なことからCVD法がより好適である。また、温度範囲は、シリコン酸化膜およびシリコン窒化膜と単結晶シリコンとの選択性が良好に得られる500℃以上で、上限は結晶欠陥が生じ始める800℃以下の範囲である。この温度範囲で、成長圧力はシリコン酸化膜又はシリコン窒化膜上に多結晶シリコン・ゲルマニウム層が成長を開始する100Pa以下であればよい。
【0046】
また、上記選択成長は、塩素ガス(Cl)や塩酸ガス(HCl)を成長中に供給することによっても実現可能である。図8に例えばエピタキシャル成長温度が650℃、且つ成長圧力が10000Paの場合、シリコン酸化膜上およびシリコン窒化膜上に多結晶シリコン・ゲルマニウムが堆積しないために必要なHCl流量の全原料ガス流量に示す割合と単結晶シリコン・ゲルマニウム中に含まれるゲルマニウムの組成比の関係を示す。
【0047】
図8より、シリコンだけの場合(Ge組成比=0%)でも、HCl流量を全原料ガス流量の50%以上とすることによりシリコン酸化膜上およびシリコン窒化膜上には多結晶シリコンは堆積しない。また、シリコン・ゲルマニウムの場合、ゲルマニウムの組成比を上げるに従いHCl流量は少なくてよく、組成比が30%ではHCl流量を全原料ガス流量の20%以上とすることによりシリコン酸化膜上およびシリコン窒化膜上には多結晶シリコン・ゲルマニウムは堆積しない。
【0048】
なお、このような成長を行うにはガスソースMBE法やCVD法を用いることができるが、選択性の制御が良好なことからCVD法がより好適である。また、温度範囲は、シリコン酸化膜およびシリコン窒化膜と単結晶シリコンとの選択性が良好に得られる500℃以上で、上限は結晶欠陥が生じ始める800℃以下の範囲である。
【0049】
次いで、等方性エッチングにより第2のコレクタ・ベース分離絶縁膜5をエッチングし、ベース引き出し電極のせりだし7aを形成する(図6(a)参照)。次いで、高濃度に不純物をドーピングした単結晶シリコン・ゲルマニウムからなる真性ベース層13を形成するときには、単結晶シリコン・ゲルマニウムの成長と共にベース引き出し電極のせりだしの下部7aと、第2のコレクタ・ベース分離絶縁膜の側壁5aに多結晶シリコン・ゲルマニウムからなる外部ベース14が形成され、成長初期から真性ベース13とベース引き出し電極7が外部ベース
14を介して接続される。このとき単結晶シリコン上における単結晶シリコン・ゲルマニウムの成長開始時間と絶縁膜上における多結晶シリコン・ゲルマニウムの成長開始時間の差、およびシリコン酸化膜上とシリコン窒化膜上でのシリコンの離脱反応の有無を利用し、第2のコレクタ・ベース分離絶縁膜の側壁5aには多結晶シリコン・ゲルマニウム層が堆積し、第1のエミッタ・ベース分離絶縁膜9,第2のエミッタ・ベース分離絶縁膜10上には多結晶シリコン・ゲルマニウムが堆積しない条件で成長を行う。
【0050】
図9にエピタキシャル成長温度が600℃、且つ成長圧力が1Paの場合、シリコン酸化膜上およびシリコン窒化膜上での選択成長の臨界膜厚と、単結晶シリコン・ゲルマニウム中に含まれるゲルマニウムの組成比との関係を示す。図9より、シリコンだけの場合(Ge組成比=0%)でも、単結晶シリコン上に成長する単結晶シリコンの厚さが50nm以下ではシリコン窒化膜上には多結晶シリコンが堆積するが、シリコン酸化膜上には多結晶シリコンは堆積しない。また、シリコン・ゲルマニウムの場合、ゲルマニウムの組成比を上げるに従いこの膜厚は大きくなり、組成比が30%では単結晶シリコン上に約20nmの単結晶シリコン・ゲルマニウムが成長した場合、シリコン酸化膜上およびシリコン窒化膜上には多結晶シリコン・ゲルマニウムは堆積しない。さらに成長を続け、単結晶シリコン上に20〜150nmの単結晶シリコン・ゲルマニウムが成長した場合、シリコン窒化膜上には多結晶シリコンが堆積するが、シリコン酸化膜上には多結晶シリコン・ゲルマニウムは堆積しない。従ってこの範囲の真性ベース層を選択成長することにより、シリコン窒化膜からなる第2のコレクタ・ベース分離絶縁膜の側壁には多結晶シリコン・ゲルマニウムが堆積し、シリコン酸化膜からなるエミッタ・ベース分離絶縁膜上には低濃度多結晶シリコン・ゲルマニウムは堆積しない(図6(b)参照)。
【0051】
なお、このような成長を行うにはガスソースMBE法やCVD法を用いることができるが、選択性の制御が良好なことからCVD法がより好適である。また、温度範囲は、シリコン酸化膜およびシリコン窒化膜と単結晶シリコンとの選択性が良好に得られる500℃以上で、上限は結晶欠陥が生じ始める800℃以下の範囲である。この温度範囲で、成長圧力はシリコン酸化膜又はシリコン窒化膜上に多結晶シリコン・ゲルマニウム層が成長を開始する100Pa以下であればよい。
【0052】
そして、第2のコレクタ・ベース分離絶縁膜5の厚さと、高濃度p型単結晶シリコン・ゲルマニウム層13とベース引き出し電極のせりだし下部7aに堆積した多結晶シリコン・ゲルマニウム層14の膜厚の和とが等しくなったところで、せりだし部分が完全に埋められる。単結晶シリコン・ゲルマニウム層13の厚さが、図9のシリコン窒化膜上での選択成長の臨界膜厚以上になったときから多結晶シリコン・ゲルマニウムからなる外部ベース14と真性ベース13が接合するため、多結晶シリコン・ゲルマニウム14の表面の凹凸の影響を受けにくくなり、ベース抵抗のばらつきを低減することができる。また、真性ベース13と外部ベース14の接触面積が増大するために、つなぎ部分のベース抵抗が低減できる。
【0053】
外部ベース14を覆うように第3のエミッタ・ベース分離絶縁膜15を形成した後、エミッタの拡散源およびエミッタ電極となる高濃度n型多結晶シリコン
16を堆積し、アニールを行うことによってn型不純物を単結晶シリコン・ゲルマニウム層13に拡散し、エミッタ領域17を形成する。その後絶縁膜18を堆積し、エミッタ・ベースおよびコレクタの各領域に開口部を形成して電極19を形成すると図1に示した断面構造が得られる。
【0054】
本実施例により、ベース抵抗やコレクタ・ベース界面の容量を低減できるため、遮断周波数fTおよび最大発振周波数fmax がそれぞれ50GHz以上といった高速のバイポーラトランジスタが可能となり、さらに、ベース抵抗のばらつきが低減できるため、このトランジスタを用いた回路の高速化・高性能化に有効である。
【0055】
<実施例2>
図10は、本発明に係るバイポーラトランジスタの第2の実施例を示す断面構造図である。本実施例の構造のバイポーラトランジスタの製造方法は、以下の通りである。
【0056】
実施例1と同様に、シリコン基板1上に高濃度n型埋込層2,第1の低濃度n型コレクタ層3,第1のコレクタ・ベース分離絶縁膜4,第2のコレクタ・ベース分離絶縁膜5を形成し、コレクタ領域のみにコレクタ電極となる多結晶シリコン層8を堆積し、イオン打ち込みによって高濃度n型コレクタ引き出し層6を形成する。ベース引き出し電極7,第1のエミッタ・ベース分離絶縁膜9を堆積し、エミッタ領域のみに開口部を形成する。次いでベース引き出し層7の側壁に第2のエミッタベース分離絶縁膜10を形成し、n型不純物をイオン打ち込みすることにより第2の低濃度コレクタ層11を形成する。次いで、異方性エッチングにより第2のコレクタ・ベース分離絶縁膜5をエッチングし、等方性エッチングにより第1のコレクタ・ベース分離絶縁膜4をエッチングする。そして、選択エピタキシャル成長により第1の低濃度n型コレクタ層3上に、第3の低濃度n型コレクタ層12を形成し、次いで、第2のコレクタ・ベース分離絶縁膜5を等方性エッチングによりエッチングする。その後、選択エピタキシャル成長により第3の低濃度n型コレクタ層12上に真性ベース13を、第2のコレクタ・ベース分離絶縁膜5上とベース引き出し層7のせりだしの下部のみに外部ベース層14を形成する。このときのエピタキシャル成長の条件は実施例1に示した条件と同様である。
【0057】
図1に示した実施例1との相違は、高濃度p型シリコン・ゲルマニウムからなる真性ベース13の上に、低濃度p型シリコンからなるキャップ層41を、またp型多結晶シリコン・ゲルマニウムからなる外部ベース層14の上に低濃度p型多結晶シリコン層42をそれぞれ選択成長したことである。その後、第3のエミッタ・ベース分離絶縁膜15で外部ベース層14および42を覆った後、高濃度n型多結晶シリコンからなるエミッタ電極16を堆積し、アニールを行うことによって低濃度キャップ層41内にエミッタ領域17を形成する。最後に実施例1と同様に絶縁膜19を堆積し、エミッタ・ベースおよびコレクタ部分に開口部を形成し、電極19を形成すると図10に示した構造になる。
【0058】
なお、上記バイポーラトランジスタにおいて、低濃度キャップ層に単結晶シリコン・ゲルマニウムを用いても良い。以下の実施例でも、この層に関しては同様である。
【0059】
ここで、上記のように形成したバイポーラトランジスタのゲルマニウム組成比および不純物プロファイルを図11に、エネルギーバンド図を図12にそれぞれ示す。図11(a)から分かるように、実施例1の図3と同様にゲルマニウムはベース層だけでなくコレクタ領域にも含まれているため、エミッタから注入されたキャリアは、障壁の影響を受けることなくコレクタへ達することが出来る。また、図11(b)に示すように、真性ベースの上に低濃度キャップ層を設けているため、エミッタ・ベース接合における不純物濃度が図3に示した実施例1よりも低くなっている。その結果、エミッタ・ベース接合におけるトンネル電流を低減することが出来る。また、エミッタ・ベース界面のベース側のバンドギャップがエミッタ側よりも小さくなるため、ベースからエミッタへ注入されるホールに対するエネルギー障壁が、エミッタからベースへと注入される電子に対するエネルギー障壁よりも大きくなる。このため、バイポーラトランジスタの電流増幅率が増加する。
【0060】
本実施例により、実施例1の効果に加えて、バイポーラトランジスタの電流増幅率が向上できるため、トランジスタのさらなる高速動作が可能となる。また、エミッタ・ベース接合の不純物濃度を低減できることから、エミッタ・ベース間の耐圧を上げることができ、このトランジスタを用いた回路の特性を向上させることができる。
【0061】
<実施例3>
図13は、本発明に係るバイポーラトランジスタの第3の実施例を示す断面構造図である。本実施例の構造のバイポーラトランジスタの製造方法は以下の通りである。実施例1と同様の方法によりエミッタ開口部,第3の低濃度n型コレクタ層12,p型真性ベース層13およびp型外部ベース層14を形成する。外部ベース14を覆うように第3のエミッタ・ベース分離絶縁膜15を形成した後、エピタキシャル成長によってエミッタ層43を形成し、その後エミッタ電極となる高濃度n型多結晶シリコン16と絶縁膜18を堆積し、絶縁膜のエミッタ・ベースおよびコレクタ部分に開口部を形成して電極19を形成すると図13に示した断面構造が得られる。
【0062】
本実施例では、エミッタ層中の不純物濃度をエミッタ・ベース界面で小さくすることにより、ベース領域でのリーク電流を低減することができ、実施例2と同様な効果が得られる。また、エミッタ層をエピタキシャル成長を用いて形成するため、エミッタ層中の不純物濃度,膜厚の制御性が良くなり、トランジスタの性能ばらつきを低減することができる。
【0063】
さらに、エミッタ・ベース界面の面積を低減することができるため、エミッタ・ベース間容量を低減することができ、このトランジスタを用いた回路の特性を向上させることができる。
【0064】
<実施例4>
図14は、本発明に係るバイポーラトランジスタの第4の実施例を示す断面構造図である。本実施例の構造のバイポーラトランジスタの製造方法は以下の通りである。実施例2と同様の方法によりエミッタ開口部,第3の低濃度n型コレクタ層12,p型真性ベース層13およびp型外部ベース層14,低濃度p型キャップ層41,第3のエミッタ・ベース分離絶縁膜15を形成する。その後、実施例3と同様にエピタキシャル成長によってエミッタ層43を形成することにより、エミッタ層中の不純物濃度,膜厚の制御性が良くなり、トランジスタの性能ばらつきを低減することができる。従って実施例3と同様に、本実施例のトランジスタを用いた回路の特性を向上させることができる。
【0065】
<実施例5>
図15は、本発明に係るバイポーラトランジスタの第5の実施例を示す図であり、同図(a)はトランジスタのゲルマニウム組成比、同図(b)は不純物濃度プロファイルをそれぞれ示す特性線図である。トランジスタの構造は、図1,図10,図13,図14に示したものが全て適用可能であり、本実施例では断面構造は省略するが、以下の説明における参照符号は、例えば図1の断面構造図を参照すればよい。なお、後述する実施例6〜10においても同様である。
【0066】
図15(a)に示すように、本実施例のトランジスタの真性ベース層におけるゲルマニウム組成比は、コレクタ側からエミッタ側に向かうに従って小さくしてある。このときのエネルギーバンド構造を、図16に示す。図16から分かるように、ベース層において、ゲルマニウム組成比に対応してエネルギーバンドに傾斜をつけることができる。これにより、エミッタから注入されたキャリアは傾斜型エネルギーバンドに起因する電界によってベース層中で加速されるため、トランジスタのより一層の高速動作が可能となる。その結果、このトランジスタを用いることによって、実施例1,実施例2、実施例3および実施例4で述べた効果に加えて、さらに回路の特性を向上させることができる。
【0067】
<実施例6>
図17は、本発明に係るバイポーラトランジスタの第6の実施例を示す図であり、同図(a)はトランジスタのゲルマニウム組成比、同図(b)は不純物濃度プロファイルをそれぞれ示す特性線図である。トランジスタの構造は、図1,図10,図13,図14に示したものが全て適用可能であり、実施例5と同様に断面構造図は省略する。
【0068】
図17(a)に示すように、本実施例のトランジスタの真性ベース層におけるゲルマニウム組成比は、コレクタ側からエミッタ側に向かうに従って小さくしてあるが、エミッタ側でゲルマニウム組成比を0%まで下げない。このときのエネルギーバンド構造を、図18に示す。図18から分かるように、ベース層のエネルギーバンドの傾斜に加え、エミッタ・ベース接合のエネルギー障壁が小さくなっている。これにより、エミッタから注入されたキャリアは傾斜型エネルギーバンドに起因する電界によってベース層中で加速されると共に、エミッタからベースへのキャリアの注入も増加するため、トランジスタのより一層の高速動作が可能となる。その結果、このトランジスタを用いることによって、実施例5の効果に加えて、さらに回路の特性を向上させることができる。
【0069】
<実施例7>
図19は、本発明に係るバイポーラトランジスタの第7の実施例を示す図であり、同図(a)はトランジスタのゲルマニウム組成比、同図(b)は不純物濃度プロファイルをそれぞれ示す特性線図である。トランジスタの構造は、図1,図10,図13,図14に示したものが全て適用可能であり、実施例5と同様に断面構造図は省略する。
【0070】
図19(a)に示すように、本実施例のトランジスタの低濃度n型コレクタ層におけるゲルマニウム組成比は、コレクタ側からエミッタ側に向かうに従って大きくした領域を設けてある。このときのエネルギーバンド構造を、図20に示す。図20から分かるように、コレクタ・ベース間の空乏層内にエネルギー障壁は全く生じない。これにより、エミッタから注入されたキャリアはエネルギー障壁の影響を全く受けずに空乏層で加速され、コレクタ層へと到達するため、トランジスタのより一層の高速動作が可能となる。その結果、このトランジスタを用いることによって、実施例6の効果に加えて、さらに回路の特性を向上させることができる。
【0071】
<実施例8>
図21は、本発明に係るバイポーラトランジスタの第8の実施例を示す図であり、同図(a)はトランジスタのゲルマニウム組成比、同図(b)は不純物濃度プロファイルをそれぞれ示す特性線図である。トランジスタの構造は、図1,図10,図13,図14に示したものが全て適用可能であり、実施例5と同様に断面構造図は省略する。
【0072】
図21(a)に示すように、本実施例のトランジスタの低濃度n型コレクタ層におけるゲルマニウム組成比は、コレクタ側からエミッタ側に向かうに従って大きくしてある。このときのエネルギーバンド構造を、図22に示す。図22から分かるように、第7の実施例と同様に、コレクタ・ベース間の空乏層内にエネルギー障壁は全く生じないため、エミッタから注入されたキャリアはエネルギー障壁の影響を全く受けずに空乏層で加速され、コレクタ層へと到達することができ、トランジスタのより一層の高速動作が可能となる。実施例7と異なる点は、コレクタ側のゲルマニウム組成比を低濃度n型コレクタ層と真性ベース層の歪みに起因する欠陥の入らない最大量以下としており、結晶欠陥によるリーク電流を低減できることである。その結果、このトランジスタを用いることによって、実施例7の効果に加えて、さらに回路の特性を向上させることができる。
【0073】
<実施例9>
図23は、本発明に係るバイポーラトランジスタの第9の実施例を示す図であり、同図(a)はトランジスタのゲルマニウム組成比、同図(b)は不純物濃度プロファイルをそれぞれ示す特性線図である。トランジスタの構造は、図1,図10,図13,図14に示したものが全て適用可能であり、実施例5と同様に断面構造図は省略する。
【0074】
図23(a)に示すように、本実施例のトランジスタの真性ベース層および低濃度n型コレクタ層におけるゲルマニウム組成比は、コレクタ側からエミッタ側に向かうに従って小さくしてある。このときのエネルギーバンド構造を、図24に示す。ベース層中のエネルギーバンドの傾斜に加え、コレクタ・ベース間の空乏層においてもエネルギーバンドに傾斜をつけることができるうえ、結晶欠陥によるリーク電流を低減できる。その結果、このトランジスタを用いることによって、実施例6の効果に加えて、さらに回路の特性を向上させることができる。
【0075】
<実施例10>
図25は、本発明に係るバイポーラトランジスタの第10の実施例を示す図であり、同図(a)はトランジスタのゲルマニウム組成比、同図(b)は不純物濃度プロファイルをそれぞれ示す特性線図である。トランジスタの構造は、図1,図10,図13,図14に示したものが全て適用可能であり、実施例5と同様に断面構造図は省略する。
【0076】
図25(a)に示すように、本実施例のトランジスタの真性ベース層および低濃度n型コレクタ層におけるゲルマニウム組成比は、コレクタ側からエミッタ側に向かうに従って増加し、途中から減少した後に、真性ベース中でも減少するプロファイルである。このときのエネルギーバンド構造を、図26に示す。図26から分かるように、エミッタから注入されたキャリアは、真性ベース中で加速されると共に、コレクタ・ベース間空乏層内でもバンドギャップの変化分だけ余計に加速され、さらにエネルギー障壁も存在しない。その結果、このトランジスタを用いることによって、実施例9の効果に加えて、さらに回路の特性を向上させることができる。
【0077】
<実施例11>
図27は本発明に係る第11の実施例を示す図であり、光伝送システムに用いられる前置増幅回路の回路図である。周知のとおり、光伝送システムは数十Gbpsの高速伝送が必要であり、その前置増幅回路は特に高速動作が要求される。従って、この増幅回路を構成するトランジスタとして本発明によるトランジスタを採用することにより、増幅回路全体での性能を著しく向上することができる。
【0078】
図27において、符号300は単一の半導体基板上に形成された前置増幅回路を構成する半導体集積回路を示し、この半導体集積回路300の入力端子INにはフォトダイオードPDが外付けされ、電源端子301と接地端子302間にはデカップリング容量303が外付けされている。フォトダイオードPDは光伝送ケーブルを通して送信されてくる光信号を受ける受光素子であり、デカップリング容量303は電源ラインと接地ラインとの間の交流成分をショートするための容量である。
【0079】
バイポーラトランジスタQ1及びQ2は、増幅回路を構成するバイポーラトランジスタであり、実施例1〜10で説明した構造を有する本発明に係るバイポーラトランジスタのいずれでも好適に用いることができる。ダイオードD1はレベルシフト用ダイオードであり、本発明に係るバイポーラトランジスタのベース・コレクタ間を短絡して形成してもよく、また、必要に応じて複数個のダイオードを直接接続して適用することも可能である。また、必要に応じて出力端子OUTとトランジスタQ2のエミッタとの間に出力用バッファ回路が挿入される。
【0080】
本実施例の光伝送システム用前置増幅回路を構成する半導体集積回路300は、光伝送ケーブルを介して伝送されてきた光信号がフォトダイオードPDにより変換された電気信号を入力端子INの入力として、この入力された電気信号を増幅用トランジスタQ1及びQ2により増幅して出力端子OUTから出力するように動作する。実施例1〜10で説明した本発明に係るいずれかのバイポーラトランジスタを用いることにより、本実施例の前置増幅回路は40GHz以上の帯域特性を実現することができる。
【0081】
ここで、フォトダイオードPD及び前置増幅回路が実装基板に集積された光伝送システムのフロントエンドモジュールの断面図を、図28に示す。図28において、符号401は光ファイバー、402はレンズ、403はフォトダイオー
ド、404は前置増幅器が形成された半導体集積回路を示し、フォトダイオード403及び前置増幅器IC404が基板407に実装され、フォトダイオード
403及び前置増幅器IC404はダイオード及び増幅器等を接続する配線405を介して出力端子406に接続されている。また、基板407は金属ケースなどの気密封止パッケージ408内に収納されている。図示していないが、基板407上には図27に示すコンデンサ303も実装されている。このように、フロントエンドを構成するフォトダイオード及び前置増幅器を同一のモジュールに構成することにより、信号経路を短くすることができノイズが乗りにくく寄生のL成分(インダクタ成分)やC成分(容量成分)も小さく抑えることができる。
【0082】
図28に示したフロントモジュールにおいて、光ファイバー401から入力した光信号はレンズ402により集光され、フォトダイオード403で電気信号に変換される。この電気信号は、基板407上の配線405を通して前置増幅器
IC404で増幅され出力端子406から出力される。
【0083】
図29及び図30には、図28及び図29に示した前置増幅器及びフロントエンドモジュールを利用した光伝送システムのシステム構成図を示す。
【0084】
図29は、光伝送システムの送信モジュール500を示している。伝送すべき電気信号501はマルチプレクサMUXに入力され、例えば4:1などに多重化され、その出力信号がドライバ502に伝達される。半導体レーザーLDは常時一定の強度の光を出力しており、ドライバ502により駆動される外部変調器
503がドライバ502の出力に応じて光を吸収あるいは非吸収して光ファイバー504に伝送するよう構成されている。図29に示した送信モジュールは、いわゆる外部変調型と呼ばれるものである。これに変えて、半導体レーザーLDの発光を直接制御する直接変調型を採用することも可能であるが、一般的に外部変調型での送信のほうがチャープによるスペクトル発振の広がりがなく、高速,長距離の伝送に適する。
【0085】
図30は、光伝送システムの光受信型モジュール510を示している。図30において、符号520はフロントエンドモジュール部を示し、このフロントエンドモジュール部520は、光ファイバー544を介して伝送されて来る光信号を受光して電気信号に変換出力する受光器521と、受光器出力を増幅するプリアンプ522とから構成される。プリアンプ522により増幅された電気信号は、メインアンプ部530に入力され増幅される。メインアンプ部530は、光伝送の距離や製造偏差によるばらつきを避け、出力を一定に保つため、メインアンプ532の出力が帰還される自動利得調整器(AGC)531に入力されるよう構成されている。なお、メインアンプ部530は利得を調整する構成の他、出力振幅を制限するリミットアンプを採用することもできる。識別器540は所定のクロックに同期して1ビットのアナログ/ディジタル変換を行うよう構成され、メインアンプ部530の出力をディジタル化し、分離器(DMUX)570により例えば1:4に分離されて後段のディジタル信号処理回路560に入力され、所定の処理が行われる。
【0086】
クロック抽出部550は、識別器540及び分離器(DMUX)570の動作タイミングを制御するためのクロックを、変換した電気信号から形成するためのものであり、メインアンプ部530の出力を全波整流器551により整流し、帯域の狭いフィルタ552によりフィルタリングしてクロック信号となる信号を抽出する。フィルタ552の出力は、位相器553に入力される。この位相器553は、フィルタ出力とアナログ信号の位相を合わせるための位相器であり、予め定められた遅延量に基づきフィルタ出力を遅延させるものである。位相器553の出力は、リミットアンプ554を介して識別器540と分離器(DMUX)570へ入力される。
【0087】
ここで述べた光通信システムにおいては、その各所に先の実施例1〜10に述べた構成の本発明に係るバイポーラトランジスタを用いて回路を構成することができる。また、同様にメインアンプ532を構成する回路も、図27に示した回路により構成することが可能である。
【0088】
前記実施例に従って製造した本発明に係るバイポーラトランジスタは、遮断周波数fT、及び最大遮断周波数fmaxが100GHzと高速動作が可能なため、1秒当たり40Gビットと大容量の信号を高速で送受信することができる。また、従来このような高速動作が必要な回路については、シリコンバイポーラトランジスタに比べ動作速度が速いGaAsトランジスタを用いる必要があった。しかし、このような回路に対して、本発明に係る安価なシリコンバイポーラトランジスタを用いることができるため、光伝送システム全体のコストを低減することが可能となる。
【0089】
<実施例12>
図31は本発明に係る第12の実施例を示す図であり、本発明に係るバイポーラトランジスタを適用する移動体無線携帯機のブロック構成図である。本実施例は、前記1〜10で説明した本発明に係るバイポーラトランジスタを、低雑音増幅器603,シンセサイザー606,フェーズ・ロックド・ループ(Phase LockedLoop:PLL)611等の移動体無線携帯機の各ブロックを構成する回路に適用した例である。
【0090】
図31に示した本実施例の移動体無線携帯機は、次のように動作する。アンテナ601からの入力を低雑音増幅器603で増幅し、シンセサイザー606から発した周波数を発振器605から発振させ、低雑音増幅器603からの信号を発振器605から発振した信号を用いて、ダウンミキサ604でより低い周波数へダウンコンバージョンする。さらに、PLL611から発した周波数を発振器
610から発振させ、ダウンミキサ604からの信号を発振器610から発振した信号を用いて、復調器609で復調し、より低周波を扱うベースバンドユニット613で信号処理を行う。また、ベースバンドユニット613から発せられた信号は、変調器612でPLL611からの信号を用いて変調され、さらに、アップミキサ608においてシンセサイザー606からの信号を基に高周波へアップコンバートされた後、電力増幅器607により増幅されてアンテナ601より送信される。ここで、スイッチ602は信号の送信・受信を切り換えるスイッチであり、ベースバンドユニット613から図示しない制御信号を受けて、その送信・受信が制御される。さらに、ベースバンドユニット613には図示しないスピーカ,マイク等が接続され音声信号の入出力が可能とされている。
【0091】
本実施例の移動体無線携帯機を構成する図31に示した各ブロック、特に低雑音増幅器603,シンセサイザー606およびPLL611のブロックに、前記実施例1〜10で説明した本発明に係るいずれかのバイポーラトランジスタを適用して、それぞれの回路を構成することができる。本発明によるトランジスタは、ベース抵抗及びコレクタ・ベース間容量の低減が可能であるため、低雑音増幅器603,シンセサイザー606およびPLL611において、低雑音化と低消費電力化が図れる。これにより、システム全体として低雑音かつ長時間使用可能な移動体無線携帯機を実現することができる。
【0092】
<実施例13>
図32は本発明に係る第13の実施例を示す図であり、本発明に係るバイポーラトランジスタに適用する移動体無線携帯機のPLLのプリスケーラ用Dフリップフロップの回路図である。
【0093】
本実施例は、前述の実施例1〜10で説明した本発明に係るバイポーラトランジスタを図32に示した回路上のトランジスタ701から712に用いた例である。
【0094】
このDフリップフロップ回路の入力信号とクロック信号及び出力信号は、高電位と低電位の2状態のみを有する。入力信号と反転入力信号をそれぞれ端子719と端子720に、また、クロック信号と反転クロック信号をそれぞれ端子721と端子722に入力し、端子723と端子724より出力信号と反転出力信号を得る。電流源718と719を流れる電流経路は、クロック信号によりそれぞれトランジスタ709か710,711か712のいずれかに切り換わる。さらに、トランジスタ701から706のオンオフは入力信号とクロック信号及び抵抗713と714を流れる電流によって生じる抵抗下端の電位により決定される。本回路においては出力信号は、クロック信号が低電位から高電位に変化した場合に入力値を出力し、それ以外の場合、前入力値を保持する。
【0095】
前記実施例1〜10で説明した本発明に係るいずれかのバイポーラトランジスタを適用して、それぞれの回路を構成することができる。本発明によるトランジスタは、ベース抵抗及びコレクタ・ベース間容量の低減が可能であるため、移動体無線携帯機のPLLの低消費電力化が図れる。
【0096】
以上、本発明の好適な実施例について説明したが、本発明は前記実施例に限定されることなく、本発明の精神を逸脱しない範囲内において種々の設計変更をなし得ることはもちろんである。
【0097】
【発明の効果】
以上説明したように本発明によれば、真性ベースと外部ベースが外部ベースの表面の凹凸に関係なく接続されることから、ベース抵抗が低減でき、外部ベースの面積を縮小できることから、コレクタ・ベース間容量が低減できる。これによりバイポーラトランジスタを用いた回路の高速動作が可能となる。また、ベース抵抗のばらつきが低減できるため、回路動作の高性能化が可能となる。更に、エミッタ・ベース・コレクタを自己整合的に形成するため、エミッタ・ベース及びコレクタ・ベース間容量を低減でき、バイポーラトランジスタを用いた回路の高速動作が可能となる。
【0098】
すなわち、本発明に係るバイポーラトランジスタ及びその製造方法によれば、エミッタ・ベース間容量の低減,コレクタ・ベース間容量の低減,ベース抵抗の低減、さらにはベース抵抗のばらつきの低減が可能となり、高速かつ高周波で動作可能なバイポーラトランジスタを構成することが可能となる。従って、特に高速動作が必要とされる回路やシステムに本発明によるバイポーラトランジスタを用いることで、回路及びシステム全体での性能の向上を図かることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係るバイポーラトランジスタの断面図。
【図2】従来例のバイポーラトランジスタの断面図。
【図3】図1のトランジスタのゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図4】図3に示したプロファイルのトランジスタのエネルギーバンド図。
【図5】図1に示したトランジスタの活性領域の製造方法を工程順に示す断面図。
【図6】図5の次の工程以降を順に示す断面図。
【図7】シリコン酸化膜およびシリコン窒化膜上に選択的に成長できる単結晶シリコン・ゲルマニウムの最大膜厚とゲルマニウム組成比との関係を示す特性線図。
【図8】シリコン酸化膜およびシリコン窒化膜上に選択的に単結晶シリコン・ゲルマニウムを成長できるHCl流量の割合とゲルマニウム組成比との関係を示す特性線図。
【図9】シリコン酸化膜およびシリコン窒化膜上に選択的に成長できる単結晶シリコン・ゲルマニウムの最大膜厚とゲルマニウム組成比との関係を示す特性線図。
【図10】本発明の第2の実施例に係るバイポーラトランジスタの断面図。
【図11】図10のトランジスタのゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図12】図11に示したプロファイルのトランジスタのエネルギーバンド図。
【図13】本発明の第3の実施例に係るバイポーラトランジスタの断面図。
【図14】本発明の第4の実施例に係るバイポーラトランジスタの断面図。
【図15】本発明の5の実施例に係るバイポーラトランジスタの示すゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図16】図15に示したプロファイルを有するトランジスタのエネルギーバンド図。
【図17】本発明の第6の実施例に係るバイポーラトランジスタの示すゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図18】図17に示したプロファイルを有するトランジスタのエネルギーバンド図。
【図19】本発明の第7の実施例に係るバイポーラトランジスタの示すゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図20】図19に示したプロファイルを有するトランジスタのエネルギーバンド図。
【図21】本発明の第8の実施例に係るバイポーラトランジスタの示すゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図22】図21に示したプロファイルを有するトランジスタのエネルギーバンド図。
【図23】本発明の第9の実施例に係るバイポーラトランジスタの示すゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図24】図23に示したプロファイルを有するトランジスタのエネルギーバンド図。
【図25】本発明の第10の実施例に係るバイポーラトランジスタの示すゲルマニウム組成比及び不純物濃度プロファイルを示す特性線図。
【図26】図25に示したプロファイルを有するトランジスタのエネルギーバンド図。
【図27】本発明の第11の実施例に係る光伝送システムに用いる前置増幅回路の回路図。
【図28】図27に示した前置増幅回路を実装した光伝送システムのフロントエンドモジュールの断面図。
【図29】図27及び図28に示した回路及びモジュールを利用した光伝送システムの送信側モジュールのブロック図。
【図30】図27及び図28に示した回路及びモジュールを利用した光伝送システムの受信側モジュールのブロック図。
【図31】本発明の第12の実施例に係る移動体無線携帯機のブロック構成図。
【図32】本発明の第13の実施例に係る移動体無線携帯機のPLLのプリスケーラ用Dフリップフロップの回路図。
【符号の説明】
1,21…シリコン基板、2,22…高濃度n型埋込層、3,11,23, 30…低濃度n型コレクタ層(単結晶シリコン)、4,5,5a,24…コレクタ・ベース分離絶縁膜、6,25…コレクタ引き出し層(高濃度n型単結晶シリコン)、7,7a,26…ベース引き出し層(p型多結晶シリコンもしくは多結晶シリコン・ゲルマニウム)、8,27…コレクタ引き出し層(高濃度n型多結晶シリコン)、9,10,15,28,29,33…エミッタ・ベース分離絶縁膜、12…低濃度n型コレクタ層(単結晶シリコン・ゲルマニウム)、13,31…真性ベース層(p型単結晶シリコン・ゲルマニウム)、14,32,42…p型外部ベース層(多結晶シリコンもしくは多結晶シリコン・ゲルマニウム)、16,34…エミッタ引き出し層(高濃度n型多結晶シリコン)、17,35…エミッタ領域、18,36…絶縁膜、19,37…電極、41…低濃度p型キャップ層(単結晶シリコンもしくは単結晶シリコン・ゲルマニウム)、43…エミッタ層(単結晶シリコンもしくは単結晶シリコン・ゲルマニウム)。

Claims (15)

  1. 第1導電型単結晶シリコン層と、上記第1導電型単結晶シリコン層表面上に設けられた開口部を有する第1の絶縁膜と第2の絶縁膜と前記第1導電型と反対導電型の第2導電型多結晶層と第3の絶縁層とからなる多層膜と、前記開口部に設けられた第1導電型単結晶シリコン・ゲルマニウム層と、上記第1導電型単結晶シリコン・ゲルマニウム層上に設けられた第2導電型単結晶シリコン・ゲルマニウム層と、上記第2導電型単結晶シリコン・ゲルマニウム層と第2の絶縁膜と第2導電型多結晶層とのいずれとも接して設けられた第2導電型多結晶シリコン・ゲルマニウム層とを少なくとも有し、前記第2導電型単結晶シリコン・ゲルマニウム層が第2の絶縁膜と第2導電型多結晶シリコン・ゲルマニウム層のみを介して接触することを特徴とするバイポーラトランジスタ。
  2. 前記第2導電型多結晶層は、多結晶シリコン層又は多結晶シリコン・ゲルマニウム層である請求項1記載のバイポーラトランジスタ。
  3. 前記第2導電型多結晶シリコン・ゲルマニウム層の最も厚い部分の厚さが少なくとも5nmである請求項1または請求項2に記載のバイポーラトランジスタ。
  4. 前記第2導電型単結晶シリコン・ゲルマニウム層上に設けられ、かつ第2導電型単結晶シリコン・ゲルマニウム層よりも不純物濃度の低い第2の第2導電型単結晶層を更に設けてなる請求項1〜3のいずれか1項に記載のバイポーラトランジスタ。
  5. 前記第2の第2導電型単結晶層は、単結晶シリコン層または単結晶シリコン・ゲルマニウム層である請求項4記載のバイポーラトランジスタ。
  6. 前記第2導電型単結晶シリコン・ゲルマニウム層もしくは前記第2の第2導電型単結晶層上に設けられた第2の第1導電型単結晶層を更に設けてなる請求項1〜5のいずれか1項に記載のバイポーラトランジスタ。
  7. 前記第2の第1導電型単結晶層は、単結晶シリコン層または単結晶シリコン・ゲルマニウム層である請求項6記載のバイポーラトランジスタ。
  8. 前記第2の絶縁膜はシリコン窒化膜である請求項1〜7のいずれか1項に記載のバイポーラトランジスタ。
  9. 前記第3の絶縁膜はシリコン酸化膜である請求項1〜8のいずれか1項に記載のバイポーラトランジスタ。
  10. 前記第2導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が、前記第1導電型単結晶シリコン層側から表面に向かうに従い減少してなる請求項1〜9のいずれか1項に記載のバイポーラトランジスタ。
  11. 前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が、前記第1導電型単結晶シリコン層側から表面に向かうに従い増加してなる請求項1〜10のいずれか1項に記載のバイポーラトランジスタ。
  12. 前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が、前記第1導電型単結晶シリコン層側から表面に向かうに従い増加し、表面側でゲルマニウム組成比が一定となる領域を有する請求項1〜10のいずれか1項に記載のバイポーラトランジスタ。
  13. 前記第2導電型単結晶シリコン・ゲルマニウム層および前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が前記第1導電型単結晶シリコン層側から表面に向かうに従い減少し、その傾きが前記第2導電型単結晶シリコン・ゲルマニウム中と前記第1導電型単結晶シリコン・ゲルマニウム層中とで異なる請求項1〜9のいずれか1項に記載のバイポーラトランジスタ。
  14. 前記第2導電型単結晶シリコン・ゲルマニウム層および前記第1導電型単結晶シリコン・ゲルマニウム層中のゲルマニウムの組成比が前記第1導電型単結晶シリコン層側から表面に向かうに従い減少し、その傾きが前記第2導電型単結晶シリコン・ゲルマニウム中と前記第1導電型単結晶シリコン・ゲルマニウム層中とで異なり、さらに前記第1導電型単結晶シリコン側で上記第1導電型単結晶シリコン側から表面に向かうに従ってゲルマニウム組成比が増加する領域を有する請求項1〜9のいずれか1項に記載のバイポーラトランジスタ。
  15. 第1導電型単結晶シリコン層と、上記第1導電型単結晶シリコン層表面上に設けられた開口部を有する第1の絶縁膜と第2の絶縁膜と前記第1導電型と反対導電型の第2導電型多結晶層と第3の絶縁層とからなる多層膜と、前記開口部に設けられた第1導電型単結晶シリコン・ゲルマニウム層と、上記第1導電型単結晶シリコン・ゲルマニウム層上に設けられた第2導電型単結晶シリコン・ゲルマニウム層と、上記第2導電型単結晶シリコン・ゲルマニウム層と第2の絶縁膜と第2導電型多結晶層とのいずれとも接して設けられた第2導電型多結晶シリコン・ゲルマニウム層と、を少なくとも有し、前記第2導電型単結晶シリコン・ゲルマニウム層が第2の絶縁膜と第2導電型多結晶シリコン・ゲルマニウム層のみを介して接触することを特徴とするバイポーラトランジスタの製造方法であって、
    前記第2導電型単結晶シリコン・ゲルマニウム層を形成する工程が、エピタキシャル成長によって形成する工程であって、前記エピタキシャル成長を、成長時の温度が500℃〜700℃で、かつ、成長時の圧力が100Paを超えない条件で行うことを特徴とするバイポーラトランジスタの製造方法。
JP00449298A 1998-01-13 1998-01-13 バイポーラトランジスタおよびその製造方法 Expired - Fee Related JP3562284B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00449298A JP3562284B2 (ja) 1998-01-13 1998-01-13 バイポーラトランジスタおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00449298A JP3562284B2 (ja) 1998-01-13 1998-01-13 バイポーラトランジスタおよびその製造方法

Publications (2)

Publication Number Publication Date
JPH11204539A JPH11204539A (ja) 1999-07-30
JP3562284B2 true JP3562284B2 (ja) 2004-09-08

Family

ID=11585590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00449298A Expired - Fee Related JP3562284B2 (ja) 1998-01-13 1998-01-13 バイポーラトランジスタおよびその製造方法

Country Status (1)

Country Link
JP (1) JP3562284B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186691B2 (ja) 1998-04-07 2001-07-11 日本電気株式会社 半導体装置及びその形成方法
JP2001338931A (ja) * 1999-10-14 2001-12-07 Hitachi Ltd バイポーラトランジスタおよびその製造方法

Also Published As

Publication number Publication date
JPH11204539A (ja) 1999-07-30

Similar Documents

Publication Publication Date Title
US5962880A (en) Heterojunction bipolar transistor
JP3658745B2 (ja) バイポーラトランジスタ
KR100696348B1 (ko) 바이폴라 트랜지스터 및 반도체 집적 회로
US6417059B2 (en) Process for forming a silicon-germanium base of a heterojunction bipolar transistor
US6482710B2 (en) Bipolar transistor and manufacting method thereof
US8288247B2 (en) Method of manufacturing semiconductor device
US10777668B2 (en) Bipolar junction transistors with a self-aligned emitter and base
JP4886964B2 (ja) 半導体装置及びその製造方法
JP3534576B2 (ja) バイポーラトランジスタおよびそれを用いた光受信システム
JP3562284B2 (ja) バイポーラトランジスタおよびその製造方法
JP2002026137A (ja) 半導体集積回路装置およびその製造方法
US6573539B2 (en) Heterojunction bipolar transistor with silicon-germanium base
US20030199153A1 (en) Method of producing SI-GE base semiconductor devices
JP4611492B2 (ja) 半導体装置および半導体集積回路
JP2000294564A (ja) バイポーラトランジスタ,その製造方法,該バイポーラトランジスタを用いた電子回路装置および光通信システム
WO1997011496A1 (fr) Dispositif a semi-conducteur, procede de fabrication associe et systeme utilisant ledit dispositif
JPH10284614A (ja) 半導体集積回路装置及びその製造方法
US20240204086A1 (en) Semiconductor device having an extrinsic base region with a monocrystalline region and method therefor
KR100333674B1 (ko) 이종접합 쌍극자 트랜지스터 제조방법
JP2001338931A (ja) バイポーラトランジスタおよびその製造方法
JP4966949B2 (ja) 半導体装置及びその製造方法並びにその半導体装置を用いたスーパーヘテロダイン方式の通信機
JP2003115493A (ja) バイポーラトランジスタ及びその製造方法
JPH11191558A (ja) 半導体装置およびその製造方法および半導体装置を用いたシステム
KR20030037356A (ko) 헤테로 구조체의 바이폴라 트랜지스터 제조 방법
WO2004077570A1 (ja) バイポーラトランジスタおよび集積回路装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees