JP3542614B2 - 温度センサおよび該温度センサの製造方法 - Google Patents

温度センサおよび該温度センサの製造方法 Download PDF

Info

Publication number
JP3542614B2
JP3542614B2 JP01238493A JP1238493A JP3542614B2 JP 3542614 B2 JP3542614 B2 JP 3542614B2 JP 01238493 A JP01238493 A JP 01238493A JP 1238493 A JP1238493 A JP 1238493A JP 3542614 B2 JP3542614 B2 JP 3542614B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal silicon
temperature sensor
silicon structure
dielectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01238493A
Other languages
English (en)
Other versions
JPH05273053A (ja
Inventor
バンツィエン フランク
ライレン エッカルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH05273053A publication Critical patent/JPH05273053A/ja
Application granted granted Critical
Publication of JP3542614B2 publication Critical patent/JP3542614B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/977Thinning or removal of substrate

Description

【0001】
【産業上の利用分野】
本発明は、単結晶シリコンから成るフレームと、該フレームにより保持される誘電体膜とを備えた温度センサ、例えば空気量センサに用いる温度センサ、に関する。
【0002】
【従来の技術】
WO89/05963号により既に、単結晶シリコンから成るフレームと、このフレームにより保持された誘電体膜を備えた温度センサが公知であるが、この温度センサの場合、膜における温度を測定するために金属製構造体が取り付けられている。しかし金属製構造体から成る温度センサは感度が著しく劣る。
【0003】
【発明が解決しようとする課題】
したがって本発明の課題は、このような従来技術の欠点を解決することにある。
【0004】
【課題を解決するための手段】
本発明によればこの課題は、誘電体膜上に単結晶シリコン構造体が被着されており、該誘電体膜の温度を表す電気的な測定出力を得るため、電気的接続部が前記単結晶シリコン構造体に接続されており、前記単結晶シリコン構造体は温度に依存する抵抗であり、該単結晶シリコン構造体は深部ドーピング材料によりドーピングされていることにより解決される。さらに上記の課題は請求項7、11、12、13記載の特徴により解決される。
【0005】
【発明の構成および利点】
請求項1の特徴部分に記載の構成を有する本発明による装置は従来技術に対して、温度測定のために単結晶シリコンから成る構造体が用いられる、という利点を有する。単結晶シリコンは、著しく大きなゼーベック係数ないし温度に対して高い導電率の感度を有し得るので、単結晶シリコン構造により著しく感度の高い温度センサを実現することができる。
【0006】
従属請求項に記載の構成により請求項1記載の温度センサの有利な実施形態が可能である。窒化シリコン、酸化シリコンまたは酸化窒化シリコンから成る誘電体層上における配置構成により、単結晶シリコン構造体とフレームとの良好な熱の分離が達成される。汚染や損傷から保護するために、表面に誘電性の保護層が被覆される。単結晶シリコン構造体を膜の下面に配置することにより、膜の表面は極めて滑らかになる。この場合、単結晶シリコン構造体は、膜における開口部を通して著しく容易に接触接続される。単結晶シリコン構造体を膜の上面上に配置するためには、別の製造プロセスを用いる必要がある。これによってはシリコン構造体の接触接続のための開口部を設ける必要がない。いわゆる深部ドーピング材料を用いることにより、単結晶シリコンの電気抵抗の温度に対する感度が著しく高められる。いわゆる浅部ドーピング材料によるドーピングと比較して、1000倍も感度を上昇させることができる。深部ドーピングのために、例えば金が適している。単結晶シリコン構造体を部分的にフレームおよび相応のリード線路の領域に配置することにより−このリード線路の接触個所は部分的にフレームの領域にあり部分的に膜の領域にある−温度センサはこのセンサがゼ−ベック効果を利用するように構成される。ゼ−ベック効果は、温度測定のためにいかなる外部電圧も用いる必要がない、という利点を有する。膜をフレームよりも高い温度に保持するヒータを設けることにより、この温度センサを流量センサとして使用できる。膜の温度を測定することにより、膜表面上を通過して流れる媒体への熱損失を測定でき、したがって通過して流れる媒体の量を測定することができる。
【0007】
本発明による方法により、温度センサの著しく簡単な製造が可能である。例えばこの方法を、本発明による温度センサを同時に大量生産するために使用できる。シリコン構造体に電圧を印加することにより、極めて精確で再現可能なエッチングストップが得られる。ウェ−ハ表面と気体との化学反応による誘電層の形成は著しく簡単であり、スパッタリングまたは気相による分離によって誘電層を析出することにより、材料を選択する際に大きな自由度が得られ、ないしはウェーハのいっそう低い温度負荷が可能になる。本発明による温度センサのための別の製造方法ではシリコンウェーハ中への酸素の注入(インプランテーション)が用いられる。このプロセスにより、温度センサを製造する可能性が拡大される。
【0008】
図面には本発明の実施例が示されており、以下で詳細に説明する。
【0009】
【実施例の説明】
図1のaにおいて、参照番号1によりシリコンウェーハが示されており、このシリコンウェーハ1に、これとはドーピングに関して異なるシリコン構造体2が設けられている。さらにこの場合、シリコンウェーハ1の一部分だけが示されており、つまり以後の温度センサに相応する部分が示されている。シリコンウェーハ1の分割は、例えば鋸により行われる。シリコン構造体2のドーピングは、例えば注入または拡散により行われる。この場合、ドーピング材料の種類は適用される測定作用に依存する。ゼーベック効果を温度測定に適用すべきならば、半導体技術で使用される通常のドーピング材料が、例えば燐、硼素あるいは砒素などを使用することができる。これらのドーピング材料の濃度が増すにつれて、センサ素子の感度が高まる。単結晶シリコンをアルミニウムと結合すれば、ポリシリコンアルミニウムと比べて5倍高い感度を達成することができる。
【0010】
シリコン構造体2を温度に依存する抵抗として使用すべき場合には、本発明によればいわゆる深部ドーピング材料を用いる。これらの材料は、そのエネルギーレベルがシリコンのバンドギャップのほぼ中央にある点で優れている。したがって深部ドーピング材料として例えば金、錫、コバルトまたはバナジウムが適している。このようにしてドーピングされたシリコン単結晶の導電率は、イオン化されたドーピング原子の成分により決定される。イオン化の程度は指数関数的に温度に依存し、したがって電気抵抗の温度依存性は高い。
【0011】
シリコンウェーハ1上に誘電層3が形成される。図1のbの場合、この誘電層3はシリコンウェーハ1の材料と気体例えば酸素との化学反応により形成されたものである。この場合、誘電体膜の一部分はシリコン構造体2により形成される。しかし一般的にドーピング濃度は著しく低いため、誘電体膜3は導電性ではない。熱による酸化つまりウェーハ表面と酸素との化学反応は、これが極めて簡単であるという利点を有する。しかし、誘電層3をシリコンウェーハ1の表面上に析出可能にするその他の技術を適用することもできる。スパッタリングによって、ほんとんど任意の材料をウェーハ表面上に析出することができる。ウェーハ1の表面上に誘電層3を析出させる他の方法には、気相法による析出いわゆる化学蒸着法がある。この方法を用いることにより、例えば酸化シリコン、窒化シリコンあるいは酸化窒化シリコンをウェーハ表面上で析出することができる。誘電層をウェーハ表面と気体との反応によって形成しない場合、誘電層3を析出する前にシリコン構造体2へのリード線路を形成することもできる。この場合の利点は、必要なプロセスステップ数を少なくできることであり、欠点は、リード線路の領域では膜が弱くなる恐れがあることである。
【0012】
図1のcの場合、誘電体膜3にコンタクト孔6が設けられている。これはフォトリトグラフィならびにエッチング技術による通常のプロセスにより行われる。センサ素子を保護するために、この表面上にさらに保護層5が設けられる。しかしシリコン構造体2を接触接続のために、この保護層はウェーハ1の少なくとも1つの個所にコンタクト開口部8を有する必要がある。
【0013】
図1のdには、電気抵抗の温度依存性を利用する完成された温度センサが示されている。このセンサを完成させるために、図1のcに示されているシリコンウェーハ1の裏面に開口部を設ける。この温度センサは誘電体膜13、単結晶シリコン構造体11および単結晶シリコンから成るフレーム9を有している。単結晶シリコン構造体11は、これがいかなる個所においてもフレーム9と接触しないように膜13上に取り付けられている。膜13の誘電材料は僅かな熱伝導性しか有していないので、単結晶シリコン構造体11はフレーム9とは熱的に絶縁されている。
【0014】
開口部7を設けるために、高い異方性を有するシリコンを例えばKOHをエッチングするエッチング溶液が用いられる。例えば酸化シリコンまたは窒化シリコンのような膜13の誘電材料は、この種のエッチング溶液により許容可能にエッチングされる。単結晶シリコン構造体11はそのドーピングに起因して−必要に応じて電圧の印加による支援によって−エッチング溶液による侵食から保護され得る。単結晶シリコン構造体11を電圧の印加によりエッチング溶液による侵食から保護すべき場合、単結晶シリコン構造体11とフレーム9をそれぞれ異なる導電形にする必要がある。例えば、フレーム9をP形シリコンで形成し、単結晶シリコン構造体11をN形シリコンで形成することが考えられる。
【0015】
リード線路4を介して単結晶シリコン構造体11の抵抗値を測定する。この抵抗値は著しく温度に依存するので、この測定により誘電体膜13における温度を表わすことができる。
【0016】
図1のeには、ゼ−ベック効果を利用した温度センサの構成が示されている。この目的で、図1のcによるウェ−ハ中に、裏面から出発する開口部7bが設けられる。この開口部7bは誘電体膜13および単結晶シリコン構造体12まで延在している。単結晶シリコン構造体12の一方の端部は、単結晶シリコンから成るフレーム9に埋め込まれている。この領域には、コンタクト孔6の1つ(コンタクト1)も設けられている。単結晶シリコン構造体12の他方の端部は、誘電体膜13上に置かれている。この領域には、別のコンタクト孔6(コンタクト2)が設けられている。
【0017】
コンタクト1とコンタクト2の間に温度差が生じると、両方のリード線路4の間に電圧差いわゆるゼ−ベック電圧が生じ、この電圧差を測定により検出することができる。開口部7bはやはり誘電体膜13まで延在しており、さらに単結晶シリコン構造体12まで延在している。単結晶シリコン構造体12の保護は、やはり相応のドーピングないし電圧の印加により達成できる。電圧の印加による保護は、図1のdと同じようにして行われる。
【0018】
図2には、本発明による温度センサの別の製造方法が示されている。図2のaの場合、シリコンウェ−ハ31において単結晶シリコン層33の下に酸化シリコン層が形成される。このように埋められた酸化シリコン層32を形成するために、シリコンウェ−ハ31内に酸素イオンを注入する。相応のプロセスは、雑誌”Sensors and Actuators, A 21 - A 23, (1990) 1003 - 1006, SIMOX : a technology for high temperature silicon sensors ”に記載されている。図2のbの場合、単結晶シリコン層33の構造化により、単結晶シリコン構造体35が形成されている。この単結晶シリコン構造体にはリード線路34が設けられる。単結晶シリコン層33の構造化は、フォトリトグラフィおよびエッチングプロセスにより行われる。リード線路34を形成するために、例えば上方からの金属層のスパッタリングが適している。
【0019】
図2のcにおいて、開口部37を設けることにより、単結晶シリコンから成るフレーム9と誘電体膜13を備えた温度センサが形成される。この温度センサの表面上にさらに、酸化シリコンまたは窒化シリコンから成る保護層が析出される。開口部37のエッチングはこの方法の場合とりわけ簡単である。それというのはエッチングストップとして誘電体膜13が用いられるからである。ここに示されているセンサもやはり、単結晶シリコン構造体35における電気抵抗の温度依存性を利用している。単結晶シリコン構造体35の一方の端部がフレーム9の領域内に置かれていれば、このセンサに対しても同じようにゼ−ベック効果を温度測定に利用することができる。
【0020】
図3には、空気量センサに使用する場合の本発明による温度センサが示されている。この空気量センサは、単結晶シリコンから成るフレーム9を有しており、このフレーム内に誘電体膜13が取り付けられている。この誘電体膜上に単結晶シリコン構造体11および12が配置されており、その際、単結晶シリコン構造体12は部分的にフレーム9の領域内に置かれている。平面図としてここに示されている構成の場合、これらの単結晶シリコン構造体11、12が膜13の上面に配置されているか下面に配置されているかは重要ではない。したがってここに示されている構成は、図1および図2に示されたセンサに対して同じようにあてはまる。単結晶シリコンは11、12はリード線路14により接触接続されている。これらのリード線路14を介して、ここには示されていない評価電子機構との接触接続を形成することができる。この評価電子機構は、センサの外部に設けることもできるし、あるいはシリコンフレーム内にモノリシックに集積化することもできる。さらに、膜13上にリード線路15を有するヒータ16が配置されている。このヒータ16は、ここには図示されていないようにしてリード線路15の横断面を先細りにしていくことにより、著しく簡単に形成されたものである。しかし、電流から熱への変換にもとづく任意の別のヒータも考えられる。ヒータ16により、膜13はフレーム9よりも高い温度に保持される。誘電体膜13は僅かな熱伝導性しか有していないので、ヒータ16からは僅かな熱しか膜13を介してフレーム9へ放出されない。したがって膜13は比較的高い温度にあり、この温度を温度センサによって検出することができる。膜13を流動媒体中に例えば空気流中にさらすと、膜13は熱をこの流動媒体へ放出するので、この膜は冷される。この場合、熱損失は、通過して流れる媒体の流量に依存する。したがって温度を測定することにより、単位時間ごとに通過して流れる媒体の量を決定することができる。温度測定の感度が高くなるにつれて、センサはいっそう高感度に、精確に、そして障害を受けないようになる。それ故単結晶シリコン構造体11、12を用いることにより、流動体センサの感度、障害に対する強さ、ならびに精度が高められる。
【0021】
【発明の効果】
本発明により、単結晶シリコンから成る構造体を用いた温度測定用のセンサが提供され、このような単結晶シリコン構造により著しく感度の高い温度センサを実現することができる。
【図面の簡単な説明】
【図1】本発明による温度センサの製造方法を示す図である。
【図2】本発明による温度センサの別の製造方法を示す図である。
【図3】温度センサの平面図である。
【符号の説明】
1 シリコンウェーハ
2 シリコン構造体
3 誘電層
4 リード線路
5 保護層
6 コンタクト孔
7,8 開口部
9 フレーム
11,12 シリコン構造体
13 誘電体膜
31 シリコンウェーハ
32 酸化シリコン層
33 単結晶シリコン層
34 リード線路
35 シリコン構造体
37 開口部

Claims (21)

  1. 単結晶シリコンから成るフレーム(9)と、該フレーム(9)により保持される誘電体膜(13)とを備えた温度センサにおいて、
    前記誘電体膜(13)の上面または下面に単結晶シリコン構造体(2,11,35)が被着されており、
    該誘電体膜(13)の温度を表す電気的な測定出力を得るため、電気的接続部(4,14)が前記単結晶シリコン構造体(2,11,35)に接続されており、
    前記単結晶シリコン構造体(2,11,35)は温度に依存する抵抗であり、該単結晶シリコン構造体(2,11,35)は深部ドーピング材料によりドーピングされていることを特徴とする温度センサ。
  2. 前記深部ドーピング材料は、エネルギーレベルがシリコンのエネルギーギャップの少なくともほぼ中央にある材料から成る、請求項1記載の温度センサ。
  3. 前記深部ドーピング材料は金、錫、コバルトまたはバナジウムである、請求項1記載の温度センサ。
  4. 前記単結晶シリコン構造体(11)は誘電体膜(13)の下面に被着されている、請求項1記載の温度センサ。
  5. 前記誘電体膜(13)に開口部(6)が設けられており、該開口部を貫通して前記電気的接続部(4,14)が単結晶シリコン構造体(2,11,35)と接続されている、請求項記載の温度センサ。
  6. 前記誘電体膜(13)によってのみ支持されており、フレーム(9)とオーバラップしていない、請求項1記載の温度センサ。
  7. 単結晶シリコンから成るフレーム(9)と、該フレーム(9)により保持される誘電体膜(13)とを備えた温度センサにおいて、
    前記誘電体膜(13)の上面または下面に単結晶シリコン構造体(2,12,35)が被着されており、
    該誘電体膜(13)の温度を表す電気的な測定出力を得るため、電気的接続部(4,14)が前記単結晶シリコン構造体(2,12,35)に接続されており、
    前記単結晶シリコン構造体(2,12,35)はゼーベック効果をもつ半導体から成り、該単結晶シリコン構造体(12)は一部分が前記フレーム(9)の領域に配置されていてそれとオーバラップしており、
    前記電気的接続部(4,14)はシリコンから作られず、
    該電気的接続部(4,14)の2つの接続点のうちの一方は、単結晶シリコン構造体(2,12)とともに前記フレーム(9)の領域に配置されており、他方の接続点は前記膜(13)の領域に配置されていることを特徴とする、
    温度センサ。
  8. 前記単結晶シリコン構造体(2,12,35)は少なくとも、燐、硼素または砒素の少なくとも1つから成るドーピング材料でドーピングされており、選択的に前記ドーピング材料の濃度が高められている、請求項7記載の温度センサ。
  9. 前記単結晶シリコン構造体(12)は誘電体膜(13)の下面に被着されている、請求項7記載の温度センサ。
  10. 前記誘電体膜(13)に開口部(6)が設けられており、該開口部を貫通して前記電気的接続部(4,14)が単結晶シリコン構造体(2,11,35)と接続されている、請求項記載の温度センサ。
  11. 空気流量センサで使用するための温度センサにおいて、
    請求項1記載のセンサを備えており、
    誘電体膜(13)をフレーム(9)よりも高温に維持するために、該膜(13)に隣り合って単結晶シリコン構造体(11,35)の近傍にヒータ(16)が配置されており、
    前記電気的接続部(14)は評価電子機構と接続されており、該評価電子機構により前記膜(13)の表面を流れる媒体の熱損失が評価され、前記センサは該誘電体膜(13)の温度を測定することを特徴とする、
    温度センサ。
  12. 空気流量センサで使用するための温度センサにおいて、
    請求項7記載のセンサを備えており、
    誘電体膜(13)をフレーム(9)よりも高温に維持するために、該膜(13)に隣り合って単結晶シリコン構造体(12,35)の近傍にヒータ(16)が配置されており、
    前記電気的接続部(14)は評価電子機構と接続されており、該評価電子機構により前記膜(13)の表面を流れる媒体の熱損失が評価され、前記センサは該誘電体膜(13)の温度を測定することを特徴とする、
    温度センサ。
  13. 単結晶シリコンから成るフレーム(9)と、該フレーム(9)により保持される誘電体膜(13)とを備えており、
    前記誘電体膜(13)上に単結晶シリコン構造体(2,11,12)が被着されており、
    該誘電体膜(13)の温度を表す電気的な測定出力を得るため、電気的接続部(4,14)が前記単結晶シリコン構造体(2,11,12)に接続されている温度センサの製造方法において、
    単結晶シリコンウェハ(31)を用意するステップと、
    該ウェハ(31)に酸素イオンを注入して、その中に埋め込まれた酸化シリコン層(32)を形成し、該ウェハに単結晶部分(31)を形成し、前記酸化シリコン層(32)の上に単結晶シリコン層(33)を残すステップと、
    該単結晶シリコン層(33)を成形または構造形成して、前記酸化シリコン層(32)の上に単結晶シリコン構造体(35)を形成するステップと、
    前記単結晶シリコン構造体(35)を深部ドーピング材料を用いてドーピングして、該単結晶シリコン構造体(35)に温度に依存する抵抗を形成するステップと、
    該単結晶シリコン構造体(35)に接続部(34)を形成するステップと、
    前記単結晶シリコンウェハ(31)のフレーム(9)を残しながら前記シリコンウェハ(31)を酸化シリコン層(32)までエッチングして開口部(37)を形成し、酸化シリコン層(33)を膜(13)とするステップ、
    を有することを特徴とする、
    温度センサの製造方法。
  14. 前記エッチングステップはエッチング溶液を用いるステップを有しており、電圧の印加または高い濃度のドーピング材料の適用により前記シリコン構造体(2,35)をエッチング溶液による作用から保護するステップが設けられている、請求項13記載の方法。
  15. ウェハ表面と気体との化学反応により誘電層を形成する、請求項13記載の方法。
  16. 気相によるデポジションにより誘電層を形成する、請求項13記載の方法。
  17. スパッタリングにより誘電層を形成する、請求項13記載の方法。
  18. 前記ドーピングステップは、エネルギーレベルがシリコンのエネルギーギャップの少なくともほぼ中央にあるドーピング材料を用いて単結晶シリコン構造体(2,35)を深部ドーピングするステップを有する、請求項13記載の方法。
  19. 酸素イオンを注入する前記ステップは、イオンインプランテーションにより酸素イオンを前記ウェハ(31)に打ち込むステップを有する、請求項13記載の方法。
  20. 前記エッチングステップは、フレーム(9)を残しながら酸化シリコン層(32)までシリコンウェハ(31)の裏面からエッチングして開口部を形成するステップを有する、請求項13記載の方法。
  21. 前記エッチングステップは、フレーム(9)を残しながら酸化シリコン層(32)までシリコンウェハ(31)の裏面からエッチングして開口部(37)を形成するステップを有する、請求項19記載の方法。
JP01238493A 1992-01-31 1993-01-28 温度センサおよび該温度センサの製造方法 Expired - Fee Related JP3542614B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4202733.0 1992-01-31
DE4202733A DE4202733C2 (de) 1992-01-31 1992-01-31 Temperatursensor

Publications (2)

Publication Number Publication Date
JPH05273053A JPH05273053A (ja) 1993-10-22
JP3542614B2 true JP3542614B2 (ja) 2004-07-14

Family

ID=6450665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01238493A Expired - Fee Related JP3542614B2 (ja) 1992-01-31 1993-01-28 温度センサおよび該温度センサの製造方法

Country Status (3)

Country Link
US (1) US5446437A (ja)
JP (1) JP3542614B2 (ja)
DE (1) DE4202733C2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328791C2 (de) * 1993-08-26 1997-07-17 Siemens Matsushita Components Hybrid-Thermistortemperaturfühler
US5382759A (en) * 1993-09-28 1995-01-17 Trw Inc. Massive parallel interconnection attachment using flexible circuit
US5804462A (en) * 1995-11-30 1998-09-08 Motorola, Inc. Method for forming a multiple-sensor semiconductor chip
JP3756612B2 (ja) * 1997-03-18 2006-03-15 ローム株式会社 チップ型抵抗器の構造及びその製造方法
JPH1132492A (ja) * 1997-05-14 1999-02-02 Nissan Motor Co Ltd 熱電発電装置及びその駆動方法
DE19756072C2 (de) * 1997-08-26 1999-08-19 Deutsch Zentr Luft & Raumfahrt Differenz-Thermoanalyse-Vorrichtung
DE19756069C1 (de) * 1997-12-17 1999-09-23 Deutsch Zentr Luft & Raumfahrt Differenz-Thermoanalyse-Vorrichtung
US6744346B1 (en) * 1998-02-27 2004-06-01 Micron Technology, Inc. Electronic device workpieces, methods of semiconductor processing and methods of sensing temperature of an electronic device workpiece
US6444487B1 (en) * 1998-07-28 2002-09-03 Rosemount Aerospace Inc. Flexible silicon strain gage
US6229322B1 (en) * 1998-08-21 2001-05-08 Micron Technology, Inc. Electronic device workpiece processing apparatus and method of communicating signals within an electronic device workpiece processing apparatus
US6967497B1 (en) 1998-08-21 2005-11-22 Micron Technology, Inc. Wafer processing apparatuses and electronic device workpiece processing apparatuses
EP0987529A1 (de) 1998-09-14 2000-03-22 Heraeus Electro-Nite International N.V. Elektrischer Widerstand mit wenigstens zwei Anschlusskontaktfeldern auf einem Substrat mit wenigstens einer Ausnehmung sowie Verfahren zu dessen Herstellung
US6184773B1 (en) * 1998-12-07 2001-02-06 Honeywell Inc. Rugged fluid flow and property microsensor
JP3433124B2 (ja) * 1998-12-15 2003-08-04 株式会社日立製作所 熱式空気流量センサ
US6238085B1 (en) * 1998-12-31 2001-05-29 Honeywell International Inc. Differential thermal analysis sensor
JP3665751B2 (ja) * 2001-06-26 2005-06-29 信越化学工業株式会社 プラズマ処理中の温度測定方法及びそれに使用する温度測定用部材
WO2003036225A1 (en) * 2001-10-26 2003-05-01 University Of Rochester Method for biomolecular sensing and system thereof
US6793389B2 (en) * 2002-02-04 2004-09-21 Delphi Technologies, Inc. Monolithically-integrated infrared sensor
US20040093041A1 (en) * 2002-03-15 2004-05-13 Macdonald Stuart G. Biothermal power source for implantable devices
US7340304B2 (en) * 2002-03-15 2008-03-04 Biomed Soutions, Llc Biothermal power source for implantable devices
US7004622B2 (en) * 2002-11-22 2006-02-28 General Electric Company Systems and methods for determining conditions of articles and methods of making such systems
JP2006514278A (ja) * 2003-02-03 2006-04-27 インディアン インスティテュート オブ サイエンス 気体流速測定のための方法、固体材料にかけて流れる気体流を用いるエネルギー変換のための方法及びこれらの方法のためのデバイス
US7306967B1 (en) 2003-05-28 2007-12-11 Adsem, Inc. Method of forming high temperature thermistors
US7812705B1 (en) 2003-12-17 2010-10-12 Adsem, Inc. High temperature thermistor probe
US7292132B1 (en) * 2003-12-17 2007-11-06 Adsem, Inc. NTC thermistor probe
US7261461B2 (en) * 2004-09-23 2007-08-28 Microbridge Technologies Inc. Measuring and trimming circuit components embedded in micro-platforms
WO2006113759A2 (en) * 2005-04-19 2006-10-26 University Of South Florida Mems based conductivity-temperature-depth sensor for harsh oceanic enbironment
JP4839685B2 (ja) * 2005-06-13 2011-12-21 株式会社デンソー 半導体装置
WO2015108465A1 (en) * 2014-01-17 2015-07-23 Conflux Ab Arrangement and method for measuring temperature
EP3751239B1 (en) * 2019-06-14 2022-03-02 Infineon Technologies AG Thermoresistive micro sensor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174512A (en) * 1977-12-05 1979-11-13 The Bendix Corporation Fast response temperature sensor
DE3041818A1 (de) * 1980-11-06 1982-06-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Halbleiterbauelement
DE3138535A1 (de) * 1981-09-28 1983-04-07 Siemens AG, 1000 Berlin und 8000 München Temperatursensor mit einem halbleiterkoerper
US4677850A (en) * 1983-02-11 1987-07-07 Nippon Soken, Inc. Semiconductor-type flow rate detecting apparatus
DE3431811A1 (de) * 1984-08-30 1986-03-13 Philips Patentverwaltung Gmbh, 2000 Hamburg Halbleiter-temperatursensor
US4744246A (en) * 1986-05-01 1988-05-17 Busta Heinz H Flow sensor on insulator
US4914742A (en) * 1987-12-07 1990-04-03 Honeywell Inc. Thin film orthogonal microsensor for air flow and method
US4870745A (en) * 1987-12-23 1989-10-03 Siemens-Bendix Automotive Electronics L.P. Methods of making silicon-based sensors
US4934190A (en) * 1987-12-23 1990-06-19 Siemens-Bendix Automotive Electronics L.P. Silicon-based sensors
US4888988A (en) * 1987-12-23 1989-12-26 Siemens-Bendix Automotive Electronics L.P. Silicon based mass airflow sensor and its fabrication method
US5100829A (en) * 1989-08-22 1992-03-31 Motorola, Inc. Process for forming a semiconductor structure with closely coupled substrate temperature sense element

Also Published As

Publication number Publication date
DE4202733A1 (de) 1993-08-05
JPH05273053A (ja) 1993-10-22
DE4202733C2 (de) 1995-06-08
US5446437A (en) 1995-08-29

Similar Documents

Publication Publication Date Title
JP3542614B2 (ja) 温度センサおよび該温度センサの製造方法
EP0393141B1 (en) Silicon-based mass airflow sensor
US7255001B1 (en) Thermal fluid flow sensor and method of forming same technical field
US5048336A (en) Moisture-sensitive device
Dibbern A substrate for thin-film gas sensors in microelectronic technology
KR100812996B1 (ko) 마이크로 가스 센서 및 그 제조방법
JP3364115B2 (ja) 感熱式流量検出素子
EP0794427B1 (en) Semiconductor chemical sensor device
EP0696725B1 (en) Thermal micro flow sensor and production method thereof
US8007169B2 (en) Sensor
JPH08152356A (ja) 赤外線センサ
US20020020689A1 (en) Accelerometer without proof mass
US6378365B1 (en) Micromachined thermal flowmeter having heating element disposed in a silicon island
US20180340901A1 (en) Gas sensor platform and the method of making the same
US20190107502A1 (en) Pixel for Thermal Transport and Electrical Impedance Sensing
US6579740B2 (en) Method of making a thin film sensor
EP1190242A1 (en) Low-power sensor
US11193904B2 (en) Pixel for analyzing a gaseous analyte
Zhang et al. Single (111)-Wafer Single-Side Microfabrication of Suspended p+ Si/n+ Si Thermopile for Tiny-Size and High-Sensitivity Thermal Gas Flow Sensors
JPH085597A (ja) 防風構造を有するマイクロガスセンサ
JPH05307045A (ja) 流速センサ
JP3524707B2 (ja) マイクロフローセンサ素子
JP3318581B2 (ja) 半導体流量測定装置
JPS6258456B2 (ja)
KR100286854B1 (ko) 압력 센서

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees